数值分析课程介绍
- 格式:ppt
- 大小:116.50 KB
- 文档页数:10
《数值分析》精品课程简介
《数值分析》是信息与计算科学专业的一门专业基础课程,该课程详细介绍了应用计算机进行了科学计算的常用算法,是培养学生从事科学计算能力的桥梁。
2005年《数值分析》被评为院级精品课程,课程负责人为张同琦教授。
数值分析精品课程建设小组共有成员8名,涵盖了基础数学、计算数学、应用数学、计算机科学等学科专业,其中有教授2人,副教授2人,讲师4人。
几年来,在学院的大力支持下,按照精品课程建设的要求,遵从教育教学规律,以“提高教学质量和培养优秀人才”为核心,以力求“创新”、加强“实践”,积极探索和实践,形成了“问题---数学模型---解决方法---课程内容---解决问题”为主线的具有专业特色的教学方法。
“精品课程数值分析建设的实践体会”获2008年渭南师范学院优秀教学成果三等奖,信息与计算科学专业的学生自2006年参加全国大学生数学建模竞赛以来,每年都能在全国数建模竞赛中获得省二等奖以上的奖励。
现任教师具有较强的科研能力,最近几年获得院级科研成果奖励的有5人次,主持和参加省级、院级科研项目的有7人次。
近年来在《工程数学学报》、《西北大学学报》等核心刊物发表学术论文30多篇。
数值分析教学大纲一、课程概述数值分析是一门应用数学的学科,研究如何使用数值方法解决实际问题。
本课程旨在介绍数值分析的基本概念、数值计算方法和数值算法的设计与实现,培养学生运用数值方法进行科学计算和工程设计的能力。
二、教学目标1. 掌握数值分析的基本概念和方法,了解数值计算与数学理论的关系;2. 熟悉常用的数值计算方法,如数值逼近、数值积分、数值求解方程等;3. 学会分析和评估数值计算方法的稳定性、精确性和效率;4. 培养解决实际问题的数值模拟和数值实验的能力;5. 培养数值计算软件的使用和程序设计的基本技能。
三、教学内容1. 数值计算的误差分析a. 绝对误差和相对误差b. 截断误差和舍入误差2. 数值逼近a. 插值与多项式逼近b. 最小二乘逼近c. 误差估计与收敛性分析3. 数值积分与数值微分a. 数值积分方法b. 数值微分方法c. 数值积分与微分的误差分析4. 数值解线性方程组a. 线性方程组的直接解法b. 线性方程组的迭代解法c. 收敛性与稳定性分析5. 非线性方程数值求解a. 方程求根的基本方法b. 非线性方程求根的迭代算法c. 收敛性分析和收敛速度6. 数值解常微分方程a. 初值问题的数值方法b. 边值问题的数值方法c. 稳定性和保结构性的分析7. 数值计算的软件工具a. 常用数值计算软件的介绍b. 数值计算问题的编程实现c. 数值计算软件的调试和优化技巧四、教学方法1. 理论授课与实践结合,讲解数值分析的基本理论和方法,注重实际问题的解决和计算算法的实现;2. 设计实验和案例分析,引导学生运用数值方法解决实际问题;3. 数值计算软件的使用,帮助学生熟悉常用的数值计算软件和编程语言;4. 课堂讨论和小组合作,培养学生的分析和解决问题的能力。
五、教材与参考书目教材:1. 《数值分析》- 王建明、杨肇明、刘妍编著,高等教育出版社2. 《数值分析与算法》- 吴良骥编著,清华大学出版社参考书目:1. 《科学计算导论》- Heath M. T 编著,电子工业出版社2. 《数值分析》- David Kincaid, E. Ward Cheney 编著,机械工业出版社3. 《数值分析与算法:MATLAB实现》- Michael T. Heath 编著,机械工业出版社六、课程评估与考核1. 平时成绩占比:30%包括作业、实验、课堂讨论等形式,对学生的实际动手能力和理论理解能力进行评估。
《数值分析》课程教案数值分析课程教案一、课程介绍本课程旨在介绍数值分析的基本概念、方法和技巧,以及其在科学计算和工程应用中的实际应用。
通过本课程的研究,学生将了解和掌握数值分析的基本原理和技术,以及解决实际问题的实用方法。
二、教学目标- 了解数值分析的基本概念和发展历程- 掌握数值计算的基本方法和技巧- 理解数值算法的稳定性和收敛性- 能够利用数值分析方法解决实际问题三、教学内容1. 数值计算的基本概念和方法- 数值计算的历史和发展- 数值计算的误差与精度- 数值计算的舍入误差与截断误差- 数值计算的有效数字和有效位数2. 插值与逼近- 插值多项式和插值方法- 最小二乘逼近和曲线拟合3. 数值微积分- 数值积分的基本原理和方法- 数值求解常微分方程的方法4. 线性方程组的数值解法- 直接解法和迭代解法- 线性方程组的稳定性和收敛性5. 非线性方程的数值解法- 迭代法和牛顿法- 非线性方程的稳定性和收敛性6. 数值特征值问题- 特征值和特征向量的基本概念- 幂迭代法和QR方法7. 数值积分与数值微分- 数值积分的基本原理和方法- 数值微分的基本原理和方法四、教学方法1. 理论讲授:通过课堂授课,讲解数值分析的基本概念、原理和方法。
2. 上机实践:通过实际的数值计算和编程实践,巩固和应用所学的数值分析知识。
3. 课堂讨论:组织学生进行课堂讨论,加深对数值分析问题的理解和思考能力。
五、考核方式1. 平时表现:包括课堂参与和作业完成情况。
2. 期中考试:对学生对于数值分析概念、原理和方法的理解程度进行考查。
3. 期末项目:要求学生通过上机实验和编程实践,解决一个实际问题,并进行分析和报告。
六、参考教材1. 《数值分析》(第三版),贾岩. 高等教育出版社,2020年。
2. 《数值计算方法》,李刚. 清华大学出版社,2018年。
以上是《数值分析》课程教案的概要内容。
通过本课程的研究,学生将能够掌握数值分析的基本原理和技术,并应用于实际问题的解决中。
《数值分析》教学大纲
一、课程名称:数值分析
二、课程性质:专业选修课
三、授课学时:48学时(实验室32学时)
四、授课对象:计算机专业本科课程学生
五、课程目前:
1.数值分析的定义、内容及其在科学计算中的重要性;
2.数值积分的原理及其应用,包括高斯积分、拉格朗日积分、Lagrange插值法、梯形法等;
3.常微分方程的数值解法,包括隐式Euler方法、欧拉法、Runge-Kutta方法、Adams方法、Lorenz方法等;
4.最优化的原理和算法,包括一阶最优化方法、梯度方法、拟牛顿法、二阶最优化方法及其应用;
5.系统辨识的原理及其应用;
6.数值计算实践,使用MATLAB编程实现数值计算;
六、教学进度安排
第1讲:数值分析的定义、内容及其在科学计算中的重要性
第2讲:数值积分的原理及其应用:高斯积分、拉格朗日积分、Lagrange插值法
第3讲:隐式Euler方法
第4讲:欧拉法
第5讲:Runge-Kutta方法
第6讲:Adams方法
第7讲:Lorenz方法
第8讲:一阶最优化方法、梯度方法和拟牛顿法
第9讲:二阶最优化方法及其应用
第10讲:系统辨识原理及其应用
第11讲:MATLAB编程实现数值计算
七、教学要求
1.熟悉数值分析的定义、内容及其在科学计算中的重要性;。
数值分析教学大纲一、课程简介数值分析是一门研究数值计算方法和数值计算误差的学科,它旨在通过数学模型和算法,利用计算机对现实问题进行数值求解。
本课程主要介绍数值分析的基本原理、方法与应用,培养学生对数值计算的理论和实践能力。
二、教学目标1. 理解数值分析的基本概念和任务,了解数值计算的重要性和应用领域。
2. 熟练掌握数值计算中常用的数值方法和算法,能够灵活运用于实际问题的求解。
3. 培养学生的数学建模和问题求解能力,提高数值计算的准确性和效率。
4. 培养学生的团队合作和沟通能力,培养创新意识和实践能力。
三、教学内容1. 数值计算误差与有效数字:了解数值计算的误差来源和评估方法,掌握有效数字的概念和计算方法。
2. 插值与逼近:掌握插值和逼近的基本原理和方法,能够利用插值和逼近方法拟合实际数据。
3. 数值微积分:熟练掌握数值微积分的基本方法和算法,能够求解函数的数值积分和数值微分。
4. 非线性方程的数值解法:了解非线性方程的求根方法和算法,能够利用迭代法和牛顿法求解非线性方程。
5. 线性方程组的数值解法:掌握线性方程组的直接求解和迭代求解方法,能够解决大规模线性方程组的数值问题。
6. 数值积分与常微分方程数值解:熟练掌握数值积分和常微分方程数值解的基本原理和方法,能够求解实际问题的数值积分和数值解。
7. 特征值与特征向量的数值计算:了解特征值和特征向量的数值计算方法,能够求解实对称矩阵的特征值和特征向量。
8. 数值优化方法:掌握数值优化的基本原理和方法,能够利用优化算法求解实际问题的最优解。
四、教学方法1. 理论讲授:通过课堂讲解,系统介绍数值分析的基本理论和方法,让学生掌握知识框架。
2. 示例分析:通过实际问题的案例分析,演示数值分析方法的应用过程和解题技巧。
3. 课堂练习:安排课堂练习和小组讨论,加深学生对知识点的理解和应用。
4. 编程实践:要求学生通过编写程序,运用数值分析方法解决实际问题,提升实践能力和算法设计能力。
数值分析课程教学大纲一、课程简介数值分析是一门应用数学课程,研究如何利用计算机和数值方法来解决实际问题。
本课程将介绍数值计算的基本概念和数值算法,以及其在科学和工程领域中的应用。
主要内容包括:插值与逼近、数值积分与数值微分、非线性方程求解、线性方程组求解、特征值与特征向量计算、数值解常微分方程等。
二、教学目标1.掌握数值分析的基本概念,了解数值计算的背景和意义;2.熟悉常用的数值算法,能够正确选择和应用适当的数值方法;3.能够使用计算机编程语言实现数值分析中的算法,并利用计算机进行数值计算;4.培养独立思考和问题解决能力,能够通过数值分析方法解决实际问题。
三、教学内容与安排1.插值与逼近1.1 插值多项式1.2 插值余项与误差估计1.3 最小二乘逼近方法1.4 样条插值方法2.数值积分与数值微分2.1 数值积分的基本概念2.2 数值积分公式与误差估计 2.3 自适应积分方法2.4 数值微分的基本概念与方法3.非线性方程求解3.1 二分法与不动点迭代法3.2 牛顿法与割线法3.3 收敛性分析3.4 高级方法:弦截法、过程函数法等4.线性方程组求解4.1 线性方程组与矩阵运算的基本概念4.2 直接解法:高斯消元与LU分解4.3 迭代解法:雅可比迭代与高斯-赛德尔迭代4.4 收敛性与稳定性分析5.特征值与特征向量计算5.1 线性代数复习:特征值与特征向量的定义5.2 幂迭代法与反幂迭代法5.3 Jacobi方法与QR方法6.数值解常微分方程6.1 常微分方程数值解的基本概念与方法6.2 单步法:欧拉法、改进的欧拉法、Runge-Kutta法 6.3 多步法:Adams法、Milne法6.4 稳定性与刚性问题四、教学方法1.理论与实践相结合,以理论讲解为主,辅以相关数值计算实例;2.组织编程实践,利用计算机进行数值分析的算法实现与应用;3.课堂互动,鼓励学生提问和思考,培养独立解决问题的能力;4.课后作业辅导,及时解答学生的问题,帮助学生巩固所学知识。
数值分析课程教学大纲一、课程简介数值分析课程是计算机科学与工程领域的一门重要基础课程,旨在培养学生使用数值方法解决实际问题的能力。
本课程主要介绍数值计算的基本原理、常用数值方法以及其在实际应用中的使用。
二、教学目标1. 了解数值计算的基本概念与原理;2. 掌握常用数值方法的基本思想和实现过程;3. 能够独立选择和应用合适的数值方法解决实际问题;4. 具备编写简单数值计算程序的基本能力。
三、教学内容1. 数值计算基础1.1 数值误差与有效数字1.2 浮点运算与舍入误差1.3 计算机数制与机器精度2. 插值与逼近2.1 插值多项式的存在唯一性与插值误差2.2 多项式插值的Newton和Lagrange形式2.3 最小二乘逼近与曲线拟合2.4 样条插值与曲线光滑拟合3. 数值积分与数值微分3.1 数值积分的基本概念及Newton-Cotes公式 3.2 数值积分的复化方法3.3 高斯积分公式3.4 数值微分的中心差分与向前向后差分公式4. 解非线性方程4.1 迭代法与收敛性分析4.2 函数单调性与零点存在性4.3 牛顿迭代法及其变形法4.4 非线性方程求根方法的比较与选择5. 数值代数方程组的直接解法5.1 矩阵消元与高斯消元法5.2 LU分解方法5.3 矩阵的特征值与特征向量5.4 线性方程组迭代解法6. 数值优化方法6.1 优化问题的基本概念与分类6.2 单变量优化方法6.3 多变量优化方法6.4 无约束优化算法和约束优化算法四、教学方法1. 授课方式:理论讲解与实例演示相结合。
2. 实践环节:布置数值计算作业,让学生进行编程实现,并分析实验结果。
3. 课堂互动:鼓励学生积极提问,与教师及同学进行讨论与交流。
五、评分与考核1. 平时成绩占40%,包括平时作业和课堂表现。
2. 期中考试占30%。
3. 期末考试占30%。
六、参考教材1. 《数值分析(第3版)》,李庆扬,高等教育出版社。
2. 《数值分析(第6版)》,理查德 L.伯登,麦格劳-希尔教育出版公司。
数值分析课程教学大纲一、课程介绍数值分析课程是计算机科学与工程专业的一门核心课程,旨在培养学生运用数值计算方法解决实际问题的能力。
本课程以数值方法的原理和应用为核心,重点介绍了数值计算的基本概念、数值求解方法以及误差分析等内容。
通过本课程的学习,学生将掌握将数学模型转化为计算机模型的基本技能,并能够运用所学的数值计算方法解决实际问题。
二、教学目标1. 理解数值计算的基本概念和原理。
2. 掌握数值计算的常用方法和技巧。
3. 能够独立运用数值计算方法解决实际问题。
4. 具备对数值计算结果进行误差分析和可行性评估的能力。
5. 培养良好的数值计算程序设计和实验研究能力。
三、教学内容1. 数值计算基础知识1.1 数值计算的基本概念和应用场景1.2 数字系统与误差分析1.3 计算舍入误差和截断误差1.4 非线性方程求解方法1.5 插值与拟合方法2. 数值线性代数2.1 线性方程组的直接解法2.2 线性方程组的迭代解法2.3 线性最小二乘问题2.4 特征值和特征向量计算3. 数值微积分3.1 数值积分方法3.2 数值微分方法3.3 常微分方程的数值解法4. 数值优化4.1 一维和多维无约束优化问题4.2 线性规划和非线性规划方法4.3 优化算法的收敛性和稳定性分析五、教学方法1. 授课讲解:通过教师的讲解,向学生介绍数值计算的基本概念和原理,并讲解具体的数值计算方法和技巧。
2. 实例演示:通过实际问题的演示和求解过程,加深学生对数值计算方法的理解和应用能力。
3. 课堂练习:每节课结束前,布置一定数量的习题,让学生在课后自行完成,以提高他们的实践能力。
4. 实验实践:组织学生参与数值计算的实验和项目实践,培养他们的动手能力和解决实际问题的能力。
六、评价方式1. 平时成绩:包括课堂讨论和作业完成情况等,占总成绩的30%。
2. 期中考试:考查学生对数值计算基础知识和方法的掌握程度,占总成绩的30%。
3. 期末考试:考查学生对数值计算的综合运用能力,占总成绩的40%。
数值分析
(Numerica1Ana1ysis)
总学时:48学时理论:44学时实验(上机、实习等4学时
学分:3
课程主要内容:
数值分析是计算机专业的专业技术基础课,其主要介绍了数值理论、函数逼近、数值微积分、非线性方程求根、线性代数方程组、特征值问题的常用数值法。
它利用计算机使学生将已学的数学和程序设计知识等有关知识有机地结合起来,并应用它解决实际问题。
它要求学生能够评价各种算法的优劣,使用高级语言描述学过的算法并上机调试。
这对于学生从事数值软件的研制与维护是十分有益的。
通过本课程的学习,学生应充分理解数值方法的特点,熟练掌握使用各种数值方法解决数学问题的技巧,为今后结合计算机的应用而解决实际问题打下坚实的基础。
先修课程:
高等数学、线性代数、程序设计及数据结构。
适用专业:
计算机科学与技术
教材:
王能超.《数值分析简明教程》(第二版).北京:高教出版社,2008
教学叁考书:
[1]同济大学计算数学教研室编.《数值分析》.上海:同济大学出版社,1998
[2]易大义,沈云宝,李有法编.《计算方法》.杭州:浙江大学出版社,1989。
北理数值分析一、引言数值分析是一门研究如何利用计算机对数学问题进行近似求解的学科。
在科学计算和工程实践中,很多问题无法用解析方法精确求解,而需要通过数值计算来获得近似解。
数值分析的研究对象包括数值逼近、数值微分和数值积分等方面。
本文将介绍北理数值分析这门课程的基本内容和学习方法。
二、课程内容北理数值分析课程主要包括以下几个方面的内容:1. 数值逼近数值逼近是数值分析中一个重要的研究领域,它涉及到如何利用有限的计算资源来找到某个函数的近似值。
在数值逼近中常用的方法包括插值法、最小二乘法和曲线拟合等。
通过数值逼近,我们可以得到一个函数的近似值,从而简化数学问题的求解过程。
2. 数值微分和数值积分数值微分和数值积分是数值分析中的核心内容,它们分别研究如何通过数值方法来近似求解函数的导数和积分。
数值微分和数值积分的应用广泛,可以在物理学、工程学、经济学等领域中找到很多应用。
3. 数值解线性方程组线性方程组是数值分析中一个重要的研究对象,它有很多应用场景,比如求解电路的稳态分析问题、求解线性动力学问题等。
数值解线性方程组的方法有很多,包括直接法、迭代法和稀疏矩阵的处理等。
4. 数值解常微分方程常微分方程是数学中一个重要的研究领域,它在物理学、生物学、化学等领域中都有广泛的应用。
数值解常微分方程的方法有很多,比如欧拉法、改进的欧拉法和Runge-Kutta法等。
通过数值方法求解常微分方程,可以得到方程的近似解。
三、学习方法在学习北理数值分析这门课程时,可以采用以下几种学习方法:1. 理论学习首先,要对数值分析的基本理论进行学习。
可以通过阅读教材、参加课堂讲解和参考相关的学术论文来了解数值分析的基本原理和方法。
2. 编程实践数值分析是一门实践性很强的学科,通过编程实践可以更好地理解和应用所学知识。
可以使用编程语言如Python、MATLAB等,编写数值分析相关的算法和程序,进行数值计算和模拟实验。
3. 实例分析数值分析的理论知识可以通过实例分析来加以理解和掌握。