经典辨识方法
- 格式:pptx
- 大小:1.03 MB
- 文档页数:79
系统辨识方学习总结一.系统辨识的定义关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。
L.Ljung也给“辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。
出了一个定义:二.系统描述的数学模型按照系统分析的定义,数学模型可以分为时间域和频率域两种。
经典控制理论中微分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程和离散状态空间方程也如此。
一般在经典控制论中采用频域传递函数建模,而在现代控制论中则采用时域状态空间方程建模。
三.系统辨识的步骤与内容(1)先验知识与明确辨识目的这一步为执行辨识任务提供尽可能多的信息。
首先从各个方面尽量的了解待辨识的系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。
对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。
(2)试验设计试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。
主要涉及以下两个问题,扰动信号的选择和采样方法和采样间隔(3)模型结构的确定模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的,对所辨识系统的眼前知识的掌握程度密切相关。
为了讨论模型和类型和结构的选择,引入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。
所谓模型结构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。
在单输入单输出系统的情况下,系统模型结构就只是模型的阶次。
当具有一定阶次的模型的所有参数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。
(4)模型参数的估计参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶段就称为模型参数估计。
(5)模型的验证一个系统的模型被识别出来以后,是否可以接受和利用,它在多大程度上反映出被识别系统的特性,这是必须经过验证的。
经典辨识方法报告1. 面积法辨识原理分子多项式为1的系统 11)(111++++=--s a sa s a s G n n nn Λ……………………………………………()由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。
大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n nK ……………………………() 面积法原则上可以求出n 为任意阶的各系数。
以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得⎰-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………() 定义⎰-=tdt t y t F 01)](1[)(……………………………………………………………()则由式()给出的条件可知,在t →∞⎰∞-=01)](1[a dt t y ……………………………………………………………()将式a 1y(t)移到等式右边,定义 )()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+⎰…………………………………()利用初始条件()当t →∞时)(a 22∞=F …………………………………………………………………… ()同理有a 3=F 3(∞)以此类推,若n ≥2,有a n =F n (∞)分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=----ΛΛ…………………………………定义∑∞=----+=++++++++==1111111111)()(1)(i ii m m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ΛΛ………………………………由于⎰∞--=-0**)](1[)](1[dte t h t h L st …………………………………………则)](1[*t h -的Laplace 变换为: ∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c sC sC t h L dt t h A i ii i i i s s =+=-=-=∑∑⎰∞=∞=-→∞→………令 )1(1)]([1*1s c s t h L +=……………………………………………………………定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i i i i i i is t=++=-=∑∑⎰⎰∞=∞=-→∞τττ…同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L ……………………………………定义i 阶面积为i i c A =。
职业病危害因素识别职业病危害因素识别的意义是职业病危害监督、检测、评价的基础确定职业病危害因素的性质、种类、作用条件、分布 分析影响劳动者健康的方式、途径、程度指导职业病危害控制及防护措施的实施一、职业危害因素分类职业病危害因素职业病危害:对从事职业活动的劳动者可能导致职业病及其他健康影响的各种危害。
职业病危害因素:职业活动中影响劳动者健康的、存在于生产工艺过程以及劳动过程和生产环境中的各种危害因素的统称。
职业病分类和目录(国卫疾控发【2013】48号)1.职业性尘肺病(12+1)及其他呼吸系统疾病(6)2.职业性皮肤病(8+1)3.职业性眼病(3)4.职业性耳鼻喉口腔疾病(4)5.职业性化学中毒(59+1)6.物理因素所致职业病(7)7.职业性放射性疾病(10+1)8.职业性传染病(5)9.职业性肿瘤(11)10.其他职业病(3)10类132种(含4项开放性条款)职业病危害因素分类随分类标准不同有不同的分类方法:•按危害因素的来源分类•按危害因素的性质分类•按导致职业病危害的直接原因分类(卫生部《职业病危害因素分类目录》)生产环境危害因素劳动过程危害因素职业病危害因素生产过程危害因素按危害因素的来源分类生产工艺过程中的有害因素化学因素:粉尘+毒物物理因素:异常气象条件:如高温、高湿、低温异常气压:如高气压、低气压噪声、振动非电离辐射:如高频、超高频、微波、激光等电离辐射:如X射线、γ射线等。
生物因素:炭疽杆菌、布氏杆菌、森林脑炎病毒、艾滋病。
其他因素劳动过程中的有害因素主要包括劳动组织和劳动制度不合理、劳动强度过大、过度精神或心理紧张、劳动时个别器官或系统过度紧张、长时间不良体位、劳动工具不合理等。
生产环境中的有害因素主要包括自然环境因素、厂房建筑或布局不合理、来自其他生产过程散发的有害因素造成的生产环境污染。
按导致职业病危害的直接原因分类2015年11月17日实施《职业病危害因素分类目录》中将职业病危害因素分为六大类459种:◆粉尘52种;◆化学因素375种;◆物理因素15种;◆生物因素6种;◆放射性因素8种;◆其他因素3种。
模型参数辨识方法模型参数辨识方法是指通过收集实际数据,利用统计学和机器学习的方法来估计和确定数学模型中的参数。
在实际应用中,模型参数辨识是非常重要的,因为准确的参数估计可以提高模型的预测性能,并能够帮助决策者做出更准确的决策。
1.经典参数辨识方法:a.最小二乘法:最小二乘法是最常用的参数辨识方法之一、它通过最小化预测值和实际观测值之间的差异来确定最优参数。
最小二乘法可以用于线性和非线性系统的参数估计。
b.极大似然估计:极大似然估计是一种基于统计学原理的参数估计方法。
它基于样本数据的概率分布来估计模型参数,寻找使观测数据出现的概率最大的参数值。
c.系统辨识方法:系统辨识方法是一种通过建立模型来估计系统参数的方法。
包括基于频域的频率辨识方法,如频域最小二乘法和递推最小二乘法;以及基于时间域的时域辨识方法,如ARMA模型和ARIMA模型。
2.基于机器学习的参数辨识方法:a.支持向量机(SVM):SVM是一种常用的机器学习方法,可以用于参数辨识。
通过将数据映射到高维空间,并在该空间中找到最优的超平面来进行分类或回归任务。
b.神经网络:神经网络是一种模仿人脑神经元功能的机器学习模型。
可以通过调整神经网络的权重和偏置来估计模型参数。
c.遗传算法:遗传算法是一种模拟进化过程的优化算法,能够用于参数辨识。
通过模拟遗传操作(选择、交叉和变异)来最优参数。
d.贝叶斯方法:贝叶斯方法是一种基于贝叶斯定理的参数辨识方法。
它通过考虑先验知识和观测数据来估计后验概率分布,从而得到参数的估计值。
无论是经典参数辨识方法还是基于机器学习的参数辨识方法,都需要收集和准备大量的实际数据作为输入,然后应用适当的算法来估计模型参数。
模型参数辨识的准确性和稳定性取决于数据的质量和所采用的方法的适用性。
因此,在进行模型参数辨识之前,需要进行数据预处理和分析,选择适合的参数辨识方法,并评估估计结果的可靠性和有效性。