经典辨识方法
- 格式:pptx
- 大小:1.03 MB
- 文档页数:79
系统辨识方学习总结一.系统辨识的定义关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。
L.Ljung也给“辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。
出了一个定义:二.系统描述的数学模型按照系统分析的定义,数学模型可以分为时间域和频率域两种。
经典控制理论中微分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程和离散状态空间方程也如此。
一般在经典控制论中采用频域传递函数建模,而在现代控制论中则采用时域状态空间方程建模。
三.系统辨识的步骤与内容(1)先验知识与明确辨识目的这一步为执行辨识任务提供尽可能多的信息。
首先从各个方面尽量的了解待辨识的系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。
对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。
(2)试验设计试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。
主要涉及以下两个问题,扰动信号的选择和采样方法和采样间隔(3)模型结构的确定模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的,对所辨识系统的眼前知识的掌握程度密切相关。
为了讨论模型和类型和结构的选择,引入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。
所谓模型结构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。
在单输入单输出系统的情况下,系统模型结构就只是模型的阶次。
当具有一定阶次的模型的所有参数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。
(4)模型参数的估计参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶段就称为模型参数估计。
(5)模型的验证一个系统的模型被识别出来以后,是否可以接受和利用,它在多大程度上反映出被识别系统的特性,这是必须经过验证的。
经典辨识方法报告1. 面积法辨识原理分子多项式为1的系统 11)(111++++=--s a sa s a s G n n nn Λ……………………………………………()由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。
大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n nK ……………………………() 面积法原则上可以求出n 为任意阶的各系数。
以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得⎰-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………() 定义⎰-=tdt t y t F 01)](1[)(……………………………………………………………()则由式()给出的条件可知,在t →∞⎰∞-=01)](1[a dt t y ……………………………………………………………()将式a 1y(t)移到等式右边,定义 )()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+⎰…………………………………()利用初始条件()当t →∞时)(a 22∞=F …………………………………………………………………… ()同理有a 3=F 3(∞)以此类推,若n ≥2,有a n =F n (∞)分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=----ΛΛ…………………………………定义∑∞=----+=++++++++==1111111111)()(1)(i ii m m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ΛΛ………………………………由于⎰∞--=-0**)](1[)](1[dte t h t h L st …………………………………………则)](1[*t h -的Laplace 变换为: ∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c sC sC t h L dt t h A i ii i i i s s =+=-=-=∑∑⎰∞=∞=-→∞→………令 )1(1)]([1*1s c s t h L +=……………………………………………………………定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i i i i i i is t=++=-=∑∑⎰⎰∞=∞=-→∞τττ…同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L ……………………………………定义i 阶面积为i i c A =。
职业病危害因素识别职业病危害因素识别的意义是职业病危害监督、检测、评价的基础确定职业病危害因素的性质、种类、作用条件、分布 分析影响劳动者健康的方式、途径、程度指导职业病危害控制及防护措施的实施一、职业危害因素分类职业病危害因素职业病危害:对从事职业活动的劳动者可能导致职业病及其他健康影响的各种危害。
职业病危害因素:职业活动中影响劳动者健康的、存在于生产工艺过程以及劳动过程和生产环境中的各种危害因素的统称。
职业病分类和目录(国卫疾控发【2013】48号)1.职业性尘肺病(12+1)及其他呼吸系统疾病(6)2.职业性皮肤病(8+1)3.职业性眼病(3)4.职业性耳鼻喉口腔疾病(4)5.职业性化学中毒(59+1)6.物理因素所致职业病(7)7.职业性放射性疾病(10+1)8.职业性传染病(5)9.职业性肿瘤(11)10.其他职业病(3)10类132种(含4项开放性条款)职业病危害因素分类随分类标准不同有不同的分类方法:•按危害因素的来源分类•按危害因素的性质分类•按导致职业病危害的直接原因分类(卫生部《职业病危害因素分类目录》)生产环境危害因素劳动过程危害因素职业病危害因素生产过程危害因素按危害因素的来源分类生产工艺过程中的有害因素化学因素:粉尘+毒物物理因素:异常气象条件:如高温、高湿、低温异常气压:如高气压、低气压噪声、振动非电离辐射:如高频、超高频、微波、激光等电离辐射:如X射线、γ射线等。
生物因素:炭疽杆菌、布氏杆菌、森林脑炎病毒、艾滋病。
其他因素劳动过程中的有害因素主要包括劳动组织和劳动制度不合理、劳动强度过大、过度精神或心理紧张、劳动时个别器官或系统过度紧张、长时间不良体位、劳动工具不合理等。
生产环境中的有害因素主要包括自然环境因素、厂房建筑或布局不合理、来自其他生产过程散发的有害因素造成的生产环境污染。
按导致职业病危害的直接原因分类2015年11月17日实施《职业病危害因素分类目录》中将职业病危害因素分为六大类459种:◆粉尘52种;◆化学因素375种;◆物理因素15种;◆生物因素6种;◆放射性因素8种;◆其他因素3种。
模型参数辨识方法模型参数辨识方法是指通过收集实际数据,利用统计学和机器学习的方法来估计和确定数学模型中的参数。
在实际应用中,模型参数辨识是非常重要的,因为准确的参数估计可以提高模型的预测性能,并能够帮助决策者做出更准确的决策。
1.经典参数辨识方法:a.最小二乘法:最小二乘法是最常用的参数辨识方法之一、它通过最小化预测值和实际观测值之间的差异来确定最优参数。
最小二乘法可以用于线性和非线性系统的参数估计。
b.极大似然估计:极大似然估计是一种基于统计学原理的参数估计方法。
它基于样本数据的概率分布来估计模型参数,寻找使观测数据出现的概率最大的参数值。
c.系统辨识方法:系统辨识方法是一种通过建立模型来估计系统参数的方法。
包括基于频域的频率辨识方法,如频域最小二乘法和递推最小二乘法;以及基于时间域的时域辨识方法,如ARMA模型和ARIMA模型。
2.基于机器学习的参数辨识方法:a.支持向量机(SVM):SVM是一种常用的机器学习方法,可以用于参数辨识。
通过将数据映射到高维空间,并在该空间中找到最优的超平面来进行分类或回归任务。
b.神经网络:神经网络是一种模仿人脑神经元功能的机器学习模型。
可以通过调整神经网络的权重和偏置来估计模型参数。
c.遗传算法:遗传算法是一种模拟进化过程的优化算法,能够用于参数辨识。
通过模拟遗传操作(选择、交叉和变异)来最优参数。
d.贝叶斯方法:贝叶斯方法是一种基于贝叶斯定理的参数辨识方法。
它通过考虑先验知识和观测数据来估计后验概率分布,从而得到参数的估计值。
无论是经典参数辨识方法还是基于机器学习的参数辨识方法,都需要收集和准备大量的实际数据作为输入,然后应用适当的算法来估计模型参数。
模型参数辨识的准确性和稳定性取决于数据的质量和所采用的方法的适用性。
因此,在进行模型参数辨识之前,需要进行数据预处理和分析,选择适合的参数辨识方法,并评估估计结果的可靠性和有效性。
Matlab的系统辨识和参数估计方法一、引言Matlab是一种强大的计算机软件,被广泛应用于各个领域的科学研究和工程实践。
在信号处理、控制系统设计等领域,系统的辨识和参数估计是一项重要的任务。
本文将介绍Matlab中常用的系统辨识和参数估计方法,包括参数辨识、频域辨识、时域辨识等方面。
同时,还将探讨这些方法的优势和局限性。
二、参数辨识参数辨识是一种推断系统输入和输出之间关系的方法。
Matlab提供了多种参数辨识工具箱,例如System Identification Toolbox。
其中,最常用的方法包括最小二乘法、极大似然法、递归最小二乘法等。
最小二乘法是一种经典的参数估计方法,通过最小化测量值与预测值之间的差异来估计参数。
Matlab中的lsqcurvefit函数可以用于最小二乘拟合曲线。
例如,通过拟合一组数据点得到一个最优的曲线,可以估计曲线的参数。
极大似然法是一种基于概率统计的参数估计方法,通过最大化观测数据出现的似然函数来估计参数。
Matlab中的mle函数可以用于极大似然估计。
例如,在某个信号的概率密度函数已知的情况下,可以通过观测到的样本来估计概率密度函数的参数。
递归最小二乘法是一种递归更新参数的方法,可以在随时间变化的系统中实时地进行参数估计。
Matlab中的rls函数可以用于递归最小二乘估计。
例如,在自适应滤波中,可以通过递归最小二乘法来实时估计信号的参数。
三、频域辨识频域辨识是一种基于频谱分析的参数估计方法,可以在频率域中确定系统的特性。
Matlab提供了多种频域辨识工具箱,例如System Identification Toolbox和Signal Processing Toolbox。
其中,最常用的方法包括功率谱密度估计、自相关函数法、协方差法等。
功率谱密度估计是一种常用的频域参数估计方法,可以估计信号在不同频率上的能量分布。
Matlab中的pwelch函数可以用于功率谱密度估计。
系统辨识作业一学院信息科学与工程学院专业控制科学与工程班级控制二班姓名学号2018 年 11 月系统辨识所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。
辨识的内容主要包括四个方面:①实验设计;②模型结构辨识;③模型参数辨识;④模型检验。
辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。
根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。
其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是非参数模型。
在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛适用于一些复杂的过程。
经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉冲响应法。
1.阶跃响应法阶跃响应法是一种常用非参数模型辨识方法。
常用的方法有近似法、半对数法、切线法、两点法和面积法等。
本次作业采用面积法求传递函数。
1.1面积法①当系统的传递函数无零点时,即系统传递函数如下:G(S) = a a a a+a a−1a a1−1+⋯+a1a+1(1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K后,要得到无因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述:a a a(a)a−1(a)a a aa a a aa (1-2) 面积法原则上可以求出n为任意阶的个系数。
以n为3为例。
有:a3a(a) a2a(a) aa(a){aa|a→∞ = aa|a→∞ = aa|a→∞ = 0a(a)|a→∞ = 1将式(1)中的y(t)移至右边,在[0,t]上积分,得a2a(a)a3 aa aa (1-4) 定义:a1(a) = ∫0a[1 − a(a)]aa (1-5) 由式(1-3)条件可知,当t→∞时,a aa (1-6)同理,定义a2aa (1-7)由式(1-,3)条件可知,当t→∞时,a aa (1-8)因此,可得a a(a) = ∫0a[a a−1(a) − a a−1a(a)] dt (1-9)a a= a a(∞) (1-10)②当系统的传递函数存在零点时,传递函数如下:=kG(s)b s mmn +ba s mn-1-1s mn-1-1 ++LL ++a sbs1+1+1,(n m)(1-11)1a s n +其中,K h= ( ) / U0定义1G(s)=KP(s)其中,P(s) = b sa s n mn ++ba s mn-1-1s mn-1-1++LL ++a sbs11 +1+1 = +1 i=1 C s i i(1-12)m根据[1−h*(t)]的Laplace变换,求出一阶面积A1,确定L[h(*1 t ]),并定义二阶面积A2 ,以此类推,得到i 阶面积A i 。
.系统辨识作业一学院信息科学与工程学院专业控制科学与工程班级控制二班姓名学号2018 年 11 月系统辨识所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。
辨识的内容主要包括四个方面:①实验设计;②模型结构辨识;③模型参数辨识;④模型检验。
辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。
根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。
其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是非参数模型。
在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛适用于一些复杂的过程。
经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉冲响应法。
1.阶跃响应法阶跃响应法是一种常用非参数模型辨识方法。
常用的方法有近似法、半对数法、切线法、两点法和面积法等。
本次作业采用面积法求传递函数。
1.1面积法①当系统的传递函数无零点时,即系统传递函数如下:G(S) = a a a a+a a−1a a1−1+⋯+a1a+1(1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K后,要得到无因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述:a a a(a)a−1(a)a a aa a a aa (1-2) 面积法原则上可以求出n为任意阶的个系数。
以n为3为例。
有:a3a(a) a2a(a) aa(a){aa|a→∞ = aa|a→∞ = aa|a→∞ = 0a(a)|a→∞ = 1将式(1)中的y(t)移至右边,在[0,t]上积分,得a2a(a)a3 aa aa (1-4) 定义:a1(a) = ∫0a[1 − a(a)]aa (1-5) 由式(1-3)条件可知,当t→∞时,a aa (1-6)同理,定义a2aa (1-7)由式(1-,3)条件可知,当t→∞时,a aa (1-8)因此,可得a a(a) = ∫0a[a a−1(a) − a a−1a(a)] dt (1-9)a a= a a(∞) (1-10)②当系统的传递函数存在零点时,传递函数如下:=kG(s)b s mmn +ba s mn-1-1s mn-1-1 ++LL ++a sbs1+1+1,(n m)(1-11)1a s n +其中,K h= ( ) / U0定义1G(s)=KP(s)其中,P(s) = b sa s n mn ++ba s mn-1-1s mn-1-1++LL ++a sbs11 +1+1 = +1 i=1 C s i i(1-12)m根据[1−h*(t)]的Laplace变换,求出一阶面积A1,确定L[h(*1 t ]),并定义二阶面积A2 ,以此类推,得到i 阶面积A i 。
50 条经典心理定律1. 首因效应:指交往双方形成的第一次印象对今后交往关系的影响,也即是“先入为主”带来的效果。
2. 近因效应:指当人们识记一系列事物时对末尾部分项目的记忆效果优于中间部分项目的现象。
3. 晕轮效应:指在人际知觉中所形成的以点概面或以偏概全的主观印象。
4. 刻板效应:又称刻板印象,是指对事物形成的一般看法和个人评价,认为某种事物应该具有其特定的属性,而忽视事物的个体差异。
5. 投射效应:指将自己的特点归因到其他人身上的倾向。
6. 自我暴露定律:适当暴露自己的小秘密或缺点,能快速拉近与他人的距离。
7. 互惠定律:得到别人的好处后,会想要回报对方。
8. 换位思考定律:站在对方的角度思考问题,能更好地理解他人。
9. 相似定律:人们通常喜欢与自己相似的人交往。
10. 互补定律:性格或需求互补的人容易相互吸引。
11. 从众效应:个体受到群体的影响而改变自己的行为或信念。
12. 鲶鱼效应:通过引入外部的竞争者,激发内部的活力和创造力。
13. 责任分散效应:对于某一件事,如果是单个个体被要求单独完成任务,责任感就会很强,会作出积极的反应。
但如果是要求一个群体共同完成任务,群体中的每个个体的责任感就会很弱,面对困难或遇到责任往往会退缩。
14. 皮格马利翁效应:又称期望效应,指教师对学生的期待不同,学生受到的影响也不同。
15. 习得性无助效应:因为重复的失败或惩罚而造成的听任摆布的行为。
16. 南风效应:也叫温暖法则,温暖胜于严寒。
17. 泡菜效应:同样的蔬菜在不同的水中浸泡一段时间后,将它们分开煮,其味道是不一样的。
人在不同的环境里,由于长期的耳濡目染,其性格、气质、素质和思维的方式等方面都会有明显的差别。
18. 手表定律:拥有两块以上的手表并不能帮人更准确地判断时间,反而会制造混乱,让看表的人失去对时间的判断。
19. 木桶定律:一只木桶能盛多少水,并不取决于最长的那块木板,而是取决于最短的那块木板。