信号与系统答案 西北工业大学 段哲民 第五章
- 格式:pdf
- 大小:252.53 KB
- 文档页数:26
[⼯学]信号与系统答案西北⼯业⼤学段哲民信号与系统1-3章答案[⼯学]信号与系统答案西北⼯业⼤学段哲民信号与系统1-3章答案第⼀章习题-t1-1 画出下列各信号的波形:(1) f(t)=(2-e)U(t); (2) 1-tf(t)=ecos10πt×[U(t-1)-U(t-2)]。
2答案f(t)1 (1)的波形如图1.1(a)所⽰.,2T,,0.2sf(t)cos10,t,102(2) 因的周期,故的波形如图题1.1(b)所⽰.1-2 已知各信号的波形如图题1-2所⽰,试写出它们各⾃的函数式。
答案f(t),t[u(t),u(t,1)],u(t,1)1f(t),,(t,1)[u(t),u(t,1)]2f(t),(t,2)[u(t,2),u(t,3)]31-3 写出图题1-3所⽰各信号的函数表达式。
答案11,(t,2),t,1,2,t,0,22f(t),,1110,t,2,(,t,2),,t,122,f(t),u(t),u(t,1)u(t,2)2,f(t),,sint[u(t,2),u(t,2)]32f(t),u(t,2),2u(t,1),3u(t,1),4u(t,2),2u(t,3)421-4 画出下列各信号的波形:(1) f(t)=U(t-1); (2) f(t)=(t-1)U(t-1); 1222(3) f(t)=U(t-5t+6); (4)f(t)=U(sinπt)。
34答案f(t),u(t,1),u(,t,1)1 (1) ,其波形如图题1.4(a)所⽰.f(t),(t,1)[u(t,1),u(,t,1)],(t,1)u(t,1),(t,1)u(,t,1)2(2)其波形如图题1.4(b)所⽰.f(t),u(,t,2),u(t,3)3(3) ,其波形如图1.4(c)所⽰.f(t),u(sin,t)4(4) 的波形如图题1.4(d)所⽰.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T。
信号与系统_西北工业大学中国大学mooc课后章节答案期末考试题库2023年1.所以非周期信号都是能量信号。
参考答案:错误2.连续周期信号的傅里叶级数是()参考答案:离散的3.所有连续的周期信号的频谱都具有收敛性。
参考答案:错误4.状态方程和输出方程共同构成了描述系统特征的完整方程。
参考答案:正确5.连续系统状态变量的个数等于动态元件数。
参考答案:错误6.一个信号存在傅氏变换,则一定存在双边拉氏变换。
参考答案:正确7.周期奇函数的傅里叶级数中,只含有()参考答案:正弦项8.理想低通滤波器是一个因果系统。
参考答案:错误9.没有信号可以既是有限长的同时又有带限的频谱。
参考答案:正确10.一个信号存在傅氏变换,则一定存在单边拉氏变换。
参考答案:错误11.一个信号存在拉氏变换,则一定存在傅氏变换。
参考答案:错误12.下列叙述正确的是()参考答案:一个信号存在傅立叶变换,就一定存在双边拉普拉斯变换。
13.非周期连续时间信号的频谱是连续频率的非周期函数。
参考答案:正确14.状态变量在某一确定时刻的值,即为系统在时刻的状态。
参考答案:正确15.状态空间分析法可以推广至非线性和时变系统。
参考答案:正确16.下面的各种描述,正确的是()参考答案:若零、极点离虚轴很远,则它们对频率响应的影响非常小。
17.状态空间分析法可以用于多输入多输出系统分析,也可用于但输入单输出系统的分析。
参考答案:正确18.周期信号的频谱一定是()参考答案:离散谱19.两个非线性系统级联构成的系统是非线性的。
参考答案:错误。
第一章 习 题1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt ×[U(t-1)-U(t-2)]。
答案(1))(1t f 的波形如图1.1(a )所示.(2) 因t π10cos 的周期s T 2.0102==ππ,故)(2t f 的波形如图题1.1(b)所示.1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。
答案)1()]1()([)(1-+--=t u t u t u t t f)]1()()[1()(2----=t u t u t t f)]3()2()[2()(3----=t u t u t t f1-3 写出图题1-3所示各信号的函数表达式。
答案2002121)2(21121)2(21)(1≤≤≤≤-⎪⎩⎪⎨⎧+-=+-+=+=t t t t t t t f)2()1()()(2--+=t u t u t u t f)]2()2([2sin )(3--+-=t u t u t t f π)3(2)2(4)1(3)1(2)2()(4-+---++-+=t u t u t u t u t u t f1-4 画出下列各信号的波形:(1) f 1(t)=U(t 2-1); (2) f 2(t)=(t-1)U(t 2-1); (3) f 3(t)=U(t 2-5t+6); (4)f 4(t)=U(sin πt)。
答案(1) )1()1()(1--+-=t u t u t f ,其波形如图题1.4(a)所示.(2))1()1()1()1()]1()1()[1()(2---+--=--+--=t u t t u t t u t u t t f 其波形如图题1.4(b)所示.(3))3()2()(3-++-=t u t u t f ,其波形如图1.4(c)所示.(4) )(sin )(4t u t f π=的波形如图题1.4(d)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。
[工学]信号与系统答案西北工业大学段哲民信号与系统1-3章答案第一章习题-t1-1 画出下列各信号的波形:(1) f(t)=(2-e)U(t); (2) 1-tf(t)=ecos10πt×[U(t-1)-U(t-2)]。
2答案f(t)1 (1)的波形如图1.1(a)所示.,2T,,0.2sf(t)cos10,t,102(2) 因的周期,故的波形如图题1.1(b)所示.1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。
答案f(t),t[u(t),u(t,1)],u(t,1)1f(t),,(t,1)[u(t),u(t,1)]2f(t),(t,2)[u(t,2),u(t,3)]31-3 写出图题1-3所示各信号的函数表达式。
答案11,(t,2),t,1,2,t,0,22f(t),,1110,t,2,(,t,2),,t,122,f(t),u(t),u(t,1)u(t,2)2,f(t),,sint[u(t,2),u(t,2)]32f(t),u(t,2),2u(t,1),3u(t,1),4u(t,2),2u(t,3)421-4 画出下列各信号的波形:(1) f(t)=U(t-1); (2) f(t)=(t-1)U(t-1); 1222(3) f(t)=U(t-5t+6); (4)f(t)=U(sinπt)。
34答案f(t),u(t,1),u(,t,1)1 (1) ,其波形如图题1.4(a)所示.f(t),(t,1)[u(t,1),u(,t,1)],(t,1)u(t,1),(t,1)u(,t,1)2(2)其波形如图题1.4(b)所示.f(t),u(,t,2),u(t,3)3(3) ,其波形如图1.4(c)所示.f(t),u(sin,t)4(4) 的波形如图题1.4(d)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T。
,,2(1)f(t),2cos(2t,)(1)f(t),[sin(t,)]1246; ; (3) f(t),3cos2,tU(t)3。
5.5 离散信号()f n 的波形如习题图5-3所示,试画出下列信号的波形。
(2)(1)(4)(2)(6)(1)(1)(8)(1)()(10)(1)(1)f n f n f n f n f n U n f n U n - +×- -- ---+习题图5-3(2)(1)f n -(4)(2)f n32211()10(2)102100n n n f n n f n n n =-ìï =- 3 =-ìïïï= = Þ = =ííïï = îïï î其他其他+×-(6)(1)(1)f n f n--(8)(1)()f n U n---+f n U n(10)(1)(1)5.17 求下列差分方程所描述的系统的单位样值响应。
1(1)()(2)()9y n y n f n --=解:单位样值响应是指当激励信号为()n d 时系统的零状态响应。
要求单位样值响应,输入()()f n n d =,代入差分方程得:1()(2)()(1)9h n h n n d --= LLL在0n >时,()0n d =,有1()(2)09h n h n --= 特征方程为:2121110,933l l l -= Þ =- =1211()()((2)33n nh n C C \ =-+ LLL0()0(())n h n h n < = Q 时,;因为单位样值响应是零状态响应1()(2)()91(0)(2)(0)191(1)(1)(1)09h n h n n h h h h d d d =-+ \ = -+== -+=由(1)式得: 121122(0)(1)1(0)12111(1)(0332h h h C C C h C C C ì =+==üïïïÞ ýí = -+=ïï=þïî将、代入(2)式得:1111()[((]()2323n nh n U n \ =-+5.18 求习题图5-5所示系统的单位样值响应。
第5章 连续时间信号的抽样与量化5.1 试证明时域抽样定理。
证明: 设抽样脉冲序列是一个周期性冲激序列,它可以表示为∑∞-∞=-=n sT nT t t )()(δδ由频域卷积定理得到抽样信号的频谱为:[])()(21)(ωδωπωT s F F *=()[]∑∞-∞=-=n ssn F T ωω1式中)(ωF 为原信号)(t f 的频谱,)(ωδT 为单位冲激序列)(t T δ的频谱。
可知抽样后信号的频谱)(ωs F 由)(ωF 以 s ω为周期进行周期延拓后再与s T 1相乘而得到,这意味着如果m s ωω2≥,抽样后的信号)(t f s 就包含了信号)(t f 的全部信息。
如果m s ωω2<,即抽样间隔ms f T 21>,则抽样后信号的频谱在相邻的周期内发生混叠,此时不可能无失真地重建原信号。
因此必须要求满足ms f T 21≤,)(t f 才能由)(t f s 完全恢复,这就证明了抽样定理。
5.2 确定下列信号的最低抽样频率和奈奎斯特间隔: (1))50(t Sa(2))100(2t Sa(3) )100()50(t Sa t Sa +(4))60()100(2t Sa t Sa +解:抽样的最大间隔m s f T 21=称为奈奎斯特间隔,最低抽样速率m s f f 2=称为奈奎斯特速率,最低采样频率m s ωω2=称为奈奎斯特频率。
(1))]50()50([50)50(--+↔ωωπu u t Sa ,由此知s rad m /50=ω,则π25=m f ,由抽样定理得:最低抽样频率π502==m s f f ,奈奎斯特间隔501π==s s f T 。
(2))2001(100)100(2ωπ-↔t Sa脉宽为400,由此可得s rad m /200=ω,则π100=m f ,由抽样定理得最低抽样频率π2002==m s f f ,奈奎斯特间隔2001π==s s f T 。