k x y * xQ ( x ) e m
x 结 论 : 如 果 f ( x ) P ( x ) e ,则 ( 1 ) 的 解 具 有 形 如 : m
的 特 解 , 其 中 Q ( x ) 是 与 P ( x ) 同 次 的 多 项 式 . m m
x Q ( x ) e , 不 是 特 征 根 m x y *x Q )e , 是 单 特 征 根 m(x 2 x x Q ( x ) e , 是 重 特 征 根 m
代 入 上 式 , 比 较 系 数 可 求 出 Q ( x ) , m x 从 而 得 ( 1 ) 的 特 解 为 y * = Q ( x ) x e .
( i i i )如 果 是 特 征 方 程 r p r q0 的 重 根 , 则
2
m
p q0 , , 且 2 p0 , 于 是 有
i x
P P P P i) x i) x l n ( l n ( ( ) e ( ) e 22 i 22 i
P () x e
( i ) x
P () x e
( i ) x
12
P P P P P l n P l n l n 其 中 P ( x ) i ,P ( x ) i 22 i 22 22
其 中 0 , = 2 , P x , P 0 l n
所 给 方 程 对 应 的 齐 次 方 程 为 y y 0 ,
2 特 征 方 程 为 r 1 0 , 特 征 根 r i .
因 i 2 i 不 是 特 征 方 程 的 根 , 所 以 可 设 特 解 为 y * ( a x b ) c o s 2 x ( c x d ) s i n 2 x