动态平衡受力分析专题
- 格式:doc
- 大小:556.00 KB
- 文档页数:7
专题 动态平衡中的三力问题 图解法分析动态平衡在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题.解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动"。
根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点,许多同学因不能掌握其规律往往无从下手,许多参考书的讨论常忽略几中情况,笔者整理后介绍如下。
方法一:三角形图解法。
特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了.例1.1 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,如图1-2所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。
因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。
F 1的方向不变,但方向不变,始终与斜面垂直。
F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F 2。
由此可知,F 2先减小后增大,F 1随β增大而始终减小。
同种类型:例1。
2所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球的支持力增大)方法二:相似三角形法。
知识点三:共点力平衡(动态平衡、矢量三角形法)1.(单选)如图所示,一小球在斜面上处于静止状态,不考虑一切摩擦,如果把竖直挡板由竖直位置缓慢绕O点转至水平位置,则此过程中球对挡板的压力F1和球对斜面的压力F2的变化情况是().答案B A.F1先增大后减小,F2一直减小B.F1先减小后增大,F2一直减小C.F1和F2都一直减小D.F1和F2都一直增大2、(单选)(天津卷,5)如图所示,小球用细绳系住,绳的另一端固定于O点.现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N以及绳对小球的拉力F T的变化情况是().答案DA.F N保持不变,F T不断增大B.F N不断增大,F T不断减小C.F N保持不变,F T先增大后减小D.F N不断增大,F T先减小后增大3.(单选)如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1、半球面对小球的支持力F2的变化情况正确的是().答案BA.F1增大,F2减小B.F1增大,F2增大C.F1减小,F2减小D.F1减小,F2增大4、(单选)如图所示,一物块受一恒力F作用,现要使该物块沿直线AB运动,应该再加上另一个力的作用,则加上去的这个力的最小值为().答案BA.F cos θB.F sin θC.F tan θD.F cot θ5.(单选)如图所示,一倾角为30°的光滑斜面固定在地面上,一质量为m的小木块在水平力F的作用下静止在斜面上.若只改变F的方向不改变F的大小,仍使木块静止,则此时力F与水平面的夹角为().答案AA.60°B.45°C.30°D.15°6.(多选)一铁架台放于水平地面上,其上有一轻质细线悬挂一小球,开始时细线竖直,现将水平力F作用于小球上,使其缓慢地由实线位置运动到虚线位置,铁架台始终保持静止,则在这一过程中().答案:ADA.细线拉力逐渐增大B.铁架台对地面的压力逐渐增大C.铁架台对地面的压力逐渐减小D.铁架台所受地面的摩擦力逐渐增大7、(多选)(苏州调研)如图所示,质量均为m的小球A、B用两根不可伸长的轻绳连接后悬挂于O点,在外力F的作用下,小球A、B处于静止状态.若要使两小球处于静止状态且悬线OA与竖直方向的夹角θ保持30°不变,则外力F的大小().答案BCDA.可能为33mg B.可能为52mgC.可能为2mg D.可能为mg8、(单选)如图所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上.现用水平力F拉绳上一点,使物体处于图中实线位置,然后改变F的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动.在这一过程中,水平拉力F、环与杆的摩擦力F摩和环对杆的压力F N的变化情况是().答案DA.F逐渐增大,F摩保持不变,F N逐渐增大B.F逐渐增大,F摩逐渐增大,F N保持不变C.F逐渐减小,F摩逐渐增大,F N逐渐减小D.F逐渐减小,F摩逐渐减小,F N保持不变9.(单选)如图所示,在拉力F作用下,小球A沿光滑的斜面缓慢地向上移动,在此过程中,小球受到的拉力F和支持力F N的大小变化是().A.F增大,F N减小答案AB.F和F N均减小C.F和F N均增大D.F减小,F N不变10.(单选)半圆柱体P放在粗糙的水平地面上,其右端有固定放置的竖直挡板MN.在P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于静止状态.如图所示是这个装置的纵截面图.若用外力使MN保持竖直,缓慢地向右移动,在Q落到地面以前,发现P始终保持静止.在此过程中,下列说法中正确的是().答案BA.MN对Q的弹力逐渐减小B.地面对P的摩擦力逐渐增大C.P、Q间的弹力先减小后增大D.Q所受的合力逐渐增大11.(多选)如图所示,在斜面上放两个光滑球A和B,两球的质量均为m,它们的半径分别是R和r,球A 左侧有一垂直于斜面的挡板P,两球沿斜面排列并处于静止状态,下列说法正确的是().答案BC A.斜面倾角θ一定,R>r时,R越大,r越小,则B对斜面的压力越小B.斜面倾角θ一定,R=r时,两球之间的弹力最小C.斜面倾角θ一定时,无论半径如何,A对挡板的压力一定D.半径一定时,随着斜面倾角θ逐渐增大,A受到挡板的作用力先增大后减小12.(单选)如图所示,用OA、OB两根轻绳将物体悬于两竖直墙之间,开始时OB绳水平.现保持O点位置不变,改变OB绳长使绳端由B点缓慢上移至B′点,此时绳OB′与绳OA之间的夹角θ<90°.设此过程中绳OA、OB的拉力分别为F OA、F OB,下列说法正确的是().答案BA.F OA逐渐增大B.F OA逐渐减小C.F OB逐渐增大D.F OB逐渐减小13、(多选)如图,不可伸长的轻绳跨过动滑轮,其两端分别系在固定支架上的A、B两点,支架的左边竖直,右边倾斜.滑轮下挂一物块,物块处于平衡状态,下列说法正确的是().答案BCA.若左端绳子下移到A1点,重新平衡后绳子上的拉力将变大B.若左端绳子下移到A1点,重新平衡后绳子上的拉力将不变C.若右端绳子下移到B1点,重新平衡后绳子上的拉力将变大D.若右端绳子下移到B1点,重新平衡后绳子上的拉力将不变14、(单选)如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过程中().答案BA.F N1始终减小,F N2始终增大B.F N1始终减小,F N2始终减小C.F N1先增大后减小,F N2始终减小D.F N1先增大后减小,F N2先减小后增大15.(单选)作用于O点的三力平衡,设其中一个力大小为F1,沿y轴正方向,力F2大小未知,与x轴负方向夹角为θ,如图所示.下列关于第三个力F3的判断中正确的是().A.力F3只能在第四象限答案CB.力F3与F2夹角越小,则F2和F3的合力越小C.F3的最小值为F1cos θD.力F3可能在第一象限的任意区域16.(多选)一个光滑的圆球搁在光滑的斜面和竖直的挡板之间,如图21所示.斜面和挡板对圆球的弹力随斜面倾角α变化而变化,故().答案ACA.斜面弹力F N1的变化范围是(mg,+∞)B.斜面弹力F N1的变化范围是(0,+∞)C.挡板的弹力F N2的变化范围是(0,+∞) D.挡板的弹力F N2的变化范围是(mg,+∞)。
物体的平衡专题(一)—— 平衡态的受力分析专题常用方法:1、静态平衡:正交分解法2、动态平衡:类型一 特点:三力中有一个不变的力,另有一个力的方向不变解决方法:矢量三角形类型二 特点:三力中只有一个不变的力,另两力方向都在变解决方法:相似三角形(力三角和几何三角的相似)特殊类型 特点:三力中只有一个不变的力,另两力方向都在变,但这两力的夹角不变解决方法:边角关系解三角形(如果夹角是直角,一般利用三角函数性质,如果夹角非直角,一般会用到正弦定理)注:动态平衡方法一般适用于三力平衡,若非三力状态,可先通过合成步骤变成三力平衡状态。
3、系统有多个物体的分析,整体法与隔离法【例题1】如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少?【例题2】如图所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球.当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°两小球的质量比12m m 为( ) A .33 B .32 C .23 D .22 【例题3】如图,电灯悬挂于两干墙之间,要换绳OA ,使连接点A 上移,但保持O 点位置不变,则在A 点向上移动的过程中,绳OA 的拉力如何变化?【例题4】用等长的细绳0A 和0B 悬挂一个重为G 的物体,如图所示,在保持O 点位置不变的前提下,使绳的B 端沿半径等于绳长的圆弧轨道向C 点移动,在移动的过程中绳OB 上张力大小的变化情况是( )A .先减小后增大B .逐渐减小C .逐渐增大D .OB 与OA 夹角等于90o 时,OB 绳上张力最大【例题5】重G 的光滑小球静止在固定斜面和竖直挡板之间。
若挡板逆时针缓慢转到水平位置,在该过程中,斜面和挡板对小球的弹力的大小F 1、F 2各如何变化?【例题6】(2016全国卷II)质量为m的物体用轻绳AB悬挂于天花板上。
高中物理力的动态平衡专题摘要:一、动态平衡的概念与特点二、动态平衡问题的分析方法1.解析法2.图解法三、高中物理动态平衡问题的应用实例四、如何提高动态平衡问题的解题能力正文:一、动态平衡的概念与特点动态平衡是指在物体受到多个力作用时,物体在运动过程中保持匀速运动或静止状态。
它有以下特点:1.受力分析:物体在动态平衡状态下,受到的力之间存在一定的关系,需要进行受力分析。
2.变化过程:物体的状态会随着时间的推移而发生缓慢变化,如力的变化、运动方向的变化等。
3.平衡条件:物体在动态平衡状态下,满足力的平衡条件,即合力为零。
二、动态平衡问题的分析方法1.解析法:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变参量与自变参量的一般函数式,然后根据自变参量的变化确定应变参量的变化。
2.图解法:对研究对象进行受力分析,再根据平行四边形定则或三角形定则画出不同状态下的力的矢量图(画在同一个图中),然后根据有向线段(表示力)的长度,变化判断各个力的大小和变化关系。
三、高中物理动态平衡问题的应用实例例如,一个物体在三个不平行的共点力作用下平衡,这三个力必组成一首尾相接的三角形。
用这个三角形来分析力的变化和大小关系的方法叫矢量三角形法。
在处理变动中的三力问题时,矢量三角形法能直观地反映出力的变化过程。
四、如何提高动态平衡问题的解题能力1.加强对物理基本概念的理解:理解动态平衡的概念,掌握平衡条件的应用。
2.熟练掌握分析方法:解析法和图解法,灵活运用这两种方法解决实际问题。
3.注重受力分析:对物体进行详细的受力分析,找出各个力之间的关系。
4.加强练习:通过大量的练习,提高自己对动态平衡问题的解题能力和应变能力。
动态平衡受力分析在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点。
基础知识必备方法一:三角形图解法特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
【例1】如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板对球的压力F N1和斜面对球的支持力F N2变化情况为()A.F N1、F N2都是先减小后增加B.F N2一直减小,F N1先增加后减小C.F N1先减小后增加,F N2一直减小D.F N1一直减小,F N2先减小后增加答案C【练习1】如图所示,小球被轻质细绳系着,斜吊着放在光滑劈面上,小球质量为m,斜面倾角为θ,向右缓慢推动劈一小段距离,在整个过程中()A.绳上张力先增大后减小B.绳上张力先减小后增大C.劈对小球支持力减小D.劈对小球支持力增大答案D方法二:相似三角形法。
特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。
专题5 动态平衡问题分析考点1 图解法求动态平衡问题1.如图所示,一小球用轻绳悬于O点,用力F拉住小球,使悬线保持偏离竖直方向75°角,且小球始终处于平衡状态.为了使F有最小值,F与竖直方向的夹角θ应该是()A.90°B.45°C.15°D.0°【答案】C【解析】对小球进行受力分析,作出小球平衡状态下动态的受力情况变化图如图所示.小球重力不变,与O 点相连的绳子上的拉力方向不变,在力F变化的过程中,当力F与细绳的方向垂直时,力F取得最小值,此时,F与竖直方向的夹角θ满足θ+75°=90°,则θ=15°,选项C正确.2.如图所示,电灯悬挂于两墙之间,更换水平绳OA使连接点A向上移动而保持O点的位置不变,则A点向上移动时()A.绳OA的拉力逐渐增大B.绳OA的拉力逐渐减小C.绳OA的拉力先增大后减小D.绳OA的拉力先减小后增大【答案】D【解析】对O点受力分析,如图所示,利用图解法可知绳OA的拉力先变小后变大,故A、B、C错误,D 正确.3.如图,运动员的双手握紧竖直放置的圆形器械,在手臂OA沿由水平方向缓慢移到A′位置过程中,若手臂OA、OB的拉力分别为F A和FB,下列表述正确的是()A.F A一定小于运动员的重力GB.F A与FB的合力始终大小不变C.F A的大小保持不变D.F B的大小保持不变【答案】B【解析】以人为研究对象,分析受力情况如图:由图看出,F A不一定小于重力G,故A错误.人保持静止状态,则知F A与FB的合力与重力G大小相等、方向相反,保持不变,故B正确.由图看出F A的大小在减小,FB的大小也在减小,故C、D均错误.故选B.4.如图所示,小球放在光滑的墙与装有铰链的光滑薄板之间,当墙与薄板之间的夹角θ缓慢地增大到90°的过程中()①小球对薄板的正压力增大②小球对墙的正压力减小③小球对墙的压力先减小,后增大④小球对木板的压力不可能小于球的重力A.①②B.②④C.①③D.③④【答案】B【解析】根据小球重力的作用效果,可以将重力G分解为使球压板的力F1和使球压墙的力F2,作出平行四边形如右图所示,当θ增大时如图中虚线所示,F1、F2均变小,而且在θ=90°时,F1变为最小值,等于G,所以②、④均正确.5.如图所示,用绳索将重球挂在墙上,不考虑墙的摩擦.如果把绳的长度增加一些,则球对绳的拉力F1和球对墙的压力F2的变化情况是()A.F1增大,F2减小B.F1减小,F2增大C.F1和F2都减小D.F1和F2都增大【答案】C【解析】把球的重力往两个方向上分解如图所示,由图知两个力均减小,故选C.6.如图所示,一光滑小球静止放置在光滑半球面的底端,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力F1,半球面对小球的支持力F2的变化情况正确的是()A.F1增大,F2减小B.F1减小,F2减小C.F1增大,F2增大D.F1减小,F2增大【答案】C【解析】据题意,当小球在竖直挡板作用下缓慢向右移动,受力变化情况如图所示,所以移动过程中挡板对小球作用力增加;球面对小球作用力也增大,故选项C正确.7.如图所示,用一根细线系住重力为G、半径为R的球,其与倾角为α的光滑斜面接触,处于静止状态,球与斜面的接触面非常小,当细线悬点O固定不动,斜面缓慢水平向左移动直至绳子与斜面平行的过程中,下述正确的是()A.细绳对球的拉力先减小后增大B.细绳对球的拉力先增大后减小C.细绳对球的拉力一直减小D.细绳对球的拉力最小值等于G【答案】C【解析】以小球为研究对象,其受力分析如图所示:因题中“缓慢”移动,故小球处于动态平衡,由图知在题设的过程中,F一直减小,当绳子与斜面平行时,F 与F N垂直,F有最小值,且F min=G sinα,故选项C正确.8.如图所示,有一质量不计的杆AO,长为R,可绕A自由转动.用绳在O点悬挂一个重为G的物体,另一根绳一端系在O点,另一端系在以O点为圆心的圆弧形墙壁上的C点.当点C由图示位置逐渐向上沿圆弧CB移动过程中(保持OA与地面夹角θ不变),OC绳所受拉力的大小变化情况是()A.逐渐减小B.逐渐增大C.先减小后增大D.先增大后减小【答案】C【解析】据题意,当细绳OC的C段向B点移动过程中,系统处于平衡状态,由图知拉力的大小也是先减小后增加,故选项C正确.9.如图所示,小球C用细绳系住,绳的另一端固定于O点.现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于绷紧状态,当小球上升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N以及绳对小球的拉力F T的变化情况是()A.F N保持不变,F T不断增大B.F N不断增大,F T不断减小C.F N保持不变,F T先增大后减小D.F N不断增大,F T先减小后增大【答案】D【解析】据题意,当斜面体向左缓慢运动时,小球将逐渐上升,此过程对小球受力分析,受到重力G、支持力F N和拉力F T,据上图,在此过程中OC绳以O点为圆心逆时针转动,在力的平行四边形定则中力F T 的对应边先减小后增大,而F N的对应边一直变大,而力的大小变化与对应边长度变化一致,则D选项正确.10.(多选)如下图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙壁之间放一光滑球B,整个装置处于静止状态.若把A向右移动少许后,它们仍处于静止状态,则()A.A对B的支持力减小B.A对B的支持力增大C.墙对B的弹力减小D.墙对B的弹力增大【答案】AC【解析】设物体A对球B的支持力为F1,竖直墙对球B的弹力为F2,按力的效果可以把球的重力分解为水平方向的压紧墙壁的力和斜向下的压紧A的力,如图所示,故两个力均减小,故选A、C.11.(多选)如图所示.在倾角为θ的光滑斜面和档板之间放一个光滑均匀球体,档板与斜面夹角为α.初始时α+θ<90°.在档板绕顶端逆时针缓慢旋转至水平位置的过程,下列说法正确的是()A.斜面对球的支持力变大B.档板对球的弹力变大C.斜面对球的支持力变小D.档板对球的弹力先变小后变大【答案】CD【解析】小球受到自身重力,斜面支持力和挡板弹力三力平衡,其中重力大小方向不变,斜面弹力垂直斜面向上方向不变,二者的合力与挡板弹力等大反向,挡板弹力垂直挡板,方向从斜向下逐渐变为水平向右最后变为斜向上,如下图所示.挡板弹力变化时,重力和斜面支持力从斜向上逐渐变为斜向下,观察上面的示意图可见,斜面对球的支持力逐渐变小,挡板对球的弹力先减小后增大,选项C、D正确.考点2 相似三角形求动态平衡问题12.半径为R的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B的距离为h,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮后用力拉住,使小球静止,如图所示,现缓慢地拉绳,在使小球由A到B的过程中,半球对小球的支持力F N和绳对小球的拉力F T的大小变化的情况是()A.F N不变,F T变小B.F N不变,F T先变大后变小C.F N变小,F T先变小后变大D.F N变大,F T变小【答案】A【解析】以小球为研究对象,分析小球受力情况:重力G,细线的拉力F T和半球面的支持力F N,作出F N、F T的合力F,由平衡条件得知F=G.由相似三角形得==得:F N=GF T=G缓慢地将小球从A点拉到B点过程中,O1O、AO不变,O1A变小,得F T变小、F N不变,A正确.13.如图所示,不计重力的轻杆OP能以O为轴在竖直平面内自由转动,P端挂一重物,另用一根轻绳通过滑轮系住P端,当OP和竖直方向的夹角α缓慢增大时(0<α<π),OP杆所受作用力的大小()A.恒定不变B.逐渐增大C.逐渐减小D.先增大后减小【答案】A【解析】在OP杆和竖直方向夹角α缓慢增大时(0<α<π),结点P在一系列不同位置处于静态平衡,以结点P为研究对象,如图甲所示,结点P受向下的拉力G,QP绳的拉力F T,OP杆的支持力F N,三力中,向下的拉力恒定(大小、方向均不变),绳、杆作用力大小均变,绳PQ的拉力F T总沿绳PQ收缩的方向,杆OP支持力方向总是沿杆而指向杆恢复形变的方向(方向变化有依据),做出处于某一可能位置时对应的力三角形图,如图乙所示,则表示这两个力的有向线段组成的三角形与几何线段组成的三角形相似,根据相似三角形知识即可求得,==,即F N不变.14.如图所示,轻杆BC的一端用铰链接于C,另一端悬挂重物G,并用细绳绕过定滑轮用力拉住,开始时,∠BCA>90°,现用拉力F使∠BCA缓慢减小,直线BC接近竖直位置的过程中,杆BC所受的压力()A.保持不变B.逐渐增大C.逐渐减小D.先增大后减小【答案】A【解析】以B点为研究对象,受到三个力分别为重物拉B点的拉力F T1=G,AB绳子的拉力F T2=F,及杆CB对B的弹力F N,三力合成如图所示,从图中可以看出△ABC∽△BFE,则有==,得F N=F T1=G,则A正确.15.如图所示,绳与杆均不计重力,承受力的最大值一定.A端用绞链固定,滑轮O在A点正上方(滑轮大小及摩擦均可忽略),B端吊一重物P,现施加拉力F T将B缓慢上拉(均未断),在杆达到竖直前()A.绳子越来越容易断B.绳子越来越不容易断C.杆越来越容易断D.杆越来越不容易断【答案】B【解析】以B点为研究对象,它受三个力的作用而处于动态平衡状态,其中一个是轻杆的弹力F N,一个是绳子斜向上的拉力F T,一个是绳子竖直向下的拉力,大小等于物体的重力mg,根据相似三角形法,可得==,由于OA和AB不变,OB逐渐减小,因此轻杆上的弹力大小不变,而绳子上的拉力越来越小,选项B正确,其余选项均错误.16.如图所示,小圆环A吊着一个质量为m2的物块并套在另一个竖直放置的大圆环上,有一细线,一端拴在小圆环A上,另一端跨过固定在大圆环最高点B的一个小滑轮后吊着一个质量为m1的物块.如果小圆环、滑轮、细线的大小和质量以及相互之间的摩擦都可以忽略不计,细线又不可伸长,若平衡时弦AB所对应的圆心角为α,则两物块的质量之比应为()A.cosB.sinC.2sinD.2sinα【答案】C【解析】因小圆环A受拉力m2g,细线BA的拉力F T及大圆环的弹力F N作用而处于平衡状态,则此三个力一定可以组成一封闭的矢量三角形,此力的三角形一定与几何三角形OAB相似,即有=,而F T=m1g,AB=2R sin,所以==2sin.17.某欧式建筑物屋顶为半球形,一警卫人员为执行特殊任务,必须冒险半球形屋顶上向上缓慢爬行(如图),他在向上爬过程中()A.屋顶对他的支持力变大B.屋顶对他的支持力变小C.屋顶对他的摩擦力变大D.屋顶对他的摩擦力不变【答案】A【解析】以人为研究对象分析受力可知,人受到重力、摩擦力、屋顶的支持力,其中屋顶支持力和摩擦力的方向都在变化,所以可以采用相似三角形的方法把物理问题转化为数学问题求解,如下图所示:==,故可知屋顶对人的支持力在变大,摩擦力在变小,所以只有选项A正确.18.(多选)如图所示,不计重力的带有光滑滑轮的细杆OB可绕O点在竖直平面内自由转动,绳的一端跨过滑轮挂一重物P,另一端拴在墙壁上的A点,杆处于平衡状态.绳的拉力为T,杆受到的压力为N,杆与竖直方向夹角为θ,若A点沿墙面上移,当杆重新平衡时,有()A.T变大B.θ变大C.N变小D.T变小【答案】BC【解析】对杆的B端进行受力分析,如图所示.由图可知,细线拉力T=mg,所以T不变.而OB杆受到的压力N等于竖直绳和斜绳拉力的合力,沿杆的方向.由于A点上移,所以两个分力夹角增大,因此合力N变小.又轻杆和墙的夹角等于两个分力夹角的一半,当A点上移时,两分力夹角增大,所以θ也增大.故选项B、C正确.。
受力分析中的动态平衡问题一、动态矢量三角形法【题型特点】:1、三个力中,有一个力为恒力(大小方向均不变)2、另一个力方向不变,大小可变,3、第三个力大小方向均可变1. 如图,一粗糙的固定斜杆与水平方向成θ角,一定质量的滑环A 静止悬挂在杆上某位置。
现用一根轻质细绳AB 一端与滑环A 相连,另一端与小球B 相连,且轻绳AB 与斜杆垂直。
另一轻质细绳BC 沿水平方向拉小球B ,使小球B 保持静止。
将水平细绳BC 的C 端沿圆弧缓慢移动到竖直位置,B 的位置始终不变,则在此过程中( )A .轻绳AB 上的拉力先减小后增大 B .轻绳BC 上的拉力先增大后减小C .斜杆对A 的支持力一直在减小D .斜杆对A 的摩擦力一直在减小2. 如图所示,光滑小球静止放置在光滑半球面的底端,小球所受重力为G ,用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),木板对小球的推力1F 、半球面对小球的支持力2F 的变化情况正确的是( )A .1F 增大,2F 减小B .1F 增大,2F 增大C .1F 减小,2F 减小D .1F 减小,2F 增大3. 如图所示,A 是一均匀小球,B 是一14圆弧形滑块,最初A 、B 相切于圆弧形滑块的最低点,一切摩擦均不计,开始B 与A 均处于静止状态,用一水平推力F 将滑块B 向右缓慢推过一段较小的距离,在此过程中( )A .墙壁对球的弹力不变B .滑块对球的弹力增大C .地面对滑块的弹力增大D .推力F 减小4. (多选)如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球和斜面及挡板间均无摩擦,当挡板绕O 点逆时针缓慢地转向水平位置的过程中( )A .斜面对球的支持力逐渐增大B .斜面对球的支持力逐渐减小C .挡板对小球的弹力先减小后增大D .挡板对小球的弹力先增大后减小5.光滑斜面上固定着一根刚性圆弧形细杆,小球通过轻绳与细杆相连,此时轻绳处于水平方向,球心恰位于圆弧形细杆的圆心处,如图所示.将悬点A缓慢沿杆向上移动,直到轻绳处于竖直方向,在这个过程中,轻绳的拉力()A.逐渐增大B.大小不变C.先减小后增大D.先增大后减小6. 质量为M的凹槽静止在水平地面上,内壁为半圆柱面,截面如图所示,A为半圆的最低点,B为半圆水平直径的端点。
力学动态平衡专题一、矢量三角形法特点:物体受三个力作用,一为恒力,大小、方向均不变(通常为重力,也可能是其它力);一为定力,方向不变,大小变化;一为变力,大小、方向均发生变化。
分析技巧:正确画出物体所受的三个力,先作出恒力F3,通过受力分析确定定力F1的方向,并通过F3作一条直线,与另一变力F2构成一个闭合三角形。
看这个变力F2在动态平衡中的方向变化,画出其变化平行线,形成动态三角形,三角形长短的变化对应力的变化。
1.如图,一小球放置在木板与竖直墙面之间.设球对墙面的压力大小为N1,球对木板的压力大小为N2,以木板与墙连接点所形成的水平直线为轴,将木板从水平位置开始缓慢地转到图示位置.不计摩擦,在此过程中()A.N1始终增大,N2始终增大B.N1始终减小,N2始终减小C.N1先增大后减小,N2始终减小D.N1先增大后减小,N2先减小后增大2.如图所示,重物G系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形支架上.若固定A端的位置,将OB绳的B端沿半圆形支架从水平位置逐渐移至竖直位置OC的过程中()A.OA绳上的拉力减小B.OA绳上的拉力先减小后增大C.OB绳上的拉力减小D.OB绳上的拉力先减小后增大3. 质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图1所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中()A.F逐渐变大,T逐渐变大B. F逐渐变大,T逐渐变小B.F逐渐变小,T逐渐变大 D. F逐渐变小,T逐渐变小4.如图所示,小球用细绳系住,绳的另一端固定于O点。
现用水平力F缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力FN以及绳对小球的拉力FT的变化情况是()A、FN保持不变,FT不断增大B、FN不断增大,FT不断减小C、FN保持不变,FT先增大后减小D、FN不断增大,FT先减小后增大二、相似三角形法特点:物体所受的三个力中,一为恒力,大小、方向不变(一般是重力),其它两个力的方向均发生变化。
受力分析中的动态平衡问题方法一:三角形图解法特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
【例1】如图所示,三段绳子悬挂一物体,开始时OA 、OB 绳与竖直方向夹角=,现使O 点保持不动,把OB 绳子的悬点移到竖直墙与O 点在同一水平面的C 点,在移动过程中,则关于OA 、OB 绳拉力的变化情况,正确的是( )A .OA 绳上的拉力一直在增大B .OA 绳上的拉力先增大后减小C .OB 绳上拉力先减小后增大,最终比开始时拉力大D .OB 绳上拉力先减小后增大,最终和开始时相等【练习】如图所示,一定质量的物体通过轻绳悬挂,结点为O 。
人沿水平方向拉着OB 绳,物体和人均处于静止状态。
若人的拉力方向不变,缓慢向左移动一小段距离,下列说法正确的是( )A .OA 绳中的拉力先减小后增大B .OB 绳中的拉力不变C .人对地面的压力逐渐减小D .地面对人的摩擦力逐渐增大方法二:相似三角形法。
特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题【例】一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图所示。
现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( )A .F N 先减小,后增大B .F N 始终不变C .F 先减小,后增大D .F 始终不变【练习】如图所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是( )A .N 变大,T 变小B .N 变小,T 变大C .N 变小,T 先变小后变大D .N 不变,T 变小方法三:解析法特点:解析法适用的类型为一根绳挂着光滑滑轮,三个力中其中两个力是绳的拉力,由于是同一根绳的拉力,两个拉力相等,另一个力大小、30方向不变的问题。
杠杆的动态平衡分析一、单选题1.如图,足够长的杠杆上放着的两个球(m1>m2),杠杆在水平位置平衡,若两球以相同速度同时向远离支点的方向运动相等的时间,则杠杆()A.仍能平衡B.不能平衡,大球那端下沉C.不能平衡,小球那端下沉D.无法确定2.在探究“杠杆平衡条件“实验中,杠杆在力F作用下水平平衡,如图所示,现将弹簧测力计绕B点从a位置转动到b位置过程中,杠杆始终保持水平平衡,则拉力F与其力臂的乘积变化情况是()A. 一直变小B. 一直变大C. 一直不变D. 先变小后变大3.如图所示,O为杠杆的支点,杠杆右端挂有重为G的物体,杠杆在力F1的作用下在水平位置平衡。
如果用力F2代替力F1使杠杆仍在水平位置保持平衡,下列关系中正确的是()A.F1<F2B.F1>F2C.F2<GD.F1=G4.图(a)所示的杠杆是水平平衡的。
如果在支点两侧的物体下方分别加挂一个等重的物体,如图(b)所示,则杠杆()A.右端下沉B.左端下沉C.要保持平衡应将左端的物体向右移动D.要保持平衡应在右端再加挂一个物体5.如图所示,有一质量不计的长木板,左端装有与墙相连的轴在它的左端放一重为G的物块,并用一竖直向上的力F拉着右端。
当物块向右匀速滑动时,木板始终在水平位置保持静止,在此过程中,拉力F()A. 变小B. 变大C. 不变D. 先变大后变小6.如图所示的杠杆正处于水平平衡状态,若把杠杆两边的钩码同时向远离支点O方向各移动1个小格,杠杆将()A. 还继续处于水平平衡状态B. 右端上升,左端下降C. 右端下降,左端上升D. 无法确定杠杆所处的状态7.如图,AB为能绕B点转动的轻质杠杆,中点C处用细线悬挂一重物,在A端施加一个竖直向上的拉力F,使杠杆在水平位置保持平衡,若保持拉力方向与AB垂直,将A端缓慢向上提升一小段距离,在提升的过程中,拉力F将()A.增大B.不变C.减小D.无法确定8.如图所示,杠杆AOB用细线悬挂起来,当A端挂重G A的物体,B端挂重G B的物体时,杠杆处于平衡状态,此时OA恰好处于水平位置,G A = G B,杠杆重不计,则()A. AO>BOB. AO<BOC. AO=BOD. 无法判定9.如图所示,一根重木棒在水平动力(拉力)F的作用下以O点为轴,由竖直位置逆时针匀速转到水平位置的过程中,若动力臂为L,动力与动力臂的乘积为M,则()A.F增大,L增大,M增大B.F增大,L减小,M减小C.F增大,L减小,M增大D.F减小,L增大,M增大10.一把刻度准确的杆秤,秤砣因长期使用磨损变轻,现用其称大白菜质量时的示数将()A.比物体的实际质量大B.比物体的实际质量小C.和物体的实际质量相同D.无法判断11.如图(a)所示的杠杆是平衡的,在此杠杆支点两侧的物体下方分别加挂一个物体,如图(b)所示,那么,以下说法中正确的是()A.杠杆仍然平衡B.杠杆是否平衡与加挂物体的重力多少有关C.杠杆一定不能平衡D.两侧加挂物体的重力相等时杠杆才能平衡12.如图所示,刻度均匀的杠杆处于平衡状态,所挂的每个钩码的质量均相等,如果在杠杆两侧已挂钩码的下方各增加一个相同规格的钩码,杠杆会:()A.右端下沉B.左端下沉C.杠杆仍然平衡D.无法判断13.如图所示,在水平力F的作用下,使重为G的木棒绕固定点沿逆时针方向缓慢转动至水平位置,在棒与竖直方向的夹角逐渐增大的过程中,下列说法正确的是()A. 重力G不变,G的力臂不变B. 拉力F变大,F的力臂变小C. 拉力F不变,F的力臂变大D. 重力G变小,G的力臂变大14.如图所示,用一根细绳将一木条悬挂起来,并在A、B两点分别挂有3个和2个相同的钩码,木条恰好水平平衡。
专题 动态平衡中的三力问题 图解法分析动态平衡在有关物体平衡的问题中,有一类涉及动态平衡。
这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点,许多同学因不能掌握其规律往往无从下手,许多参考书的讨论常忽略几中情况,笔者整理后介绍如下。
方法一:三角形图解法。
特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
例1.1 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?解析:取球为研究对象,如图1-2所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。
因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。
F 1的方向不变,但方向不变,始终与斜面垂直。
F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F 2。
由此可知,F 2先减小后增大,F 1随β增大而始终减小。
同种类型:例1.2所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球的支持力增大)方法二:相似三角形法。
特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。
例2.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。
现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( )A .F N 先减小,后增大B .F N 始终不变C .F 先减小,后增大 D.F 始终不变解析:取BO 杆的B 端为研究对象,受到绳子拉力(大小为F )、BO 杆的支持力F N 和悬挂重物的绳子的拉力(大小为G )的作用,将F N 与G 合成,其合力与F 等值反向,如图2-2所示,将三个力矢量构成封闭的三角形(如图中画斜线部分),力的三角形与几何三角形OBA 相似,利用相似三角形对应边成比例可得:(如图2-2所示,设AO 高为H ,BO 长为L ,绳长l ,)lF L F HG N ==,式中G 、H 、L 均不变,l 逐渐变小,所以可知F N 不变,F 逐渐变小。
正确答案为选项B同种类型:如图2-3所示,光滑的半球形物体固定在水平地面上,球心正上方有一光A CB O滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是( D )。
(A)N 变大,T 变小, (B)N 变小,T 变大 (C)N 变小,T 先变小后变大 (D)N 不变,T 变小方法三:作辅助圆法特点:作辅助圆法适用的问题类型可分为两种情况:①物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,另两个力大小、方向都在改变,但动态平衡时两个力的夹角不变。
②物体所受的三个力中,开始时两个力的夹角为90°,且其中一个力大小、方向不变,动态平衡时一个力大小不变、方向改变,另一个力大小、方向都改变,原理:先正确分析物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,第一种情况以不变的力为弦作个圆,在辅助的圆中可容易画出两力夹角不变的力的矢量三角形,从而轻易判断各力的变化情况。
第二种情况以大小不变,方向变化的力为直径作一个辅助圆,在辅助的圆中可容易画出一个力大小不变、方向改变的的力的矢量三角形,从而轻易判断各力的变化情况。
例3、如图3-1所示,物体G 用两根绳子悬挂,开始时绳OA 水平,现将两绳同时顺时针转过90°,且保持两绳之间的夹角α不变)90(0>α,物体保持静止状态,在旋转过程中,设绳OA 的拉力为F 1,绳OB 的拉力为F 2,则( )。
(A)F 1先减小后增大 (B)F 1先增大后减小 (C)F 2逐渐减小 (D)F 2最终变为零解析:取绳子结点O 为研究对角,受到三根绳的拉力,如图3-2所示分别为F 1、F 2、F 3,将三力构成矢量三角形(如图3-3所示的实线三角形CDE),需满足力F 3大小、方向不变,角∠ CDE 不变(因为角α不变),由于角∠DCE 为直角,则三力的几何关系可以从以DE 边为直径的圆中找,则动态矢量三角形如图3-3中一画出的一系列虚线表示的三角形。
由此可知,F 1先增大后减小,F 2随始终减小,且转过90°时,当好为零。
正确答案选项为B 、C 、D另一种类型:如图3-4所示,在做“验证力的平行四边形定则”的实验时,用M 、N两个测力计通过细线拉橡皮条的结点,使其到达O 点,此时α+β= 90°.然后保持M 的读数不变,而使α角减小,为保持结点位置不变,可采用的办法是( A )。
(A)减小N 的读数同时减小β角 (B)减小N 的读数同时增大β角(C)增大N 的读数同时增大β角 (D)增大N 的读数同时减小β角方法四:解析法特点:解析法适用的类型为一根绳挂着光滑滑轮,三个力中其中两个力是绳的拉力,由于是同一根绳的拉力,两个拉力相等,另一个力大小、方向不变的问题。
原理:先正确分析物体的受力,画出受力分析图,设一个角度,利用三力平衡得到拉力的解析方程式,然后作辅助线延长绳子一端交于题中的界面,找到所设角度的三角函数关系。
当受力动态变化是,抓住绳长不变,研究三角函数的变化,可清晰得到力的变化关系。
例4.如图4-1所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G =40N ,绳长L =2.5m ,OA =1.5m ,求绳中张力的大小,并讨论:(1)当B 点位置固定,A 端缓慢左移时,绳中张力如何变化?(2)当A 点位置固定,B 端缓慢下移时,绳中张力又如何变化?解析:取绳子c 点为研究对角,受到三根绳的拉力,如图4-2所示分别为F 1、F 2、F 3,延长绳AO 交竖直墙A C 于D 点,由于是同一根轻绳,可得:21F F =,BC 长度等于CD ,AD 长度等于绳长。
设角∠OAD 为θ;根据三个力平衡可得:θsin 21G F = ;在三角形AOD 中可知,ADOD =θsin 。
如果A 端左移,AD 变为如图4-3中虚线A ′D ′所示,可知A ′D ′不变,OD ′减小,θsin 减小,F 1变大。
如果B 端下移,BC 变为如图4-4虚线B ′C ′所示,可知AD 、OD 不变,θsin 不变,F 1不变。
同种类型:如图4-5所示,长度为5cm 的细绳的两端分别系于竖立地面上相距为4m的两杆的顶端A 、B ,绳子上挂有一个光滑的轻质钩,其下端连着一个重12N 的物体,平衡时绳中的张力多大?专题训练1.半圆形支架BAD 上悬着两细绳OA 和OB ,结于圆心O ,下悬重为G 的物体,使OA 绳固定不动,将OB 绳的B 端沿半圆支架从水平位置缓慢移到竖直位置C 的过程中(如图),分析OA 绳和OB 绳所受力的大小如何变化。
2.如图,电灯悬挂于两墙之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时( )A .绳OA 的拉力逐渐增大B .绳OA 的拉力逐渐减小C .绳OA 的拉力先增大后减小D .绳OA 的拉力先减小后增大3.如图,用细绳将重球悬挂在竖直光滑墙上,当绳伸长时( )A .绳的拉力变小,墙对球的弹力变大B .绳的拉力变小,墙对球的弹力变小C .绳的拉力变大,墙对球的弹力变小D .绳的拉力变大,墙对球的弹力变大4.如图,均匀光滑的小球放在光滑的墙壁与木板之间,图中 30=θ,当将θ角缓慢增大至接近 90的程中( )A .小球施于木板的压力不断增大B .小球施于墙的压力不断减小C .小球对墙壁的压力始终小于mgD .小球对木板的压力始终大于mg5.在共点力的合成实验中,如图,使弹簧秤b 按图示的位置开始顺时针方向缓慢转90角,在这个过程中,保持O 点位置不动,a 弹簧秤的拉伸方向不变,则整个过程中关于a 、b 弹簧的读数变化是( )A .a 增大,b 减小B .a 减小,b 减小C .a 减小,b 先减小后增大D .a 先减小后增大6.如图所示,把球夹在竖直墙AC 和木板BC 之间,不计摩擦,球对墙的压力为F N 1,球对板的压力为F N 2.在将板BC 逐渐放至水平的过程中,下列说法中,正确的是( )A .F N 1和F N 2都增大B .F N 1和F N 2都减小C .F N 1增大,F N 2减小D .F N 1减小,F N 2增大7.如图所示,重为G 的光滑球系在一细绳上,细绳通过一小滑轮向水平方向拉球,使它沿光滑墙面缓慢上升.球在上升过程中,拉力T 和压力N 的大小如何变化( )A .T 和N 都增大B .T 和N 都减小C .T 增大,N 减小D .T 减小,N 增大8.如图所示,质量为m 的小球被轻绳系着,光滑斜面倾角为θ,向左缓慢推动劈,在这个过程中( )A .绳上张力先增大后减小B .斜劈对小球支持力减小C .绳上张力先减小后增大D .斜劈对小球支持力增大9.电灯悬挂于两墙之间,如图所示,使接点A 上移,但保持O点位置不变,则A 点上移过程中,绳OB 的拉力( )A .逐渐增大B .逐渐减小C .先增大,后减小D .先减小,后增大 10.如图所示,轻支杆BC 一端用光滑铰链固定于B 点,另一端C 固定一滑轮,重物m 用轻绳通过C固定于墙上A点,若杆、滑轮质量均不计,将绳端A沿墙稍向下移,再使之平衡,则:A.绳的拉力,BC受压力都增大 B.绳拉力减小,BC受压力增大C.绳的拉力不变,BC受压力增大 D.绳拉力,BC受压力均不变11.如图,一个均质球重为G,放在光滑斜面上,倾角为α,在斜面上有一光滑的不计厚度的木板挡住球。