第三节 定积分在物理学上的应用
一、变力沿直线所作的功
F a x
F
x+dx b
常力 F 沿直线对物体所作的功为:W=F · S 若力是变力: F F ( x )
dW F ( x )dx
W F ( x )dx
a
b
例1 一个带 +q 电量的点电荷放在 r 轴上坐标原点处, 产生一个电场. 若将一个单位正电荷从r 轴上r = a 处 沿 r 轴移动到 r = b处,求场力 F 所作的功. 解 取r为积分变量,
20 x 20 x dW2 (10 0.05)dx (10 )dx 4 80
x
功元素
1 20 x dW [ x (10 )]dx 10 80
20
功
W
0
1 20 x [ x (10 )]dx 10 80
=217.5(千克米) =2131.5(焦耳)
l l 解 取y为积分变量 y [ , ], 2 2 取任一小区间[ y , y+dy ] 小段的质量为 dy ,
小段与质点的距离为 r a y ,
2 2
m dx 引力 dF k 2 , 2 a y amdy dFx k 2 , 2 (a y )
3 2
l y 2 y dy
解 建立坐标系如图
面积元素 2(a x )dx ,
dP ( x 2a ) 2(a x )dx
2a
o
a
2a
7 3 P 2( x 2a )(a x )dx a . 0 3
a
x
三、 引力
质量分别为m1, m2相距为 r 的两个质点间的引力 大小:F k m1m2 , 其中k为引力系数, r2 引力的方向沿着两质点的连线方向. 例6 有一长度为l、线密度为 的均匀细棒, 在其中垂线上距棒 a 单位处有一质量为 m 的 质点M, 计算该棒对质点 M 的引力.