人教版七年级数学下册 5.1 相交线 同步测试题(有答案)
- 格式:docx
- 大小:121.59 KB
- 文档页数:17
七下数学同步练习、单元检测 第五章 相交线与平行线5.1.1 相交线复习检测(5分钟):1、如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2、如图,若∠1=60°,那么∠2=_______、∠3=_______、∠4=_______ .3、如图是一把剪刀,其中︒=∠401,则=∠2 ,其理由是 。
4、如图三条直线AB,CD,EF 相交于一点O, ∠AOD 的对顶角是_____,∠AOC 的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____.OF E D CBA5、如图,直线AB,CD 相交于O,OE 平分∠AOC,若∠AOD-∠DOB=50°,求∠EOB 的度数.OE D CBA6、如图,直线a,b,c 两两相交,∠1=2∠3,∠2=68°,求∠4的度数cba341212121221E(3)O D CBA (2)O D CBA (1)ODC BA5.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补角都相等.( )2、一条直线不可能与两条相交直线都垂直.( )3、两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.( )4、两条直线相交有一组对顶角互补,那么这两条直线互相垂直.( ).5、如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________.6、如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.7、如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系是_________. 8、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.9、如图,AC ⊥BC,C 为垂足,CD ⊥AB,D 为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是________,点B 到CD 的距离是_____,A 、B 两点间的距离是_________.10、如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短.小明说垂线段最短, 因此线段AD 的长是点A 到BF 的距离,对小明的说法,你认为对吗?11、用三角尺画一个是30°的∠AOB,在边OA 上任取一点P,过P 作PQ ⊥OB,垂足为Q,量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?EODCBAFE D C B ADC BA5.1.3同位角、内错角、同旁内角复习检测(5分钟):1、如图(4),下列说法不正确的是()A.∠1与∠2是同位角B.∠2与∠3是同位角C.∠1与∠3是同位角D.∠1与∠4不是同位角2、如图(5),直线AB、CD被直线EF所截,∠A和是同位角,∠A和是内错角,∠A和是同旁内角.3、如图(6), 直线DE截AB, AC, 构成八个角:①、指出图中所有的同位角、内错角、同旁内角.②、∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?4、如图(7),在直角 ABC中,∠C=90°,DE⊥AC于E,交AB于D .①、指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.②、若∠3+∠4=180°试说明∠1=∠2=∠3的理由.5.2.1平行线复习检测(5分钟):1、在同一平面内,两条直线的位置关系有_________2、两条直线L1与L2相交点A,如果L1//L,那么L2与L()3、在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.8765c b a 34124、两条直线相交,交点的个数是________,两条直线平行,交点的个数是_____个. 判断题5、6、7、85、不相交的两条直线叫做平行线.( )6、如果一条直线与两条平行线中的一条直线平行, 那么它与另一条直线也互相平行.( )7、过一点有且只有一条直线平行于已知直线.( )8、读下列语句,并画出图形后判断.(1)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b. (2)判断直线a 、c 的位置关系,并借助于三角尺、直尺验证.9、试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况.5.2.2平行线的判定复习检测(10分钟):1、如图1所示,下列条件中,能判断AB ∥CD 的是( )A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD(1) (2) (3) (4)2、如图2所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF3、下列说法错误的是( ) A.同位角不一定相等 B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行 4、如图5,直线a,b 被直线c 所截,现给出下列四个条件:•①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明 a ∥b 的条件序号为( ) (5) A.①② B.①③ C.①④ D.③④5、如图5,如果∠3=∠7,那么______ ,理由是 ;如果∠5=∠3,那么________, 理由是______________; 如果∠2+ ∠5= ______ 那么a ∥b,理由是________ .6、如图4,若∠2=∠6,则______∥______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______, 如果∠9=_____,那么AD ∥BC;如果∠9=_____,那么AB ∥CD.7、在同一平面内,若直线a,b,c 满足a ⊥b,a ⊥c,则b 与c 的位置关系是______.8、如图所示,BE 是AB 的延长线,量得∠CBE=∠A=∠C.(1)由∠CBE=∠A 可以判断______∥______,根据是_________.34D C BA 21F E D C B A 876543219654321D C B A DC D CBA 21(2)由∠CBE=∠C 可以判断______∥______,根据是_________. 9、已知直线a 、b 被直线c 所截,且∠1+∠2=180°试判断直线a 、b 的位置关系,并说明理由.10、如图,已知DG AEM ∠=∠,21∠=∠,试问EF 是否平行GH ,并说明理由.11、如图所示,已知∠1=∠2,AC 平分∠DAB,试说明DC ∥AB.12、如图所示,已知直线EF 和AB,CD 分别相交于K,H,且EG ⊥AB,∠CHF=600,∠E=30°,试说明AB ∥CD.GHKEDC B A13、提高训练:如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?D C B A O FE DC B AD C B A 187654321DC B AC A d ecb a 34125.3.1平行线的性质复习检测(10分钟):1、如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )A.5个B.4个C.3个D.2个(1) (2) (3)2、如图2所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( ) A.35° B.30° C.25° D.20°3、如图3所示,AB ∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______, ∠ACD=•_______.4、如图4,若AD ∥BC,则∠______=∠_______,∠______∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠∠________=∠__________,∠ABC+∠_________=180°(4) (5) (6)5、如图5,在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.6、河南)如图6所示,已知AB ∥CD,直线EF 分别交AB,CD 于E,F,EG •平分∠B-EF,若∠1=72°,则∠2=_______.7、如图,AB ∥CD ,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?8、如图,EF 过△ABC 的一个顶点A ,且EF ∥BC ,如果∠B =40°,∠2=75°,那么∠1、∠3、∠C 、∠BAC +∠B +∠C 各是多少度,并说明依据?E21DCBNM G F E D CB A9、如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.10、如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.11、如图所示,已知:AE 平分∠BAC ,CE 平分∠ACD ,且AB ∥CD .求证:∠1+∠2=90°. 证明:∵ AB ∥CD ,(已知)∴∠BAC +∠ACD =180°,( ) 又∵ AE 平分∠BAC ,CE 平分∠ACD ,( )∴112B AC ∠=∠,122A C D ∠=∠,( )∴001112()1809022B AC A CD ∠+∠=∠+∠=⨯=.即 ∠1+∠2=90°.结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相 . 推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相 .5.3.2命题、定理、证明复习检测(5分钟):1、判断下列语句是不是命题(1)延长线段AB ( ) (2)两条直线相交,只有一交点( ) (3)画线段AB 的中点( ) (4)若|x|=2,则x=2( ) (5)角平分线是一条射线( ) 2、下列语句不是命题的是( )A.两点之间,线段最短B.不平行的两条直线有一个交点C.x 与y 的和等于0吗?D.对顶角不相等. 3、下列命题中真命题是( )A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角D.锐角小于它的余角4、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )A.1个B.2个C.3个D.4个 5、分别指出下列各命题的题设和结论(1)如果a ∥b ,b ∥c ,那么a ∥c (2)同旁内角互补,两直线平行 6、分别把下列命题写成“如果……,那么……”的形式(1)两点确定一条直线; (2)等角的补角相等; (3)内错角相等.7、如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据:(1)∵a ∥b,∴∠1=∠3( ); (2)∵∠1=∠3,∴a ∥b( ); (3)∵a ∥b,∴∠1=∠2( ); (4) ∵a ∥b,∴∠1+∠4=180º ( ) (5)∵∠1=∠2,∴a ∥b( ); (6)∵∠1+∠4=180º,∴a ∥b( ). 8、已知:如图AB ⊥BC ,BC ⊥CD 且∠1=∠2,求证:BE ∥CF证明:∵AB ⊥BC ,BC ⊥CD (已知)∴ = =90°( ) ∵∠1=∠2(已知)∴ = (等式性质)∴BE ∥CF ( )9、已知:如图,AC ⊥BC ,垂足为C ,∠BCD 是∠B 的余角.求证:∠ACD=∠B证明:∵AC ⊥BC (已知)∴∠ACB=90°( ) ∴∠BCD 是∠ACD 的余角∵∠BCD 是∠B 的余角(已知)∴∠ACD=∠B ( )5.4 平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的( )D2、如图所示,△FDE 经过怎样的平移可得到△ABC.( ) A.沿射线EC 的方向移动DB 长; B.沿射线EC 的方向移动CD 长 C.沿射线BD 的方向移动BD 长; D.沿射线BD 的方向移动DC 长ab 1 23c4C A BD EF1 2 BD CFED C BA3、下列四组图形中,•有一组中的两个图形经过平移其中一个能得到-另一个,这组图形是( )4、如图所示,△DEF 经过平移可以得到△ABC,那么∠C的对应角和ED 的对应边分-别是( ) A.∠F,AC B.∠BOD,BA; C.∠F,BA D.∠BOD,AC 5、在平移过程中,对应线段( ) A.互相平行且相等; B.互相垂直且相等 C.互相平行(或在同一条直线上)且相等6、在平移过程中,平移后的图形与原来的图形________和_________都相同,•因-此对应线段和对应角都________.7、如图所示,平移△ABC 可得到△DEF,如果∠A=50°,∠C=60°,那么∠E=•____-度,∠EDF=_______度,∠F=______度,∠DOB=_______度.8、将正方形ABCD 沿对角线AC 方向平移,且平移后的图形的一个顶点恰好在AC 的中点O 处,则移动前后两个图形的重叠部分的面积是原正方形面积的_______9、直角△ABC 中,AC =3cm ,BC =4cm ,AB =5cm ,将△ABC 沿CB 方向平移3cm ,则边AB 所经过的平面面积为____cm 2。
人教版七年级数学下册第五章订交线与平行线5.1 订交线同步练习一、单项选择题(共10 题;共 30 分)1.以以下列图,∠ 1 和∠ 2 是对顶角的图形有 ( )A. 1 个B. 个2C.个3D. 个42.如图,以下说法不正确的选项是()A. ∠1 和∠ 2 是同旁内角B.∠ 1 和∠ 3 是对顶角C.∠ 3 和∠ 4 是同位角D.∠ 1 和∠ 4 是内错角3.以以下列图,∠ 1 和∠ 2 是对顶角的是()A. B. C. D.4.以下说法中正确的个数为()① 两条直线订交成四个角,若是有两个角相等,那么这两条直线垂直;② 两条直线订交成四个角,若是有一个角是直角,那么这两条直线垂直;③ 一条直线的垂线能够画无数条;④ 在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.5.如图,∠ 1=15 °,∠ AOC=90°,点 B, O,D 在同素来线上,则∠ 2 的度数为()A.75 °B.15 °C.105 °D.165 °6.以以下列图,以下说法错误的选项是()A. ∠A 和∠ B 是同旁内角B. ∠A 和∠ 3 是内错角C. ∠ 1 和∠ 3 是内错角D. ∠ C 和∠ 3 是同位角17.如图,三条直线订交于点O.若 CO⊥ AB,∠ 1=56 °,则∠ 2 等于()A.30 °B. 34C. 45 °D. 56 °°8. 在以下语句中,正确的选项是().A. 在平面上,一条直线只有一条垂线;B. 过直线上一点的直线只有一条;C. 过直线上一点且垂直于这条直线的直线有且只有一条;D. 垂线段就是点到直线的距离9. 如图,以下 6 种说法:① ∠1与∠4 是内错角;② ∠ 1 与∠ 2 是同位角;③ ∠2 与∠ 4 是内错角;④ ∠4 与∠ 5 是同旁内角;⑤ ∠2 与∠ 4 是同位角;⑥ ∠2 与∠ 5 是内错角.其中正确的有( )A. 1 个B. 个2C.个3D. 个410.以以下列图, OA⊥ OC, OB⊥ OD,下面结论中,其中说法正确的选项是()① ∠AOB=∠ COD;② ∠ AOB+∠ COD= 90°;③ ∠BOC+∠ AOD=180 °;④ ∠ AOC-∠ COD=∠ BOC.A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共10 题;共 30 分)11.如图,直线AB, CD 订交于点O, EO⊥ AB,垂足为点O,若∠ AOD=132°,则∠ EOC=________12.如图,已知直线AB 与 CD 订交于点O, OA 均分∠ COE,若∠ DOE=70°,则∠ BOD=________.13.如图,∠ 1 和∠ 2 是 ________角,∠ 2 和∠ 3 是 ________角。
人教版七年级数学下册第五章相交线与平行线 5.1 相交线同步检测题一、单选题(共10题;共30分)1.如图所示,点P到直线l的距离是()A. 线段PA的长度B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度2.下列图形中,∠1和∠2不是同位角的是()A. B.C. D.3.下列图形中,∠1与∠2是对顶角的有()A. B. C. D.4.如图,在三角形中,∠=90º,=3,=4,=5,则点到直线的距离等于()A. 3B. 4C. 5D. 以上都不对5.如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A. 两点之间线段最短B. 两点确定一条直线C. 垂线段最短D. 过一点可以作无数条直线6.下图中∠与∠是内错角的是()A. B.C. D.7.下列图形中,∠1和∠2是同位角的是()A. B. C. D.8.某城市有四条直线型主干道分别为l1,l2,l3,l4,l3和l4相交,l1和l2相互平行且与l3、l4相交成如图所示的图形,则共可得同旁内角()对.A. 4B. 8C. 12D. 169.如图,直线AB,CD相交于点O,下列描述:①∠1和∠2互为对顶角②∠1和∠3互为对顶角③∠1=∠2④∠1=∠3其中,正确的是()A. ①③B. ①④C. ②③D. ②④10.如图,直线AB与CD相交于点O,若∠AOC= ∠AOD,则∠BOD的度数为()A. 30°B. 45°C. 60°D. 135°二、填空题(共10题;共30分)11.如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.12.用剪刀剪东西时,剪刀张开的角度如图所示,若∠1=25°,则∠2=________13.如图所示,已知AB和CD相交于O,OA平分∠EOC,∠EOC=70°,则∠BOD=________14.如图,AH⊥BC,垂足为H,若AB=1.7cm,AC=2cm,AH=1.1cm,则点A到直线BC的距离是________cm .15.有4条直线a、b、c、d以及3个交点A、B、C,在图中画出的部分可以数出________对同位角.16.如图,与图中的∠1成内错角的角是________.17.如图,直线AB、CD被EF、EC所截,在∠1、∠2、∠3、∠4、∠5、∠6中,同位角有________个.18.如图,如果∠2=100°,那么∠1的同旁内角等于________度.19.在同一平面内,若a⊥b,a⊥c,则b与c的位置关系是________.20.如图,与图中的∠1成内错角的角是________.三、解答题(共8题;共40分)21.如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)说明理由22.如图,直线a,b相交,∠1=40°,求∠2、∠3、∠4的度数.23.如图所示,直线a,b,c两两相交,∠1=2∠3,∠2=65°,求∠4的度数.24.如图,直线AD与AE相交于点A,直线BC分别交AD、AE于点B、C,直线DE分别交AD、AE于点D、E,分别写出图中的两对同位角、两对内错角、两对同旁内角.25.如图所示,∠1与∠2,∠3与∠4之间各是哪两条直线被哪一条直线所截而形成的什么角?26.图中的∠1与∠C、∠2与∠B、∠3与∠C,各是哪两条直线被哪一条直线所截形成的同位角?27.如图,直线AB、CD相交于点O,OF⊥CO,∠AOF与∠BOD的度数之比为3:2,求∠AOC的度数.28.如图所示,直线AB与CD交于点O,MO⊥AB,垂足为O,ON平分∠AOD.若∠COM=50°,求∠AON 的度数.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】A4.【答案】A5.【答案】C6.【答案】A7.【答案】D8.【答案】D9.【答案】D10.【答案】B二、填空题11.【答案】53°12.【答案】25°13.【答案】:°14.【答案】1.115.【答案】1216.【答案】∠BDC17.【答案】318.【答案】10019.【答案】平行20.【答案】∠BDC三、解答题21.【答案】解:理由是:垂线段最短.22.【答案】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140°23.【答案】解:∵∠2=65°∴∠1=∠2=65°(对顶角相等)又∠1=2∠3∴∠3= ∠1=32.5°∴∠4=∠3=32.5°(对顶角相等)24.【答案】解:图中的2对同位角:∠1与∠2,∠3与∠4;图中的2对内错角:∠5与∠2,∠6与∠4;图中的2对同旁内角:∠1与∠3,∠2与∠4.25.【答案】解:解:左图:∠1与∠2是AB与CD被直线BD所截形成的内错角,∠3与∠4是直线AD与直线BC被直线BD所截形成的内错角;右图:∠1与∠2是AB与CD被直线BD所截形成的同旁内角,∠3与∠4是直线AD与直线BC被直线AB所截形成的同位角26.【答案】解:在截线的同旁找同位角.如图,∠1与∠C是直线DE、BC被直线AC所截形成的同位角,∠2与∠B是直线DE、BC被直线AB所截形成的同位角,∠3与∠C是直线DF、AC被直线BC所截形成的同位角27.【答案】解:∵OF⊥CO,∴∠AOF+∠AOC=90°,∵∠AOC=∠BOD,∴∠AOF+∠BOD=90°,∵∠AOF与∠BOD的度数之比为3:2∴∠AOF= .28.【答案】解:∵MO⊥AB,∴∠AOM=90°,∵∠COM=50°,∴∠AOD=180°﹣90°﹣50°=40°,∵ON平分∠AOD,∴∠AON= ∠AOD= ×40°=20°。
(直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改)的全部内容。
初一数学人教版七年级下册第五章 相交线与平行线5.1 相交线同步练习题1. 下列说法中正确的是( )A.不相等的角一定不是对顶角B.互补的两个角是邻补角C.互补且有一条公共边的两个角是邻补角D.两条直线相交所成的角是对顶角2. 下列说法正确的是( )A.在同一平面内,过直线外一点向该直线画垂线,垂足一定在该直线上B.在同一平面内,过线段或射线外一点向该线段或射线画垂线,垂足一定在该线段或射线上C.过线段或射线外一点不一定能画出该线段或射线的垂线D.过直线外一点与直线上一点画的一条直线与该直线垂直3. 已知∠α和∠β的对顶角,若∠α=60°,则∠β的度数为( )A.30° B.60° C.70° D.150°4。
如图,直线AB,CD相交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依据是( )A.同角的余角相等 B.对顶角相等C.同角的补角相等 D.等角的补角相等5. 如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余 D.不能确定6。
5.1 相交线垂线段基础训练知识点1 垂线段的定义1.下列说法正确的是()A.垂线段就是垂直于已知直线的线段B.垂线段就是垂直于已知直线并且与已知直线相交的线段C.垂线段是一条竖起来的线段D.过直线外一点向该直线作垂线,这一点到垂足之间的线段叫垂线段2.如图,下列说法不正确的是()A.点B到AC的垂线段是线段ABB.点C到AB的垂线段是线段ACC.线段AC是点A到BC的垂线段D.线段BD是点B到AD的垂线段知识点2 垂线段的性质3.如图,计划在河边建一水厂,过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是__________.4.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B. B点C.C点D.D点5.如图,已知AC⊥BC,CD⊥AB,垂足分别是C,D,那么以下线段大小的比较必定成立的是()A.CD>ADB.AC<BCC.BC>BDD.CD<BD6.如图,AD⊥BD,BC⊥CD,AB=6 cm,BC=4 cm,则BD的长度的取值范围是()A.大于4 cmB.小于6 cmC.大于4 cm或小于6 cmD.大于4 cm且小于6 cm7.如图,在三角形ABC中,∠C=90°,AC=3,点P可以在直线BC上自由移动,则AP的长不可能是()A.2.5B.3C.4D.5知识点3 点到直线的距离8.如图所示的是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段的长度.9.下列图形中,线段PQ的长表示点P到直线MN的距离的是()10.如图,其长能表示点到直线(线段)的距离的线段的条数是()A.3B.4C.5D.611.如图,三角形ABC是锐角三角形,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是()A.线段CA的长B.线段CD的长C.线段AD的长D.线段AB的长12.点到直线的距离是指()A.直线外一点到这条直线的垂线的长度B.直线外一点到这条直线上的任意一点的距离C.直线外一点到这条直线的垂线段D.直线外一点到这条直线的垂线段的长度13.如图,AB⊥AC,AD⊥BC,如果AB=4 cm,AC=3 cm,AD=2.4 cm,那么点C到直线AB的距离为()A.3 cmB.4 cmC.2.4 cmD.无法确定易错点对垂线段的性质理解不透彻而致错14.点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离()A.等于4 cmB.等于2 cmC.小于2 cmD.不大于2 cm提升训练考查角度1 利用点到直线的距离的定义进行识别15.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条考查角度2 利用作垂线法作图16.如图,已知钝角三角形ABC中,∠BAC为钝角.(1)画出点C到AB的垂线段;(2)过点A画BC的垂线;(3)画出点B到AC的垂线段,并量出其长度.考查角度3 利用垂线段的性质比较大小17.如图,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?考查角度4 利用垂线段的性质解实际应用题18.如图,一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,设汽车行驶到点P位置时,离村庄M最近,行驶到点Q位置时,离村庄N最近,请你在AB上分别画出P,Q两点的位置.探究培优拔尖角度1 利用垂线段的性质进行方案设计(建模思想)19.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H的位置,使它到四个村庄的距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短?并说明根据.拔尖角度2 利用垂线段的性质解决绝对值问题(数形结合思想)20.在如图所示的直角三角形ABC中,斜边为BC,两直角边分别为AB,AC,设BC=a,AC=b,AB=c.(1)试用所学知识说明斜边BC是最长的边;(2)试化简|a-b|+|c-a|+|b+c-a|.参考答案1.【答案】D2.【答案】C3.【答案】垂线段最短4.【答案】A5.【答案】C6.【答案】D解:根据“垂线段最短”可知BC<BD<AB,所以BD大于4 cm且小于6 cm.7.【答案】A8.【答案】BN或AM9.【答案】A解:对于选项A,PQ⊥MN,Q是垂足,故线段PQ的长为点P到直线MN 的距离.10.【答案】C解:线段AB的长度可表示点B到AC的距离,线段CA的长度可表示点C到AB的距离,线段AD的长度可表示点A到BC的距离,线段CD 的长度可表示点C到AD的距离,线段BD的长度可表示点B到AD的距离,所以共有5条.11.【答案】B12.【答案】D13.【答案】A解:因为AB⊥AC,所以点C到直线AB的距离是线段AC的长度,即3 cm.14.错解:B诊断:点到直线的距离是指这个点到直线的垂线段的长度.虽然垂线段最短,但是并没有说明PC是垂线段,所以垂线段的长度可能小于2 cm,也可能等于2 cm.正解:D15.【答案】D16.解:如图:(1)CD即为所求;(2)直线AE即为所求;(3)BF即为所求.长度略.17.解:(1)如图所示.(2)如图所示.(3)PE<PO<FO,其依据是垂线段最短.18.解:如图所示.19.解:(1)如图,连接AD,BC,交于点H,则H点为蓄水池的位置,它到四个村庄的距离之和最小.(2)如图,过点H作HG⊥EF,垂足为G,则沿HG开渠最短.根据:连接直线外一点与直线上各点的所有线段中,垂线段最短.分析:本题考查了垂线段的性质在实际生活中的运用.体现了建模思想的运用.20.解:(1)因为点C与直线AB上点A,B的连线中,CA是垂线段,所以AC<BC.因为点B与直线AC上点A,C的连线中,AB是垂线段,所以AB<BC.故AB,AC,BC中,斜边BC最长.(2)因为BC>AC,AB<BC,AC+AB>BC,所以原式=a-b-(c-a)+b+c-a=a.。
人教版数学七年级下册第五章《相交线》真题同步测试1(含解析)综合考试注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 xx 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释阅卷人一、单选题(每题4分,共40分)得分1.(2022·自贡)如图,直线 AB、CD 相交于点 O ;若 ∠1=30∘ ,则 ∠2 的度数是( )A.30°B.40°C.60°D.150°2.(2019七下·黄骅期末)如图,点O在直线AB上,OC为射线,∠2比∠1的3倍少20°,则∠1的度数为( )A.35°B.45°C.50°D.130°3.(2022·衢州模拟)如图,直线m∥n,则∠α为( )A.70°B.65°C.50°D.40°⊥,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是(4.已知:如图,AB CD)A.相等B.互余C.互补D.互为对顶角⊥于O,且∠COE =50°,则5.(2017七下·北京期中)如图,直线AB、CD相交于点O,EF AB∠BOD等于( )A.40°B.45°C.55°D.65°6.(2022七下·海曙期末)下列说法错误的是( )A.对顶角相等B.同位角相等C.同角的余角相等D.同角的补角相等7.(2022七下·温州期中)如图,∠1与∠2是( )A.对顶角B.同位角C.内错角D.同旁内角8.(2019八上·海口期中)下列命题是真命题的是( )A.直角三角形中两个锐角互补B.相等的角是对顶角C.同旁内角互补,两直线平行D.若 ¿a∨¿∨b∨¿ ,则 a=b 9.(2021七下·桓台期中)如图,将长方形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=34°,则∠BHG等于( )A.73°B.34°C.45°D.30°10.下列语句错误的是( )A.连接两点的线段的长度叫做两点间的距离B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行且相等阅卷人二、填空题(每题4分,共28分)得分11.(2016七下·邹城期中)如图是一把剪刀,其中∠1=40°,则∠2= .12.(2023七下·上海期末)若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3的余角是∠4,若∠4=55°,则∠1= °.∠=80°,则∠AOC= 度.13.(2021七下·九江期中)如图是一把剪刀,若∠AOB+COD⊥,∠AOC=50°,则∠BOE= 14.(2019七下·桂林期末)如图,AB,CD相交于点O,EO CD°.15.(2020七上·绿园期末)如图,直线 AB,CD 相交于点 O , OE⊥AB 于点 O ,且∠COE=48° ,则 ∠AOD 为 .16.(2022七下·崇川期末)如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4对应的邻补角和等于220°,则∠BOD等于 .17.(2021九上·长沙期中)如图,直线a,b被直线c所截,已知a∥b,∠1=130°,则∠2为 度.第Ⅱ卷 主观题第Ⅱ卷的注释阅卷人三、解答题(共82分)得分⊥,已知∠BOD 18.(11分)(2020七上·越城期末)如图,直线AB与直线CD相交于点O,OE AB=45°,求∠COE的度数.19.(10分)如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=28°,求∠BOD 的度数.20.(12分)(2021八下·黄州期末)如图是根据四边形的不稳定性制作的边长为15cm 的可活动菱形衣架.若墙上钉子间的距离AB =BC =15cm ,求∠1的度数.21.(11分)(2021七下·峨山期末)如图,直线AB ,CD ,EF 相交于点O .如果∠BOD =60°,EF 垂直于AB 于点O ,求∠AOD 和∠FOC 的度数.22.(12分)如图,已知AB /¿CD ,FE 平分 ∠GFD ,GF 交AB 于点 M ,∠GMA =52° ,求 ∠BEF 的度数.23.(13分)(2020七下·西吉期末)如图,AB 、CD 相交于点O ,∠A=1∠,∠B=2∠,则∠C= D.∠理由是:∵ ∠A=1∠,∠B=2∠,(已知)且∠1=2∠( ▲ )∴∠A= B.∠(等量代换)∴AC BD ∥( ▲ ).∴∠C=D ∠( ▲ ).24.(13分)(2020七下·太原期中)如图,E 为DF 上的点,B 为AC 上的点,DF AC ∥,∠C =∠D ,判断∠1=∠2是否成立,并说明理由.答案解析部分1.【答案】A【解析】【解答】解:∵直线AB,CD交于点O,∠∠∴1=2=30°.故答案为:A.【分析】利用对顶角相等,可求出∠2的度数.2.【答案】C∠﹣.【解析】【解答】由题意知:∠2=3120°∠,∵∠1+2=180°∠﹣,∴∠1+3120°=180°解得:∠1=50°.故答案为:C.∠﹣、∠1+2=180°∠求解可得.【分析】根据∠2=3120°3.【答案】C【解析】【解答】解:如图:根据邻补角可得:∠1=180°-130°=50°,∵m∥n,∠,∴∠α=1=50°故答案为:C.【分析】由邻补角的定义可得∠1的度数,再根据二直线平行,同位角相等可得∠α的度数. 4.【答案】B∠,选【解析】【分析】依题意知,∠1和∠AOF为对顶角,且∠2和∠AOF互余,所以∠2+1=90°B.【点评】本题难度较低,主要考查学生对对顶角性质和互余知识点的掌握.5.【答案】A⊥于O,∠COE=50°,【解析】【解答】∵EF AB∴∠AOC=90°-50°=40°,∵∠AOC与∠BOD是对顶角,∠;∴∠BOD=AOC=40°故答案为:A.【分析】两直线相交,所形成的的对顶角相等.6.【答案】B【解析】【解答】解:对顶角相等,正确,不符合题意;B、两直线平行,同位角相等,错误,符合题意;C、同角的余角相等,正确,不符合题意;D、同角的补角相等,正确,不符合题意;故答案为:B.【分析】根据对顶角的性质判断A;根据平行线的性质判断B;根据余角或补角的性质判断CD. 7.【答案】C【解析】【解答】解:根据内错角的定义,结合图形可知:∠1与∠2是内错角.故答案为:C.【分析】两条直线被第三条直线c所截,在截线的同旁,且在被截两直线的同一侧的角,我们把这样的两个角称为同位角;两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角.8.【答案】C【解析】【解答】解:A、直角三角形中两个锐角互余,故此选项错误;B、相等的角不一定是对顶角,故此选项错误;C、同旁内角互补,两直线平行,正确;D、若|a|=|b|,则a=±b,故此选项错误;故答案为:C.【分析】A、直角三角形中两个锐角互余,据此判断即可;B、对顶角相等,但相等的角不一定是对顶角,据此判断即可;C、同旁内角互补,两直线平行,据此判断即可;D、若|a|=|b|,则a=±b,据此判断即可.9.【答案】A【解析】【解答】解:∵∠AGE=34°,∴∠DGE=146°,由折叠可得, ∠DGH=∠EGH=12∠DGE=73°,∵AD/¿BC,∴∠BHG=∠DGH=73°.故答案为:A.【分析】先求出 ∠DGE,由折叠可得,∠DGH=∠EGH=12∠DGE,根据平行线的性质可得∠BHG=∠DGH。
人教版七年级数学下册《5.1.1相交线》同步提升训练(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.在同一平面内,三条直线的交点个数不能是( ).A .1个B .2个C .3个D .4个 2.下面四个图中,1∠与2∠是对顶角的是( ) A . B .C .D .3.已知1∠与2∠是邻补角,2∠是3∠的邻补角,那么1∠与3∠的关系是( )A .对顶角B .相等但不是对顶角C .邻补角D .互补但不是邻补角4.如图,直线AB CD ,相交于点O ,2AOD DOE ∠=∠若30BOE ∠=︒,则AOC ∠的度数为( )A .25︒B .30︒C .40︒D .45︒5.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠6.如图115∠=︒,=90AOC ︒∠点B ,O ,D 在同一直线上,则2∠的度数为( )A .95︒B .115︒C .105︒D .165︒7.如图,两条直线AB 与CD 相交于点O ,OE 是射线,则图中共有邻补角和对顶角的数量分别为( )A .6对,2对B .4对,2对C .8对,4对D .4对,4对 8.按下列语句画图:点A 在直线m 上,也在直线n 上,但不在直线c 上,且直线m n c 、、两两相交,下列图形符合题意的是( )A .B .C .D .9.如图,直线,AB CD 相交于点O .若12120∠+∠=︒,3125∠=︒则2∠的度数是( )A .37.5︒B .75︒C .50︒D .65︒二、填空题11.如图,直线a 、b 相交1392∠+∠=︒,则2∠= .12.2∠与1∠互为邻补角,且2∠比1∠的3倍还多20︒,则1∠的度数是 °. 13.如图,直线AB 和CD 相交于点O ,则∠AOC 的邻补角是 .14.如图,CO∠AB ,垂足为O ,∠COE ﹣∠BOD=4°,∠AOE+∠COD=116°,则∠AOD= °.三、解答题15.如图所示,已知65AOF ∠=︒,:2:3∠∠=BOC EOC 计算AOC ∠的大小.16.如图,直线AB ,CD 相交于点O ,OA 是COE ∠的平分线.(1)若92DOE ∠=︒,求BOD ∠的度数;(2)若:7:8COE DOE ∠∠=,求BOD ∠的度数.17.如图,点A O B 、、在同一直线上,射线OD OE 、分别平分,AOC BOC ∠∠.(1)依题意补全图形;(2)DOE ∠度数是________;(3)若130BOC ∠=︒,求AOE ∠的度数.参考答案:1.D2.D3.A4.C5.A6.C7.A8.D9.D10.111.134︒12.4013.∠AOD 和∠BOC14.15015.154AOC ∠=︒16.(1)44BOD ∠=︒;(2)42BOD ∠=︒.17.(1)(2)90°(3)115°。
初中数学同步训练必刷题(人教版七年级下册5.1.1 相交线)一、单选题1.(2022七下·承德期末)下列四个图形中,∠1与∠2是对顶角的是()A.B.C.D.2.(2022七上·南海期中)直线AB和直线CD相交于点O,若∠AOC=40°,则∠BOC等于()A.140°B.60°C.40°D.160°3.(2022七下·崇川期末)如图,直线AB与CD相交于点O,∠AOC:∠AOD=2:3,则∠BOD等于()A.36°B.72°C.60°D.75°(4.(2022九上·南宁开学考)如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOC 的度数是()A.115°B.125°C.135°D.145°5.(2022七下·承德期末)如图,小明手持手电筒照向地面,手电筒发出的光线CO与地面AB形成了两个角,∠BOC=8∠AOC,则∠BOC的度数是()A.160°B.150°C.120°D.20°6.(2022七下·延庆期末)如图,直线AB,CD相交于点O,如果∠1=35°,那么∠2的度数是()A.35°B.55°C.145°D.165°7.(2022七下·钦州期末)如图,直线AB,CD,EO相交于点O,已知OA平分∠EOC,若∠EOC:∠EOD =2:3,则∠BOD的度数为()A.40°B.37°C.36°D.35°8.(2022七下·东明期末)如图,直线AB、CD相交于点O,且∠AOC+∠BOD=110°,则∠AOD的度数为()A.125°B.120°C.110°D.100°9.(2022七下·青县期末)如图,直线AB、CD相交于点O,下列描述一定正确的是()A.∠1和∠2互为对顶角B.∠1和∠3互为邻补角C.∠1=∠2D.∠1=∠310.(2022七下·江油期中)如图,直线AB、CD相交于O,OA平分∠EOC,若∠EOC=70°,那么∠BOD 的度数是()A.30°B.35°C.45°D.40°二、填空题11.(2022七下·五常期末)若∠1和∠2是对顶角,∠1=36°,则∠2的度数是度.12.(2022七下·大连期末)如图,∠1与∠2是对顶角,∠1=α+10°,∠2=40°,则α=°.13.(2022七下·富川期末)如图,直线AB,CD相交于点O,OE是∠AOD的平分线,若∠BOD=40°,则∠COE的度数为.14.(2022七下·榆林期末)若∠1与∠2是对顶角,∠3与∠2互余,且∠3=37∘,则∠1的度数为°. 15.(2022七下·雨花期末)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.若∠AOC=76°,则∠BOF的度数为°.16.(2022七下·义乌开学考)如图,点O 在直线AB 上,过点O 作射线OC,若∠AOC=53°17′28″,则∠BOC 的度数是.17.(2021七下·涿鹿期末)在同一平面内的三条直线,它们的交点个数可能是.18.(2021七下·玉林期末)如图,两直线交于点O,若∠3=3∠2,则∠1的度数是.19.(2021七下·孝义期中)如图是某城市一座古塔底部平面图,在不能进入塔内测量的情况下,学习兴趣小组设计了如图所示的一种测量方案,学习兴趣小组认为测得∠COD的度数就是∠AOB的度数.其中的数学原理是.20.(2021七下·滦南期末)小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC,并将边AC延长至点P,第二步将另一块三角板CDE的直角顶点与三角板ABC的直角顶点C 重合,摆放成如图所示,延长DC至点F,∠PCD与∠ACF就是一组对顶角,若∠ACF=30∘,则∠PCD=,若重叠所成的∠BCE=n∘(0∘<n<90∘),则∠PCF的度数.三、解答题21.(2022七下·中山期末)如图,直线AB,CD相交于点O,OE平分∠BOC,OF∠CD,若∠BOE=72°,求∠AOF的度数.22.(2022七下·韩城期中)如图,直线AB,CD相交于点O,∠BOC=125°,∠AOE=∠BOD,求∠DOE的度数.23.(2022七下·河源期中)如图,直线a,b相交于点O,已知3∠1−∠2=100°,求∠3的度数.24.(2021七下·南沙期中)如图,直线AB、CD、EF相交于点O,OG平分∠COF,∠1=30°,∠2=45°.求∠3的度数.25.(2022七下·黄州期中)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,∠DOF=90°.(1)求∠DOE的度数;(2)求∠EOF的度数.26.(2021七下·瑶海期末)如图,直线AB,CD和EF相交于点O,(1)写出∠AOC,∠BOF的对顶角;(2)如果∠AOC=70°,∠BOF=20°,求∠BOC和∠DOE的度数.27.(2021七下·武昌期中)如图,直线MD、CN相交于点O,OA是∠MOC内的一条射线,OB是∠NOD 内的一条射线,∠MON=70°.(1)若∠BOD=12∠COD,求∠BON的度数;(2)若∠AOD=2∠BOD,∠BOC=3∠AOC,求∠BON的度数.28.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分,(1)直接写出图中∠AOC的对顶角为, ∠BOE的邻补角为;(2)若,且=2:3,求的度数.答案解析部分1.【答案】C【知识点】对顶角及其性质【解析】【解答】解:对顶角指的是有一个公共顶点,并且一个角的两边是另一个角两边的反向延长线的两个角,所以:A 、两角没有公共顶点,不符合题意;B 、两角也是只有一条边互为反向延长线,另一条边没有互为反向延长线,不符合题意;C 、两角有一个公共顶点,并且一个角的两边是另一个角两边的反向延长线的两个角,符合题意;D 、两角只有一条边互为反向延长线,另一条边没有互为反向延长线,不符合题意; 故答案为:C .【分析】有一个公共顶点,并且一个角的两边是另一个角两边的反向延长线的两个角是对顶角,据此逐一判断即可.2.【答案】A 【知识点】邻补角【解析】【解答】解:∵∠AOC=40°,∴∠BOC=180°-∠AOC=180°-40°=140°, 故答案为:A .【分析】利用邻补角求出∠BOC 的度数即可。
寒假预习《5.1.1 相交线》同步测试培优卷精选 2021-2022学年人教版数学七年级下册(含答案)一、精心选一选1. 根据语句“直线1l与直线2l相交,点M在直线1l上,直线2l不经过点M.”画出的图形是()A.B.C.D.2. 下列各图中,∠1和∠2是对顶角的是( )A.B.C.D.3. 如图,对顶角量角器中α∠的度数为()A.120°B.60°C.90°D.50°4. 下面各图中∠1和∠2是对顶角的是()A.B.C .D .5. 如图,直线AB ,CD 交于点O ,射线OM 平分∠AOD ,若∠BOD=760,则∠BOM等于( )A .B .C .D .6. 两条直线相交于一点,则共有对顶角的对数为( )A .1对B .2对C .3对D .4对7. 如图所示,直线AB ,CD 交于点O ,射线OM 平分AOC ∠.若38AOM ∠=︒,则BOC∠等于( )A .104︒B .144︒C .106︒D .136︒8. 如图,直线AB ,CD 相交于点O ,OE AB ⊥,垂足为点O ,若50BOD ∠=︒,则COE∠的度数为( )A .40°B .45°C .50°D .55°9. 下列结论中错误的是( )A .连接两点的线段叫两点之间的距离B .两点之间,线段最短C .同角的补角相等D .两点确定一条直线二、细心填一填10. 如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠BOM 的度数是__.11. 如图是一把剪刀,若∠AOB+∠COD=60°,则∠BOD=____°.12. 如图,直线AB,CD相交于点O,∠EOC=70°,OA平分∠EOC,则∠BOD=________.13. 若∠α=70°,则它的补角是________.14. 如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOD-∠DOB=60°,则∠EOB=___.15. 已知,如图,直线AB、CD相交于O,OE平分∠BOD且∠AOE=150°,∠AOC的度数为______.16. 如图,直线AB、CD相交于点O,135∠=︒,则直线AB与直线CD的夹角是BOC______︒.17. 如图,直线AB和OC相交于点O,∠AOC=100°,则∠1=_______度.18. 如图,直线AB CD 、相交于O 点,OE AB ⊥.(1)2∠和3∠互为___角; 1∠和3∠互为_______角;2∠和4∠互为___角. (2)若125∠=︒,那么2∠=_________;3BOE ∠=∠-∠______=_______︒-____︒=___︒;4∠=∠_____1-∠=__︒-____︒=______︒.三、用心做一做19. 如图,直线AB 、CD 相交于点O ,DOE BOD ∠∠=,OF 平分AOE ∠,20BOD ∠︒=.(1)求AOE ∠的度数;(2)求COF ∠的度数.20. 如图所示,已知∠AOC=160°,OC 平分∠BOD ,OE 平分∠AOD ,求∠BOE 的度数.21. 如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON=20°.求∠AOM 和∠NOC 的度数.22. 如图,已知DM 平分ADC ∠,BM 平分ABC ∠,且27A ∠=︒,33M ∠=︒,求C ∠的度数.23. 已知O 为直线AB 上一点,射线OD 、OC 、OE 位于直线AB 上方,OD 在OE 的左侧,120AOC ∠=︒,DOE α∠=.(1)如图1,70α=︒,当OD 平分AOC ∠时,求EOB ∠的度数.(2)如图2,若2DOC AOD ∠=∠,且80α<︒,求EOB ∠(用α表示). (3)若90α=︒,点F 在射线OB 上,若射线OF 绕点O 顺时针旋转n ︒(0180n <<︒),2FOA AOD ∠=∠,OH 平分EOC ∠,当120FOH ∠=︒时,求n 的值.24. 如图,要测得两堵墙形成的∠AOB 的度数,但人不能进入围墙,请你写出两种不同的测量方法,并说明几何道理.参考答案一、精心选一选1. D【分析】利用直线2l 不经过点M 可判断A ,利用点M 在直线1l 上,不在直线2l 上可判断B ,利用点M 在直线1l 外可判断C ,根据直线1l 与直线2l 相交,点M 在直线1l 上,直线2l 不经过点M 可判断D .【详解】解:A .直线2l 不经过点M ,故本选项不合题意;B .点M 在直线1l 上,不在直线2l 上,故本选项不合题意;C .点M 在直线1l 外,故本选项不合题意;D .直线1l 与直线2l 相交,点M 在直线1l 上,直线2l 不经过点M ,故本选项符合题意;答案:D .【点睛】本题考查根据语句画图问题,掌握画图的基本语句是解题关键. 2. B【分析】根据对顶角的定义对各图形判断即可.【详解】解:A 、∠1和∠2不是对顶角,故选项错误;B 、∠1和∠2是对顶角,故选项正确;C 、∠1和∠2不是对顶角,故选项错误;D 、∠1和∠2不是对顶角,故选项错误.故选B .【点睛】本题考查了对顶角的定义,是基础题,熟记概念并准确识图是解题的关键. 3. B【分析】根据量角器的读数以及的对顶角相等即可求得α∠的度数.【详解】由图可知α∠的对顶角为60︒,根据对顶角相等,则α∠的度数为60︒, 故选B .【点睛】本题考查了量角器的使用,对顶角相等,理解对顶角相等是解题的关键. 4. C【解析】【分析】根据对顶角的定义对各选项分析判断后利用排除法求解.【详解】A 、∠1和∠2不是对顶角,故A 错误;B 、∠1和∠2不是对顶角,故B 错误;C 、∠1和∠2是对顶角,故C 正确;D 、∠1和∠2不是对顶角,是邻补角,故D 错误.故选:C .【点睛】本题考查了对顶角、邻补角,熟记概念并准确识图是解题的关键.5. C【解析】角平分线定义,对顶角的性质,补角的定义.由∠BOD=760,根据对顶角相等的性质,得∠AOC=760,根据补角的定义,得∠BOC=1040.由射线OM 平分∠AOD ,根据角平分线定义,∠COM=380.∴∠BOM=∠COM +∠BOC=1420.故选C .6. B如图,直线AB、CD相交于一点O,图中的∠AOD和∠BOC,∠AOC和∠BOD 是对顶角,共计2对.故选B.7. A【分析】根据2∠的度数,利用平角的定义计算即可.∠=∠AOC AOM计算AOC【详解】∵OM平分AOC∠,38∠=︒,AOM∴∠=∠=⨯︒=︒,AOC AOM223876∴∠=︒-∠=︒-︒=︒.BOC AOC180********故选:A.【点睛】本题考查了角的平分线,平角的定义,熟记角的定义,平角的定义是解题的关键.8. A【分析】根据对顶角相等得到AOC∠的度数.∠,再根据作余角定义,求COE【详解】解:∵50⊥∠=∠=,OE ABAOC BOD︒∴90905040∠=︒-∠=︒-︒=︒,COE AOC故选:A.本题考查了对顶角的性质和互为余角的性质,熟悉相关性质并能进行计算是解题的关键.9. A【分析】根据两点之间的距离,同角的余角或补角相等,两点确定一条直线,线段的性质即可判断.【详解】解:A、连接两点的线段的长度叫两点之间的距离,故错误;B、两点之间,线段最短,故正确;C、同角的补角相等,故正确;D、两点确定一条直线,故正确;故选A.【点睛】本题考查了对余角或补角,直线的性质,线段的性质的理解和运用,知识点有:同角的余角或补角相等,两点确定一条直线,两点之间线段最短二、细心填一填10. 140°【分析】先根据对顶角相等得出∠AOC=80°,再根据角平分线的定义得出∠COM,最后解答即可.【详解】解:∵∠BOD=80°,∴∠AOC=80°,∠COB=100°,∵射线OM是∠AOC的平分线,∴∠COM=40°,∴∠BOM=40°+100°=140°,故答案为:140°.【点睛】此题考查对顶角和角平分线的定义,关键是得出对顶角相等.11. 150【分析】根据对顶角相等得到∠AOB的度数,再根据邻补角的定义即可得出结论.【详解】∵∠AOB=∠COD,∠AOB+∠COD=60°,∴∠AOB=∠COD=30°,∴∠BOD=180°-∠AOB=180°-30°=150°.故答案为150°.【点睛】本题考查了对顶角相等和邻补角的定义.求出∠AOB的度数是解题的关键.12. 35°【详解】试题分析:∵∠EOC=70°,OA平分∠EOC,∴∠AOC=12∠EOC=12×70°=35°,∴∠BOD=∠AOC=35°.故答案为35°.点睛:本题考查了角平分线的定义,对顶角相等的性质,熟记定义并准确识图是解题的关键.13. 110°.【详解】试题分析:根据定义∠α的补角度数是180°﹣70°=110°.故答案是110°.考点:余角和补角.14. 30°【详解】∵∠AOD-∠BOD=60°,∴∠AOD=∠BOD+60°,∵AB为直线,∴∠AOD+∠BOD=∠AOB=180°,∴∠BOD+60°+∠BOD=180°,∴∠BOD=60°,∵OE平分∠BOD,∴∠EOB=30°故答案为: 30°.15. 60°【解析】根据两直线相交,对顶角相等,可推出∠AOC=∠DOB,又根据OE平分∠BOD,x,∠AOE=150°,可求∠AOC.设∠AOC=x, ∠AOD=180°-x,∠DOE=12x,解:设∠AOC=x, ∠AOD=1800-x,∠AOC=∠DOB,OE平分∠BOD,∠DOE=12x=150°,x=60°, ∠AOC=60°∵∠AOE=150°,∴180°-x+ 12故答案为60°“点睛”本题主要考查对顶角的性质以及角平分线的定义,邻补角,解决问题的关键是用方程思想解题.16. 45【分析】先根据邻补角的定义求出∠AOC,再根据直线的夹角为锐角解答.【详解】解:∵∠BOC=135°,∴∠AOC=180°-∠BOC=180°-135°=45°,∴直线AB与直线CD的夹角是45°.故答案为:45.【点睛】本题考查了邻补角的定义,要注意直线的夹角是锐角.17. 80.【解析】试题分析:由邻补角互补,得∠1=180°﹣∠AOC=180°﹣100°=80°,故答案为80.考点:对顶角、邻补角.18. 余余邻补25 2 90 25 65 AOB180 25155根据余角、补角、邻补角、平角的定理计算求解即可.【详解】解:∵OE AB ⊥,∴90AOE EOB ==︒∠∠,∴2390=+︒∠∠,1390∠+∠=︒,∴2∠和3∠互为余角; 1∠和3∠互为余角;∵24180∠+∠=︒且有公共边,∴2∠和4∠互为邻补角;∵125∠=︒,1∠和2∠互为对顶角,∴1225∠=∠=︒,32BOE ∠=∠-∠=90︒-25︒=65︒;4∠=∠AOB 1-∠=180︒-25︒=155︒.故答案为:余;余;邻补;25︒;2;90;25;65;AOB ;180;25;155.【点睛】本题考查的是余角和补角、对顶角和邻补角的概念,如果两个角的和等于90°(直角),就说这两个角互为余角,如果两个角的和等于180°(平角),就说这两个角互为补角.三、用心做一做19. (1)140︒;(2)90︒【分析】(1)因为DOE BOD =∠,求出∠BOE ,得出AOE ∠;(2)利用180COF DOE EOF ∠=︒-∠-∠,从而求出COF ∠的度数.【详解】解:(1)20BOD ∠=︒,DOE BOD ∠=∠,202040BOE ∴∠=︒+︒=︒,18040140AOE ∴∠=︒-︒=︒;(2)20DOE ∠=︒,111407022EOF AOE ∠=∠=⨯︒=︒, 180207090COF ∴∠=︒-︒-︒=︒.本题考查了平角的性质、对顶角、角平分线的性质,解题的关键是根据题意得出各角之间的关系.20. 110°【分析】先利用平角的概念求出∠BOC的度数,然后利用角平分线的定义即可求出∠BOD的度数和∠EOD的度数,最后利用∠BOE=∠EOD+∠BOD即可求解.【详解】∵∠AOC=160°,∠AOC+∠BOC=180°,∴∠BOC=180°-160°=20°.∵OC平分∠BOD,∴∠BOD=2∠BOC=40°.又∵∠AOD+∠BOD=180°,∴∠AOD=180°-40°=140°.∵OE平分∠AOD,∴∠EOD=12∠AOD=70°,∴∠BOE=∠EOD+∠BOD=70°+40°=110°.【点睛】本题主要考查角平分线的定义,平角的定义和角的和与差,掌握角平分线的定义是解题的关键.21. 50AOM︒∠=,140NOC︒∠=.【解析】【分析】要求∠AOM的度数,可先求它的余角.由已知∠EON=20°,结合角平分线的概念,即可求得∠BON.再根据对顶角相等即可求得;要求∠NOC的度数,根据邻补角的定义即可.【详解】解:∵OE平分∠BON,∴∠BON=2∠EON=2×20°=40°,∴∠NOC=180°-∠BON=180°-40°=140°,∠MOC=∠BON=40°,∵AO ⊥BC ,∴∠AOC=90°,∴∠AOM=∠AOC-∠MOC=90°-40°=50°,所以∠NOC=140°,∠AOM=50°. 【点睛】结合图形找出各角之间的关系,利用角平分线的概念,邻补角的定义以及对顶角相等的性质进行计算.22. 39C ∠=︒.【分析】根据角平分线的性质及对顶角相等可求得,2C M A ∠=∠-∠,然后再利用已知条件及角的和差计算求解即可.【详解】解:如图所示:设BC 与MD 的交点为E DM 平分ADC ∠,BM 平分ABC ∠21CDQ ∴∠=∠,22ABQ ∠=∠在CDQ ∆与ABQ ∆中,CQD AQB ∠=∠2122C A ∴∠+∠=∠+∠①在CDE ∆与MBE ∆中,CED MEB ∠=∠12C M ∴∠+∠=∠+∠②用2⨯-②①得:2C M A ∠=∠-∠27A ∠=︒,33M ∠=︒2332739C ∴∠=⨯︒-︒=︒故39C∠=︒【点睛】角平分线的性质及对顶角相等、角的和差计算是本题的考点,根据题意求得2C M A∠=∠-∠是解题的关键.23. (1)50°;(2)140EOBα∠=︒-;(3)168或72.【分析】(1)利用角平分线的定义和邻补角的定义求得∠BOC和∠EOC,再利用角的和差即可求得∠BOE;(2)先根据已知数量关系求得∠DOE,再利用角的和差即可得出结论;(3)设BOF n∠=︒,分①若DOE∠在AOC∠的内部,②当DOE∠在射线OC的两侧时两种情况,利用角的和差列出方程求解即可.【详解】解:(1)∵120AOC∠=︒,OD平分AOC∠,∴60AOD DOC∠=∠=︒,60BOC∠=︒,又70DOEα∠==︒,∴706010COE∠=︒-︒=︒,∴6050BOE COE∠=︒-∠=︒;(2)∵120AOC∠=︒,2DOC AOD∠=∠,∴1403AOD AOC∠=∠=︒,80DOC∠=︒,60BOC∠=︒,∴80EOCα∠=︒-,∴6080140 EOB BOC EOCαα∠=∠+∠=︒+︒-=︒-;(3)①如图,若DOE∠在AOC∠的内部设BOF n∠=︒则依题意有:()11118090222AOD FOA n n ∠=∠=︒-︒=︒-︒, ∵120AOC ∠=︒,90DOE α∠==︒,∴1209030AOD EOC AOC DOE ∠+∠=∠-∠=︒-︒=︒,又∵OH 平分EOC ∠,∴()113022EOH EOC AOD ∠=∠=︒-∠111309030224n n ⎛⎫=︒-︒+︒=︒-︒ ⎪⎝⎭, 又120FOH ∠=︒,∴1118090903012024n n n ︒-︒+︒-︒+︒+︒-︒=︒,∴168n =;②当DOE ∠在射线OC 的两侧时如图设BOF n ∠=︒,则依题意有119022AOD AOF n ∠=∠=︒-︒,∵120AOC ∠=︒,90DOE α∠==︒,∴190120602COE AOD n ∠=∠+︒-︒=︒-︒,又OH 平分EOC ∠,∴113024EOH EOC n ∠=∠=︒-︒,又120FOH ∠=︒,∴1130909012042n n n ⎛⎫︒+︒-︒+︒-︒-︒=︒ ⎪⎝⎭, ∴72n =,∴综上所述OF 顺时针旋转的角度为168或72.【点睛】本题考查邻补角的有关计算,角平分线的有关计算,角的和差,一元一次方程的应用.(3)中能分类讨论画出图形,结合图形利用角的和差列出方程是解题关键.24. 见解析【分析】根据邻补角和对顶角的性质进行设计即可.【详解】方法一:如图所示,延长AO至C,测量∠BOC的度数,根据邻补角的性质得:∠AOB=180°-∠BOC,即可求解;方法二:如图所示,分别延长AO,BO,测量∠COD的度数,根据对顶角相等得:∠AOB=∠COD,即可求解.【点睛】本题考查邻补角和对顶角的实际应用,熟记基本定义和性质并灵活运用是解题关键.。
5.1.1 相交线姓名年级分数B有公共顶点且互补的两个角D有公共顶点且有一条公共边,另一边互为反向延长3•如图,直线AB与CD相交于点O ,若ZAOC+ZBOD=90° ,则ZBOC ()5•如果一个角比它的邻补角小30°,则这个角的度数为______ ° o6.如图,AB交CD于O点,OE是端点为O的一条射线,图中的对顶角有____ 对邻补角各有______ 对一、选择题1 •如图所示,Z1和Z2是对顶角的图形冇(A 135°B 120°C 100°D 145°4题图训是-----A和为180°的两个角C有一条公共边相等的两个角线的两个角ZAOC=80° , Zl=30°,求Z2 的度数 )&如图,直线AB、CD相交于点O,解:因为ZDOB=Z ______ ((己知)所以,ZDOB二__ ° (等量代换)=80°又因为ZI=30°( )所以Z2=Z ___ - Z _____ = ______ - ______ =____ °三、解答题:9.如图,直线AB, CD相交于点O , OE平分ZBOD, OF平分ZCOE, ZAOD: ZAOF的度数。
ZBOE=4:L 求F10.如图所示是某城市古建筑群中一座古塔底部的建筑平面图,请你利用学过的知识设计如何测量出古塔外墙底部的ZABC的大小的方案,并说明理由。
参考答案:1. A2.D3.A4.2 个ZACD ZB5.75°6. 2; 57.35°8. ZAOC,对顶角相等,ZAOC,8()° ,已知ZBOD, Z1, 80° , 30° , 50°9 解:由已知设ZAOD=4x° , ZBOE=x°VOE 平分ZBOD,・*. ZBOD=2ZBOE=2x°VZAOD+ZBOD=180°・\6x=180°x=30°・°・ ZBOE=30° ,・\ZAOD=120°ZBOD=60° ZCOE=150°VOF 平分ZCOE ・•・ ZEOF=- ZCOE=75°2・・・ Z BOF= ZEOF- ZBOE=450ZAOF=ZAOB-ZBOF=135°10.方法一:作AB的延长线,如图1所示,量出ZCBD的度数,ZABC=180° -ZCBD 方法二:作AB和CB的延长线,如图2所示,量I1IZDBE的度数,ZABC=ZDBE我的写字心得体会从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。
5.1 相交线同步测试题班级:_____________姓名:_____________一、选择题(本题共计10 小题,每题3 分,共计30分)1. 在一个平面内,任意三条直线相交,交点的个数最多有()A.7个B.6个C.5个D.3个2. ∠1的对顶角是∠2,∠2的邻补角是∠3,若∠3=45∘,则∠1的度数是()A.45∘B.90∘C.135∘D.45∘或135∘3. 如图,AC⊥BC,AC=4,点D是线段BC上的动点,则A、D两点之间的距离不可能是()A.3.5B.4.5C.5D.5.54. 如图,直线AB,CD相交于点O,且MO⊥ON,若∠NOD=125∘,则∠MOC的度数是()A.25∘B.35∘C.45∘D.30∘5. 如图,直线AB,CD相交于点O,EO⊥AB,垂足为O,若∠COA=30∘,则∠EOD的大小是()A.60∘B.120∘C.130∘D.150∘6. 如图,直角三角形ABC中,∠ACB=90∘,CD⊥AB,则点A到直线CD的距离是线段()的长.A.ABB.CDC.ACD.AD7. 已知∠α=80∘,∠β的两边与∠α的两边分别垂直,则∠β=()A.80∘B.10∘C.100∘D.80∘或100∘8. 如图,P为直线l外一点,A、B、C在l上,且PB⊥l,有下列说法:①PA,PB,PC三条线段中,PB最短;①线段PB的长叫做点P到直线l的距离;①线段AB的长是点A到PB的距离;①线段AC的长是点A到PC的距离.其中正确的个数是()A.1个B.2个C.3个D.4个9. 如图,表示点D到AB所在直线的距离的是()A.线段BE的长度B.线段DE的长度C.线段BED.线段DE10. 如图,与∠α构成同旁内角的角有()A.1个B.2个C.5个D.4个二、填空题(本题共计8 小题,每题3 分,共计24分)11. 如图,在△ABC中,∠C=90∘,则点B到直线AC的距离是线段________.12. 平面内有八条直线,两两相交最多有m个交点,最少有n个交点,则m+n=________.13. 平面内两直线相交有________个交点,两平面相交形成________条直线.14. 如图,与∠1是同位角的角是________,与∠1是内错角的角是________,与∠1是同旁内角的角是________.15. ∠1的对顶角是∠2,∠2的邻补角是∠3,若∠3=35∘,那么∠1=________度.16. 已知直线AB和CD相交于O点,OE⊥AB,∠1=55∘,则∠BOD=________度;若OF平分∠DOB,则∠EOF的度数是________度.17. 如图,已知BA⊥BD,CB⊥CD,AD=8,BC=6,则线段BD长的取值范围是________.18. 已知如图,CD⊥AD于D,BE⊥AC于E.(1)点B到AC的距离是________;(2)线段AD的长度表示________的距离或________的距离.三、解答题(本题共计7 小题,共计66分)19. 如图,∠1=20∘,AO⊥CO,点B,O,D在同一直线上,求∠2的度数.20. 如图,吴老师在黑板上画了一个图形,请你在这个图形中分别找出∠A的所有的同位角、内错角和同旁内角.21. 如图,CD⊥AD,BE⊥AC,AF⊥CF,CD=2cm,BE=1.5cm,AF=4cm,分别求点A、B、C 到直线BC、AC、AB的距离.22. 如图,点A表示小雨家,点B表示小樱家,点C表示小丽家,她们三家恰好组成一个直角三角形,其中AC⊥BC,AC=900米,BC=1200米,AB=1500米.(1)试说出小雨家到街道BC的距离以及小樱家到街道AC的距离.(2)画出表示小丽家到街道AB距离的线段.23. 如图,直线AB,CD,EF相交于点O,∠AOD=160∘,∠BOE=4∠AOC.(1)写出∠AOC,∠AOD的对顶角;(2)求∠BOE的度数;(3)求证:OE平分∠BOC.24. 如图,直线AB,CD相交于点O,OE⊥AB,垂足为O,∠BOD=20∘,求∠COE的度数.25. 同一平面内1条直线把平面分成两个部分(或区域);2条直线最多可将平面分成几个部分?3条直线最多可将平面分成几个部分?4条直线最多可将平面分成几个部分?请分别画出图来.由此可知n条直线最多可将平面分成几个部分?参考答案一、选择题(本题共计10 小题,每题3 分,共计30分)1.【答案】D【解答】解:三条直线相交时,位置关系如图所示:判断可知:最多有3个交点,故选D.2.【答案】C【解答】解:∠1的对顶角是∠2,故∠1=∠2,∠2的邻补角是∠3,则∠2+∠3=180∘,若∠3=45∘,则∠1=∠2=135∘.故选C.3.【答案】A【解答】① AC⊥BC,AC=4,① AD≥AC,即AD≥4.观察选项,只有选项A符合题意.4.【答案】B【解答】解:∵ ∠NOD=125∘,∴ ∠NOC=180∘−125∘=55∘.∵ MO⊥ON,∴ ∠MON=90∘,∴ ∠MOC=∠MON−∠NOC=90∘−55∘=35∘.故选B.5.【答案】B【解答】解:① 直线AB,CD相交于点O,① ∠COA=∠BOD=30∘.① EO⊥AB,① ∠EOB=90∘,① ∠EOD=∠EOB+∠BOD=90∘+30∘=120∘.故选B.6.【答案】D【解答】解:点A到直线CD的距离就是过点A作直线CD的垂线,其垂线段AD的长度可表示距离.故选D.7.【答案】D【解答】解:① β的两边与α的两边分别垂直,① α+β=180∘,故β=100∘,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β= 180∘−100∘=80∘;综上可知:∠β=80∘或100∘,故选:D.8.【答案】C【解答】解:①PB为垂线段,长度最短,正确;①线段PB的长叫做点P到直线l的距离,是定义,正确;①线段AB的长是点A到PB的距离,根据“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”,符合点到直线距离的定义,正确;①线段AC的长是点A到PC的距离,不符合点到直线距离的定义,错误.故选C.9.【答案】B【解答】解:由题意得表示点D到AB所在直线的距离的是线段DE的长度,故选B:.10.【答案】C【解答】解:根据同旁内角的定义可知:与∠α构成同旁内角的角有5个.故选C.二、填空题(本题共计8 小题,每题 3 分,共计24分)11.【答案】BC【解答】如图,三角形ABC中,∠C=90∘,则点B到直线AC的距离是:线段BC.12.【答案】29【解答】根据题意可得:8条直线相交于一点时交点最少,此时交点为1个,即n=1;任意两直线相交都产生一个交点时,交点最多,① 此时交点为:8×(8−1)÷2=28,即m=28;则m+n=28+1=29.13.【答案】1,1【解答】解:在同一平面内,直线相交有只能有一个交点,而平面相交则是一条直线,且只有一条.14.【答案】∠4,∠2,∠5【解答】解:与∠1是同位角的角是∠4,与∠1是内错角的角是∠2,与∠1是同旁内角的角是∠5,故答案为:∠4,∠2,∠5.15.【答案】145.【解答】解:已知①1的对顶角是①2,①2的邻补角是①3,若①3=35°,则①2=180°−①3=145°① ①1=∠2=145°,故答案为145.16.【答案】35,107.5【解答】解:① OE⊥AB,∠1=55∘,① ∠AOC=90∘−∠1=90∘−55∘=35∘,又① ∠BOD=∠AOC,① ∠BOD=35∘;① OE⊥AB,① ∠EOB=90∘,又① OF平分∠DOB,① ∠BOF=12∠DOB=12×35∘=17.5∘,∠EOF=∠EOB+∠BOF=90∘+17.5∘=107.5∘.故答案分别为:35∘;107.5∘.17.【答案】6<BD<8【解答】解:① CB⊥CD,① BD>BC,① BA⊥BD,① BD<AD,① AD=8,BC=6,① 线段BD长的取值范围是6<BD<8;故答案为:6<BD<8.18.【答案】线段BE的长度A、D两点间,A点到DC【解答】解:(1)① BE⊥AC于E,① 点B到AC的距离是线段BD的长度.(2)① AD⊥CD,① 线段AD的长度表示A、D两点间的距离或A点到DC.三、解答题(本题共计7 小题,每题10 分,共计70分)19.【答案】① AO⊥OC,① ∠AOC=90∘,① ∠1=20∘,① ∠BOC=90∘−20∘=70∘,① ∠2=180∘−70∘=110∘.【解答】① AO⊥OC,① ∠AOC=90∘,① ∠1=20∘,① ∠BOC=90∘−20∘=70∘,① ∠2=180∘−70∘=110∘.20.【答案】解:∠A的同位角是:∠ECG,∠BCE.∠A的内错角是:∠ACF.∠A的同旁内角是:∠B,∠ACB,∠ACG.【解答】解:∠A的同位角是:∠ECG,∠BCE.∠A的内错角是:∠ACF.∠A的同旁内角是:∠B,∠ACB,∠ACG.21.【答案】解:点A到直线BC的距离为垂线段AF的长度,是4cm;点B到直线AC的距离为垂线段BE的长度,是1.5cm;点C到直线AB的距离为垂线段CD的长度,是2cm.【解答】解:点A到直线BC的距离为垂线段AF的长度,是4cm;点B到直线AC的距离为垂线段BE的长度,是1.5cm;点C到直线AB的距离为垂线段CD的长度,是2cm.22.【答案】解:(1)① AC=900米,BC=1200米,AB=1500米,① AC⊥BC,① 小雨家到街道BC的距离为:900m,小樱家到街道AC的距离为:1200m;(2)如图所示:CD即为小丽家到街道AB距离.【解答】解:(1)① AC=900米,BC=1200米,AB=1500米,① AC⊥BC,① 小雨家到街道BC的距离为:900m,小樱家到街道AC的距离为:1200m;(2)如图所示:CD即为小丽家到街道AB距离.23.【答案】(1)解:∠AOC的对顶角是∠BOD,∠AOD的对顶角是∠BOC;(2)解:设∠AOC=x∘,则∠BOE=4x∘,① ∠AOC+∠AOD=180∘,① x+160=180,解得:x=20,① ∠BOE=80∘;(3)证明:① ∠AOD=160∘,① ∠BOC=160∘,① ∠BOE=80∘,① ∠COE=160∘−80∘=80∘,① OE平分∠BOC.【解答】(1)解:∠AOC的对顶角是∠BOD,∠AOD的对顶角是∠BOC;(2)解:设∠AOC=x∘,则∠BOE=4x∘,① ∠AOC+∠AOD=180∘,① x+160=180,解得:x=20,① ∠BOE=80∘;(3)证明:① ∠AOD=160∘,① ∠BOC=160∘,① ∠BOE=80∘,① ∠COE=160∘−80∘=80∘,① OE平分∠BOC.24.【答案】解:① AB,CD相交于点O,∠BOD=20∘,① ∠AOC=∠BOD=20∘,① OE⊥AB,① ∠AOE=90∘,① ∠COE=∠AOE−∠AOC−=90−20=70∘.【解答】解:① AB,CD相交于点O,∠BOD=20∘,① ∠AOC=∠BOD=20∘,① OE⊥AB,① ∠AOE=90∘,① ∠COE=∠AOE−∠AOC−=90−20=70∘.25.【答案】解:2条直线最多可将平面分成4个部分,如图:;三条直线最多分成可将平面分成7个部分,如图:;四条直线最多分成可将平面分成11个部分,如图:;n条直线最多分成可将平面分成2+2+3+4+...+n=n(n+1)+1个部分.2【解答】解:2条直线最多可将平面分成4个部分,如图:;三条直线最多分成可将平面分成7个部分,如图:;四条直线最多分成可将平面分成11个部分,如图:;+1个部分.n条直线最多分成可将平面分成2+2+3+4+...+n=n(n+1)2。