矩阵对策的最优纯策略
- 格式:docx
- 大小:207.41 KB
- 文档页数:9
矩阵对策问题及其解法背景对策论研究具有竞争性质的现象。
有权决定⾃⾝⾏为的对策参加者称为局中⼈,所有局中⼈构成集合I,在⼀局对策中可供剧中⼈选择的⼀个实际可⾏的完整的⾏动⽅案成为策略,对于任意剧中⼈i∈I,都有⾃⼰的策略集S i。
⼀局对策中由各剧中⼈选定的策略构成的策略组称为局势s=(s1,...,s n),⽽全体局势集合S=S1×...×S n。
局势决定了对策的结果,对局势s∈S,局中⼈i可以得到收益H i(s),也称为局中⼈i的赢得函数。
矩阵对策即⼆⼈有限零和对策,是⼀类较为简单的对策模型。
矩阵对策基础我们假设,局中⼈ I 有纯策略α1,...,αm,局中⼈ II 有纯策略β1,...,βn,⼆者各选择⼀个纯策略则构成m×n个纯局势 (αi,βj),将 (αi,βj)下 I 的赢得值记为a i,j,设矩阵A=[a i,j],称为 I 的赢得矩阵或 II 的⽀付矩阵。
局中⼈ II 的赢得矩阵就是 −A T。
最优纯策略若纯局势 (a i∗,b j∗) 满⾜max i minj a i,j=minjmaxi a i,j=a i∗,j∗则称为矩阵对策 {S1,S2;A} 的最优纯策略。
显然,最有纯策略在赢得矩阵中对应的元素⼀定满⾜,其是所在⾏的最⼩元素,也是所在列的最⼤元素,即矩阵的鞍点。
混合策略当纯策略不存在时,我们希望给出⼀个选取不同策略的概率分布。
我们记 I,II 的概率分布向量分别为x,y,所有概率分布向量构成的集合为S1,S2,则局中⼈ I 的赢得函数为E(x,y)=x T Ay。
纯策略是混合策略的特例。
若混合局势 (x∗,y∗) 满⾜max x miny E(x,y)=minymaxx E(x,y)=E(x∗,y∗)则称为矩阵对策 {S1,S2;A} 的最优混合策略。
同样,混合策略 (x∗,y∗) 是最有混合策略的充要条件也是 (x∗,y∗) 是函数E(x,y) 的鞍点。
博士研究生入学考试《运筹学》大纲
第一部分考试说明
一、考试性质
《运筹学》是工程管理专业、道路与交通工程专业博士生考试的专业课,是为检验应考者的决策优化管理知识和方法体系而设置的一门考试课程,是保证被录取者具有较好的管理理论基础的课程之一。
课程考试通过的评价标准是以对相关考试要点的深入理解和熟练掌握为尺度的。
二、考试形式与试卷结构
(一)答卷形式
闭卷笔试
(二)答题时间
180分钟
(三)题型比例
概念题10%~20%
计算题80%~90 %
第二部分考试要点
一、线性规划
1.线性规划问题及求解
2.对偶问题
3.灵敏度分析
4.运输问题
5.整数规划(解纯整数规划的割平面法、分枝定界法、0—1型整数规划、指派问题)二、目标规划
1.目标规划模型
2.确定目标的优先顺序
3.解目标规划的单纯形法
4.目标规划的灵敏度分析
三、动态规划
1.动态规划问题的基本概念和基本方法
2.动态规划问题的求解
四、图与网络分析
1.最短路问题
2.网络最大流问题
3.网络计划技术
五、决策论
1.不确定型决策
2.风险决策
3.决策树方法
5.效用与决策
六、对策论
1.矩阵对策的最优纯策略
2.矩阵对策的混合策略
3. 博弈论
七、层次分析法
八、系统评价方法
1.模糊评价法
2.数据包络分析
3.事故树分析法
4.神经网络。
运筹学 期末试卷(A 卷)系别: 工商管理学院 专业: 工商管理 考试日期: 年 月 日姓名: 学号: 成 绩:1.[12分]某公司正在制造两种产品:产品I 和产品II ,每天的产量分别为30个和120个,利润分别为500元/个和400元/个。
公司负责制造的副总经理希望了解是否可以通过改变这种产品的数量而提高公司的利润。
公司各个车间的加工能力和制造单位产品所需的加工工时如下表:(1) 假设生产的全部产品都能销售出去,试建立使公司获利最大的生产计划模型。
(2) 用图解法求出最优解。
P25 No72.[12分] 某超市实行24小时营业,各班次所需服务员和管理人员如下:何安排使得超市用人总数最少?(1) 建立线性规划模型(只建模不求具体解); (2) 写出基于Lindo 软件的源程序(代码)。
3.[10分]设xA ,xB 分别代表购买股票A 和股票B 的数量,f 代表投资风险指数,建立线性规划模型如下: 目标函数:Min f=8x A +3x B约束条件:投资总额120万元 投资回报至少6万购买量非负501001200000A B x x +≤,0A B x x ≥100300000B x ≥5460000A B x x +≥股票B 投资不少于30万元利用教材附带软件进行求解,结果如下:**********************最优解如下************************* 目标函数最优值为 : 62000变量 最优解 相差值 ------- -------- -------- x1 4000 0 x2 10000 0约束 松弛/剩余变量 对偶价格 ------- ------------- -------- 1 0 .057 2 0 -2.167 3 700000 0 目标函数系数范围 :变量 下限 当前值 上限 ------- -------- -------- -------- x1 3.75 8 无上限 x2 无下限 3 6.4 常数项数范围 :约束 下限 当前值 上限------- -------- -------- -------- 1 780000 1200000 1500000 2 48000 60000 102000 3 无下限 300000 1000000试回答下列问题:(1) 在这个最优解中,购买股票A 和股票B 的数量各为多少?这时投资风险是多少?(2) 上述求解结果中松弛/剩余变量的含义是什么?(3) 当目标函数系数在什么范围内变化时,最优购买计划不变?(4) 请对右端常数项范围的上、下限给予具体解释,应如何应用这些数据?(5) 当每单位股票A 的风险指数从8降为6,而每单位股票B 的风险指数从3升为5时,用百分一百法则能否断定其最优解是否发生变化?为什么? 4.[6分]设有矩阵对策},,{21A S S G =,其中,{}112345,,,,S ααααα=,{}212345,,,,S βββββ=2343564132421457346454126A --⎛⎫ ⎪- ⎪ ⎪=-- ⎪-- ⎪ ⎪⎝⎭求矩阵对策的最优纯策略(要求图示)。
§4.2 矩阵对策的基本理论(续)三 混合策略与混合扩充 1. 基本概念在上面的最优纯策略中,能够有最优纯策略的决策问题中存在一个鞍点,也就是必须有max(min )ij jia =)(max min iij ja如果 max(min )ij jia ≠)(max min iij ja那末,对策中双方没有最优纯策略,也就是没有在纯策略中的解,我们把这种对策称为无鞍点的对策。
比如:给定矩阵对策G :G={S 1,S 2,A},其中S 1={a 1, a 2 },S 2={β1,β2},1342A ⎛⎫= ⎪⎝⎭可知 )min (max ij jia =2 )(max min iij ja =3所以 )min (max ij jia ≠)(max min iij ja注:在齐王塞马的例子中也是没有鞍点。
在这种情况下,局中人应如何选择纯策略参加对策呢?这就需要估计选取各个策略可能性的大小来进行对策,或者说,用多大概率选取各个纯策略。
我们把每一个局中人用一定的概率选取纯策略来参加的对策称为混合策略。
例如上面的例子:假定:局中人甲以概率x 选取纯策略a 1;以概率1—x 选取纯策略a 2 局中人乙以概率y 选取纯策略β1;以概率1—y 选取纯策略β2⎪⎪⎭⎫⎝⎛--2431)1()()1()(2121x a x a y y ββ于是对局中人甲来说,他的期望赢得便是E (x , y ) =)1)(1(2)1(4)1(3y x y x y x xy --+-+-+ =224+++-y x xy=2/5)4/1)(2/1(4+---y x由此可见:当x =1/2时,即局中人甲以50% 的概率选纯策略a 1参加对策,他的赢得期望至少是5/2,但它不能保证超过5/2,因为当局中人乙取y =1/4时,会控制局中人甲不超过5/2。
因此5/2是局中人甲赢得的期望值。
同样,局中人乙取y =1/4时,才能保证他的支出不多于5/2.。
《管理运筹学》课程教学大纲【课程编码】181****0016【课程类别】专业必修课程【学时学分】36学时,2学分【适用专业】物流管理专业一、课程性质和目标课程性质:本课程是为物流管理专业本科生开设的专业必修课程。
管理运筹学是管理科学的重要分支。
主要内容包括线性规划、整数规划、运输问题、图论、网络计划技术、存储论、对策论、决策分析等内容。
课程目标:通过本课程的教学达成如下教学目的:1.使学生系统掌握若干运筹学的重要模型和基本分析方法,并理解它们所包含的优化决策思想。
2.使学生了解管理工作中使用运筹学模型和数量分析方法对于解决实际问题和提高效益所起的作用。
3.能初步运用运筹学方法分析和解决实际问题,培养和提高学生解决实际问题的能力。
其中,课程目标1.达成《物流管理专业人才培养方案》中的基本规格1.2.3;课程目标2达成《物流管理专业人才培养方案》中的基本规格4.5;课程目标3达成《物流管理专业人才培养方案》中的基本规格6.二、教学内容、要求和学时分配(一)第一章绪论2学时(理论讲授)教学内容:1.运筹学2.管理决策与管理运筹学教学要求:1.了解运筹学的产生和发展2.了解运筹学的主要内容3.了解运筹学在管理中的应用重点:运筹学的主要内容难点:运筹学在管理中的应用其它教学环节:结合课后习题讲解,进一步了解运筹学、管理决策及管理运筹学的应用。
(二)第二章线性规划3学时(理论讲授)教学内容:1线性规划概述2.线性规划的数学模型3.线性规划问题的图解法4.图解法的灵敏度分析教学要求:1掌握线性规划的数学模型5.掌握线性规划问题的图解方法6.掌握图解法的灵敏度分析方法重点:1线性规划的数学模型7.线性规划问题的图解方法难点:线性规划的图解法的灵敏度分析其它教学环节:结合课后习题讲解,进一步理解掌握线性规划的数学模型及其图解方法(三)第三章线性规划问题的单纯形法3学时(理论讲授)教学内容:1.一般最大值问题的求解法2.一般最小值问题的求解法3.线性规划应用示例教学要求:1.掌握一般最大值问题的求解法2.掌握一般最小值问题的求解法重点:一般最大值问题、最小值问题的求解法难点:线性规划应用其它教学环节:结合课后习题讲解,进一步理解掌握线性规划问题的单纯形法(四)第四章整数规划4学时(理论讲授)教学内容:1.整数规划的图解法2.整数规划的分枝定界法3.整数规划的应用教学要求:1理解整数规划的分枝定界法4.掌握整数规划的图解法重点:整数规划的图解法难点:如何用整数规划的图解法和分枝定界法求解实际问题其它教学环节:结合课后习题讲解,进一步理解掌握整体规划的方法(五)第五章运输问题4学时(理论讲授)教学内容:1.运输模型2.运输问题的表上作业法3.运输问题的应用教学要求:1.理解运输问题模型2.理解掌握表上作业法重点:表上作业法难点:利用运输问题解决一些实际问题其它教学环节:结合课后习题讲解,进一步理解掌握整体规划的方法(六)第六章图论4学时(理论讲授)教学内容:1.图的基本概念2.图在管理实践中的应用教学要求:1.理解图的基本概念2.理解图在管理实践中的应用重点:图的概念,中国邮路问题,求图的最小生成树的方法,用标号算法求最大流难点:理解反向弧的概念,寻找流量可增链,会用求最小生成树的方法解决相应的实际问题其它教学环节:结合课后习题讲解,进一步理解掌握图论有关概念和应用(七)第七章网络计划技术4学时(理论讲授)教学内容:1.网络计划技术概述2.网络图的绘制3.网络图时间值的计算4.网络计划优化教学要求:4.了解网络计划技术的概念5.掌握网络图的绘制方法3.理解掌握网络图时间值的计算4.掌握网络计划优化的方法重点:网络图时间值的计算难点:网络计划优化其它教学环节:结合课后习题讲解,进一步理解掌握网络计划技术有关概念和应用(八)第八章存储论4学时(理论讲授)教学内容:1存储2.确定型存储模型3.随机型存储模型教学要求:1.理解存储有关概念2.理解掌握确定型存储模型3.理解掌握随机型存储模型重点:确定型存储模型难点:随机型存储模型其它教学环节:结合课后习题讲解,进一步理解掌握存储论有关概念和应用(九)第九章对策论4学时(理论讲授)教学内容:1对策论的基本概念2.矩阵对策的最优纯策略3.矩阵对策的混合策略教学要求:1了解决策轮的基本概念4.理解矩阵对策的最优纯策略5.掌握矩阵对策的混合策略重点:矩阵对策的最优纯对策难点:矩阵对策的混合策略其它教学环节:结合课后习题讲解,进一步理解掌握对策论有关概念和应用。
,m α,
,
,n β;则分别为
},m α和},n β。
当局中人Ⅰ选定纯策略i α和局中人Ⅱ选定纯策略后,就形成了一个纯局)j ,这样的纯局势共有m n ⨯个。
对任一纯局势赢得值为ij a ,称
12122
212n n m m mn a a a a a ⎤⎥⎥⎥⎥⎦
为局中人Ⅰ的赢得矩阵。
局中人Ⅱ的赢得矩阵就是当局中人Ⅰ,Ⅱ的策略集12,S S 及局中人Ⅰ的赢得矩阵对策也就给定了,记为{}12,,G S S A =。
在齐王赛马的例子中,齐王的赢得矩阵
},
,m α,
},n β,max )
成立,记其值为)成立的纯局势()
,i j αβ**
在纯策略意义下的解(或鞍点)
},m α,},n S β,
1,2,
,,m x ∑1,2,
,,n y ∑分别称为局中人Ⅰ和Ⅱ的混合策略集分别称为局中人Ⅰ和Ⅱ的混合策略(或策略),对
),m x 可设想成当两个局中人多次重复进行对策
12,,
,m ααα的频率。
若只进行一次时对策,混合
对策可设想成局中人Ⅰ对各纯策略的偏爱程度。
求解混合策略的问题有图解法,迭代法、线性方程组法和线性规划法,在。