第十三讲 对策矩阵解法
- 格式:ppt
- 大小:332.00 KB
- 文档页数:91
矩阵对策问题及其解法背景对策论研究具有竞争性质的现象。
有权决定⾃⾝⾏为的对策参加者称为局中⼈,所有局中⼈构成集合I,在⼀局对策中可供剧中⼈选择的⼀个实际可⾏的完整的⾏动⽅案成为策略,对于任意剧中⼈i∈I,都有⾃⼰的策略集S i。
⼀局对策中由各剧中⼈选定的策略构成的策略组称为局势s=(s1,...,s n),⽽全体局势集合S=S1×...×S n。
局势决定了对策的结果,对局势s∈S,局中⼈i可以得到收益H i(s),也称为局中⼈i的赢得函数。
矩阵对策即⼆⼈有限零和对策,是⼀类较为简单的对策模型。
矩阵对策基础我们假设,局中⼈ I 有纯策略α1,...,αm,局中⼈ II 有纯策略β1,...,βn,⼆者各选择⼀个纯策略则构成m×n个纯局势 (αi,βj),将 (αi,βj)下 I 的赢得值记为a i,j,设矩阵A=[a i,j],称为 I 的赢得矩阵或 II 的⽀付矩阵。
局中⼈ II 的赢得矩阵就是 −A T。
最优纯策略若纯局势 (a i∗,b j∗) 满⾜max i minj a i,j=minjmaxi a i,j=a i∗,j∗则称为矩阵对策 {S1,S2;A} 的最优纯策略。
显然,最有纯策略在赢得矩阵中对应的元素⼀定满⾜,其是所在⾏的最⼩元素,也是所在列的最⼤元素,即矩阵的鞍点。
混合策略当纯策略不存在时,我们希望给出⼀个选取不同策略的概率分布。
我们记 I,II 的概率分布向量分别为x,y,所有概率分布向量构成的集合为S1,S2,则局中⼈ I 的赢得函数为E(x,y)=x T Ay。
纯策略是混合策略的特例。
若混合局势 (x∗,y∗) 满⾜max x miny E(x,y)=minymaxx E(x,y)=E(x∗,y∗)则称为矩阵对策 {S1,S2;A} 的最优混合策略。
同样,混合策略 (x∗,y∗) 是最有混合策略的充要条件也是 (x∗,y∗) 是函数E(x,y) 的鞍点。
矩阵分解的常用方法一、矩阵的三角分解定义:如果方阵可分解成一个下三角形矩阵L和上三角形矩阵U的的乘积,则称可作三角分解或LU分解。
定理1:高斯消元过程能够进行到底的充分必要条件是的前n-1个顺序主子式都不为零,即k ≠0,k=1,2,…,n-1。
(1)当条件(1)满足时,有L(n-1)…L(2)L(1)=U。
其中U为上三角形矩阵L(k)=lik=,i=k+1,…,n。
容易得出,detL(k)≠0(k=1,2,…,n-1),故矩阵L(k)可逆,于是有=(L(1))-1(L(2))-1…(L(N-1))-1U。
由于(L(K))-1是下三角形矩阵,故它们的连乘积仍然是下三角矩阵。
令L=(L(1))-1(L(2))-1…(L(N-1))-1=则得=LU。
即分解成一个单位下三角形矩阵L和一个上三角形矩阵U的的乘积。
二、矩阵的QR(正交三角)分解定义:如果实(复)非奇异矩阵能化成正交(酉)矩阵Q 与实(复)非奇异上三角矩阵R的乘积,即=QR,则称上式为的QR分解。
定理2:任何实的非奇异n阶矩阵可以分解成正交矩阵Q 和上三角形矩阵R的乘积,且除去相差一个对角线元素之绝对值等于1的对角矩阵D外,分解成=QR是唯一的。
矩阵QR的分解具体做法如下:令的各列向量依次为α1,α2,…,αn,由于是非奇异的,所以α1,α2,…,αn线性无关,按照施密特正交法正交化得到个标准的正交向量β1,β2,…,βn,且β=bαβ=bα+b22α2β=bα+b2nα2+…+bnnαn这里bij都是常数,且由正交化过程知bii≠0(i=1,2,…,n)写成矩阵形式有(β1,β2,…,βn)=(α1,α2,…,αn)β,即Q=B。
其中B=是上三角矩阵(bii≠0,i=1,2,…,n)。
显然B可逆,而且B=R-1也是上三角矩阵,由于Q的各列标准正交,所以Q 正交矩阵,从而有=QR。
三、矩阵的奇异值分解定理3 (奇异之分解定理)设是一个m×n的矩阵,且r ()=r,则存在m阶酉矩阵U和n阶酉矩阵V,使得UHV=(2),其中?撞=dig(1…r),且1≥2≥…≥r≥0。
,m α,
,
,n β;则分别为
},m α和},n β。
当局中人Ⅰ选定纯策略i α和局中人Ⅱ选定纯策略后,就形成了一个纯局)j ,这样的纯局势共有m n ⨯个。
对任一纯局势赢得值为ij a ,称
12122
212n n m m mn a a a a a ⎤⎥⎥⎥⎥⎦
为局中人Ⅰ的赢得矩阵。
局中人Ⅱ的赢得矩阵就是当局中人Ⅰ,Ⅱ的策略集12,S S 及局中人Ⅰ的赢得矩阵对策也就给定了,记为{}12,,G S S A =。
在齐王赛马的例子中,齐王的赢得矩阵
},
,m α,
},n β,max )
成立,记其值为)成立的纯局势()
,i j αβ**
在纯策略意义下的解(或鞍点)
},m α,},n S β,
1,2,
,,m x ∑1,2,
,,n y ∑分别称为局中人Ⅰ和Ⅱ的混合策略集分别称为局中人Ⅰ和Ⅱ的混合策略(或策略),对
),m x 可设想成当两个局中人多次重复进行对策
12,,
,m ααα的频率。
若只进行一次时对策,混合
对策可设想成局中人Ⅰ对各纯策略的偏爱程度。
求解混合策略的问题有图解法,迭代法、线性方程组法和线性规划法,在。
矩阵方程的解法本文首先介绍了行对称矩阵的定义及性质,利用矩阵的广义逆,奇异值分解,给出了矩阵方程AX=B有行对称解的充分必要条件及有解时通解的表达式;并给出了矩阵方程解集合中与给定矩阵的最佳逼近解的表达式。
最后利用奇异值分解给出了矩阵方程有行对称解的充分必要条件及有解时通解的表达式。
矩阵方程问题是指在满足一定条件的矩阵集合中求矩阵方程的解的问题。
不同的约束条件,不同的矩阵方程,就导致了不同的约束矩阵方程问题。
约束矩阵方程问题在结构设计,参数识别,主成分分析,勘测,遥感,生物学,电学,固体力学,结构动力学,分子光谱学,自动控制理论,振动理论,循环理论等领域都有重要应用。
约束矩阵方程问题的内容非常广泛、约束矩阵方程问题又分为线性约束矩阵方程问题和非线性约束矩阵方程问题、有关线性约束矩阵方程问题的研究成果相当丰富、其中最简单的矩阵方程AX = B是研究最透彻的一类问题、求解线性矩阵方程一般会遇到两种情况:一是当矩阵方程有解时,如何求它的解及最佳逼近;二是当矩阵方程无解时,如何求它的最小二乘解。
对于本文所研究的AX=B、这两类简单矩阵方程,国内外学者已经作了大量研究。
都在相应的文献中对其进行了大量的研究,解决了求此方程的一些约束解和最小二乘解的问题。
自从针对工程应用领域提出了行对称矩阵概念之后,这方面研究已经取得了一些成果,如对行对称矩阵的一些性质,行对称矩阵的QR分解。
本文先对行对称矩阵进行介绍,再将行对称矩阵与约束矩阵方程结合起来,先研究了矩阵方程AX=B有行对称实矩阵解的充要条件,有解时,用奇异值分解及广义逆求出解及最佳逼近。
再对矩阵方程有行对称实矩阵解的充要条件进行了研究,利用奇异值分解得出了有解时的充要条件及解的表达式。
设表示全体n*m阶实矩阵集合,rank(A)表示矩阵A的秩,表示次对角线上元素全为1,其余元素全为0的方阵,即=,显然有成立。
表示n阶正交矩阵全体。
本文要讨论以下问题:问题1 给定矩阵A,B,求实行对称方阵X,使得AX=B。
§2 矩阵对策模型具有竞争或对抗性质的现象称为对策行为。
在对策行为中,各方面要达到自己的目标,必须考虑对手的各种可能行动方案,从而选出对自己的最有利的策略。
在一个对策行为中,有权决定自己的行动方案的对策参加者称为局中人。
一般在一个对策中至少有两个局中人,我们把只有两个局中人的对策称为二人对策,而多于两个局中人的对策称为多人对策。
策略是指在一个对策中,可供局中人采用的实际可行的完整方案。
每个局中人策略的全体集合称为策略集。
每个局中人从自己的策略集中选择一个策略,便构成一个局势。
当局势确定了,则对策的结果就确定了。
对每个局中人而言,就是或胜或负、名次的前或后、财物的收入或支出等等。
这些结果可以用数字来表示,于是我们得到在全部局势集合上的一个实值函数,用它来描述每个局势完结后局中人的得失,这个函数称为赢得函数。
在任一局势中,全体局中人的赢得函数值和等于零时,称为零和对策。
其实,如果每种对策组合的结果是一个和具体对策组合无关的常数,也都可以作为零和对策。
一般二人有限零和对策的赢得函数可用表格形式表示出来,这个表格又可用矩阵A 来表示。
在对策模型G 中,设甲、乙为两个局中人,甲和乙的策略集分别为},,,{211m S ααα =和},,,{212n S βββ =,当甲选定策略i α,而乙选定策略j β时,就有了局势),(j i βα,对此局势局中人甲的赢得函数值为ij a ,我们称n m ij a A ⨯=)(为局中人甲的赢得矩阵。
因此也称G 为一个矩阵对策,记为};,{21A S S G =。
为了不和后面的有关概念混淆,以后称策略为纯策略,称局势为纯局势。
对于一个矩阵对策,在什么情况下,对策双方才能选出对自己的最有利的策略?即存在最优纯策略的条件是什么?下面通过一个例子加以阐述。
如果两家电视台可能播放的节目分别为四个、三个、甲台节目收视率(%)如下表所示:表1 甲台节目收视率(%)为获得最大收视率,他们各自会采取什么样的对策呢?分析情况可以用通过下表表示。