计量资料的统计学方法
- 格式:docx
- 大小:15.08 KB
- 文档页数:2
计量资料和计数资料的统计方法计量资料和计数资料是统计学中常见的两种数据类型,它们在统计分析中有着不同的处理方法和应用场景。
本文将分别介绍计量资料和计数资料的统计方法,并探讨其在实际问题中的应用。
一、计量资料的统计方法计量资料是指可以用数值表示的数据,例如身高、体重、温度等。
统计学中常用的计量资料分析方法有描述统计和推断统计。
1. 描述统计描述统计是对收集到的数据进行总结和描述的方法。
常用的描述统计量有平均值、中位数、众数、标准差、方差等。
平均值是计量资料最常用的描述统计量,它可以反映数据的集中趋势。
中位数和众数则可以反映数据的位置和分布情况。
标准差和方差则可以衡量数据的离散程度。
2. 推断统计推断统计是基于样本数据对总体进行推断的方法。
在推断统计中,常用的统计分析方法有假设检验和置信区间估计。
假设检验用于验证关于总体的某个参数的假设,例如总体均值是否等于某个特定值。
置信区间估计则可以给出总体参数的一个区间估计,例如总体均值的置信区间。
二、计数资料的统计方法计数资料是指不连续的、以计数形式出现的数据,例如人数、次数、事件发生次数等。
计数资料的统计方法主要包括频数分布、列联表分析和卡方检验。
1. 频数分布频数分布是计数资料最常用的分析方法之一,它将数据按照不同的取值进行分类,并统计每个类别的频数。
通过频数分布可以直观地了解数据的分布情况和特征。
2. 列联表分析列联表分析是用于分析两个或多个分类变量之间关系的方法。
通过构建列联表可以清晰地展示不同变量之间的交叉频数,并计算各个格子的期望频数和卡方值。
列联表分析可以帮助我们判断两个变量之间是否存在相关性。
3. 卡方检验卡方检验是用于检验两个或多个分类变量之间是否存在显著差异的统计方法。
卡方检验基于计数资料的频数分布和列联表,通过计算观察频数与期望频数的差异,并进行假设检验来判断变量之间是否独立。
三、计量资料和计数资料的应用计量资料和计数资料在实际问题中具有广泛的应用。
医学统计学计量资料的统计推断主要内容:标准误t 分布总体均数的估计假设检验均数的 t检验、u 检验、方差分析几个重要概念的回顾:计量资料:总体:样本:统计量:参数:统计推断:参数估计、假设检验第一节均数的抽样误差与总体均数的估计欲了解某地2000年正常成年男性血清总胆固醇的平均水平,随机抽取该地200名正常成年男性作为样本。
由于存在个体差异,抽得的样本均数不太可能恰好等于总体均数。
一、均数的抽样误差与标准误一、均数的抽样误差与标准误抽样误差:由于抽样引起的样本统计量与总体参数之间的差异X数理统计推理和中心极限定理表明:1、从正态总体N(??,??2)中,随机抽取例数为n的样本,样本均数??X 也服从正态分布;即使从偏态总体抽样,当n足够大时??X也近似正态分布。
2、从均数为??,标准差为??的正态或偏态总体中抽取例数为n的样本,样本均数??X的总体均数也为??,标准差为X标准误含义:样本均数的标准差计算:(标准误的估计值)注意: X 、S??X均为样本均数的标准误标准误意义:反映抽样误差的大小。
标准误越小,抽样误差越小,用样本均数估计总体均数的可靠性越大。
标准误用途:衡量抽样误差大小估计总体均数可信区间用于假设检验二 t 分布对正态变量样本均数??X做正态变换(u变换):X 常未知而用S??X估计,则为t变换:二、 t 分布t值的分布即为t分布t 分布的曲线:与??有关t分布与标准正态分布的比较1、二者都是单峰分布,以0为中心左右对称2、t分布的峰部较矮而尾部翘得较高说明远侧的t值个数相对较多即尾部面积(概率P值)较大。
当ν逐渐增大时,t分布逐渐逼近标准正态分布,当ν→??时,t分布完全成为标准正态分布t 界值表(附表9-1 )t??/2,??:表示自由度为??,双侧概率P为??时t的界值t分布曲线下面积的规律:中间95%的t值:- t0.05/2,?? ?? t0.05/2,??中间99%的t值:- t0.01/2,?? ?? t0.01/2,??单尾概率:一侧尾部面积双尾概率:双侧尾部面积(1) 自由度(ν)一定时,p与t成反比;(2) 概率(p)一定时,ν与t成反比;三总体均数的估计统计推断:用样本信息推论总体特征。
计量资料得统计描述方法怎样表达一组数据?描述计量资料得常用指标—A 、描述平均水平(中心位置):均数X 、中位数与百分位数、几何均数G 、众数(mode) B 、描述数据得分散程度:标准差、四分位数间距、 变异系数、方差、全距(一)均数mean 与标准差standard deviation1、 (算术)均数X均数就是描述一组计量资料平均水平或集中趋势得指标。
*直接计算公式:12nX X X X X nn+++==∑应用条件:适用于对称分布,特别就是正态分布资料。
2、 中位数(median )M 与百分位数(percentile)A 、中位数M就是将一组观察值从小到大排序后,居于中间位置得那个值或两个中间值得平均值。
应用条件:用于任何分布类型,包括偏态资料、两端数据无界限得资料。
计算:n 为奇数时--1()2n M X+=n 为偶数时--()(1)2212n n M X X +⎛⎫=+ ⎪⎝⎭9人数据:12,13,14, 14, 15, 15, 15, 17, 19天B 、百分位数 就是将N 个观察值从小到大依次排列,再分成100等份,对应于X%位得数值即为第X 百分位数。
中位数就是第百分50位数。
四分位数间距(quartile range)= 第25百分位数(P25)~第75百分位数(P75)。
四分位数间距用于描述偏态资料得分散程度(代替标准差S),包含了全部观察值得一半。
百分位数计算(频数表法):(%)XX XL Xi P L nX f f =+-∑X L :第X 百分位数所在组段下限 L Σf :小于X L 各组段得累计频数X i :第X 百分位数所在组段组距n :总例数 f x :所在组段频数注:有得教材X= r ;L f ∑=C)(天155219===+X X M 8845122221415214.5()M X X X X ⎛⎫==== ⎪⎝⎭+如果只调查了前八位中学生,则:+(+)(+)天例:求频数表得第25、第75百分位数(四分位数间距)组段 频数f 累积频数∑f 56~ 2 2 59~ 5 762~ 12 19 ∑f 25 L 25 65~15 34 P 25在此68~ 25 5971~ 26 85 ∑f 75 L 75 74~19 104 P 75在此77~ 15 119 80~ 10 129 83~851 130合 计130① 确定Px 所在组段:P 25所在得组段:n X %=130×25%=32、5,65~组最终得累积频数=34,32、5落在65~组段内;P 75所在得组段:n X %=130×75%=97、5, 此值落在74~组段 ② 确定Px 所在组段得X L 、X i 、f x 、L Σf ③ P 25=65+3x[(130x25%-19)/15]=65、90P 75=74+3x[(130x75%-85)/19]=74、66四分位数间距=65、90~74、66 (次/分)3、几何均数G (geometric mean)应用:适用于成等比数列得资料,特别就是服从对数正态分布资料。
计量资料的统计学方法
首先,计量资料的统计学方法包括描述统计和推断统计。
描述
统计用于总结和展示数据的特征,包括均值、中位数、标准差、频
数分布等。
这些统计量可以帮助我们了解数据的集中趋势、离散程
度和分布形态。
推断统计则用于从样本数据中推断总体的特征,包
括参数估计和假设检验。
参数估计可以帮助我们对总体参数(如均值、比例)进行估计,而假设检验则可以帮助我们对总体参数的假
设进行检验。
其次,计量资料的统计学方法还包括回归分析和方差分析。
回
归分析用于研究自变量和因变量之间的关系,可以帮助我们预测因
变量的取值。
常见的回归分析包括简单线性回归和多元线性回归。
方差分析则用于比较多个总体均值是否相等,可以帮助我们判断不
同组别之间的差异是否显著。
此外,计量资料的统计学方法还包括相关分析和时间序列分析。
相关分析用于研究两个变量之间的相关关系,可以帮助我们了解它
们之间的相关性强弱和方向。
时间序列分析则用于研究时间序列数
据的特征和规律,包括趋势、季节性和周期性等,可以帮助我们进
行未来的预测和规划。
综上所述,计量资料的统计学方法涵盖了描述统计、推断统计、回归分析、方差分析、相关分析和时间序列分析等多个方面,可以
帮助我们全面深入地理解和解释数据的特征和规律。
在实际应用中,研究者可以根据具体问题的特点和要求选择合适的统计方法进行分
析和解释。