2.计量资料(定量资料)的统计描述资料
- 格式:ppt
- 大小:808.50 KB
- 文档页数:85
第1章绪论医学统计学是一门“运用统计学的原理和方法,研究医学科研中有关数据的收集、整理和分析的应用科学。
1.个体:又称观察单位,是统计研究的最基本单位,也是构成总体的最基本的观察单位。
2.总体:根据研究目的确定的同质观察单位某项指标测量值(观察值)的集合。
分为有限总体(明确规定了空间、时间、人群范围内有限个观察单位)和无限总体(无时间和空间范围的限制)。
反映总体特征的指标为参数,常用小写希腊字母表示。
3.样本:从总体中随机抽取的一部分有代表性的观察单位组成的整体。
(抽样,随机化原则,样本含量)根据样本资料计算出来的相应指标为统计量,常用大写英文字母表示。
4.抽样研究:从总体中随机抽取样本,根据样本信息推断总体特征的方法。
抽样误差是由随机抽样(样本的偶然性)造成的样本指标与总体指标之间、样本指标与样本指标之间的差异。
其根源在于总体中的个体存在变异性。
只要是抽样研究,就一定存在抽样误差,不能用样本的指标直接下结论。
统计分析主要是针对抽样误差而言。
5.变量(一个个体的任意“特征”);资料(变量值的集合),资料类型:①计量资料/定量资料/数值变量资料:表现为数值大小,一般有度量衡单位,又可分为连续型和离散型两类;②计数资料/定性资料/无序分类变量资料/名义变量资料:表现为互补相容的属性或类别,一般无度量衡单位,可分为二分类和多分类;③等级资料/半定量资料/有序分类变量资料:表现为等级大小或属性程度。
各类资料间可相互转化。
①可选分析方法有:t检验、方差分析、相关回归分析等;②可选分析方法有:χ2检验、z检验等;③可选分析方法有:秩和检验、Ridit分析等。
6.误差:实测值与真实值之差。
可分为随机误差(随机测量误差+抽样误差)与非随机误差(系统误差与非系统误差)。
①随机误差:是一类不恒定、随机变化的误差,由多种尚无法控制的因素引起,它是不可避免的;②系统误差:是实验过程中产生的误差,它的值或恒定不变,或遵循一定的变化规律,其产生原因往往是可知的或可以掌握的,它是可以消除或控制的;③非系统误差:又称过失误差,是指在实验过程中由于研究者偶然失误而造成的误差,可以消除。
①②③④⑤第一章绪论1、统计工作的基本步骤:研究设计-搜集资料-整理资料-分析资料设计是整个研究过程中最关键的一环;研究设计是统计工作的基础和关键。
统计推断包括参数估计和假设检验。
2.计量资料(定量资料):是用定量的方法对每一个观察单位的某项指标进行测定所得的资料。
其变量值是定量的,表现为数值大小,一般具有度量衡单位。
可分为离散型变量(如现有子女数、儿童龋齿数、胎次)和连续型变量(身高、体重、血红蛋白)。
计数资料(定性资料、分类资料):是把观察单位按某种属性(性质)或类别进行分组、清点各组观察单位数所得资料。
各观察数值是定性的,一般无度量衡单位。
各属性之间互不相容(只有“阴、阳”性或···)例:性别、职业、血型。
等级资料:是把观察单位按属性程度或等级顺序分组,清点各组观察单位所得资料。
医学领域的三类资料可以相互转换。
3、同质:是指所研究的观察对象具有某些相同的性质或特征。
变异:是同质个体的某项指标之间的差异,即个体变异或个体差异性。
总体:是根据研究目的确定的同质研究对象的全体(或全部同质观察单位)。
观察单位优先的总体称为有限总体;无法确定数量的总体称为无限总体。
样本:从总体中具有代表性的一部分个体。
抽样误差:由随机抽样造成的样本指标与总体指标之间、样本指标与样本指标之间的差异称为抽样误差。
抽样误差的根源在于个体变异,在抽样研究中是不可避免的。
概率(P):是随机事件发生的可能性大小的数值度量。
P=1的事件称为必然事件;P=0的事件为不可能的事件;0<P<1的事件称为随机事件;P≤0.05的随机事件称为小概率事件。
第二章计量资料的统计描述1、频数表和频数分布图的用途:①揭示计量资料的分布类型;②揭示计量资料分布的重要特征——集中趋势与离散趋势;③便于发现特大或特小的可疑值;④作为陈述资料的形式。
例数大时可以频率估计概率;⑤便于资料的进一步统计分析。
2、集中趋势:①(算数)均数:总体均数μ和样本均数x ;用于计量资料的正态分布或近似正态分布资料②几何均数G:应用于对数正态分布或近似正态分布资料,也可用于呈倍数关系的等比资料。
医学统计学笔记一、绪论及基本概念1. 资料类型①计量资料(定量资料、数值变量资料):连续型、离散型②计数资料(定性资料、无序分类变量、名义变量):二分类、多分类③等级资料(半定量资料、有序分类变量)信息量:计量资料>等级资料>计数资料2.误差类型①过失误差:可避免②系统误差:具有明确的方向性,可避免③随机误差:分为随机测量误差和随机抽样误差,没有固定的大小和方向,不可避免3.核心概念参数:u、σ;固定的常数,总体的统计指标,参数大小客观存在,但往往未知。
统计量:X̅,S,P;样本的统计指标,参数附近波动的随机变量。
概率为参数,频率为统计量。
4.医学统计工作的基本步骤:设计、收集资料、整理资料、分析资料二、计量资料的统计描述1.集中趋势的描述a.算术均数,简称均数(mean):主要适用于对称分布或偏度不大的资料,尤其适合正态分布资料。
不能用于开口型资料。
u(总体均数),X(样本均数)。
b.几何均数(geometric mean,G):适用于经对数转换后呈对称分布。
观察值不能为0 、不能同时有正有负。
同一资料算得的几何均数小于算术均数。
c.中位数(median, M)和百分位数(precentile, Px):适用于各种分布类型资料。
当计量资料适合计算均数或几何均数时,不宜用中位数表示其平均水平。
用频数表法计算百分位数时,组距不一定要相等。
P x=L x+i x(n∗x%−∑f L)f xL x:第x百分位数所在组段的下限i x:第x百分位数所在组段的组距f x:第x百分位数所在组段的频数∑f L:第x百分位数所在组段上一组段累计频数d.调和均数(harmonic mean,H):适用于表达呈极严重的正偏态分布资料的平均水平。
计算方法为求倒数的均值后再取其倒数。
SPSS:在Transform中输入公式。
2.离散(dispersion)趋势的描述a.极差(range,R):也称为全距。
b.四分位数间距(quartile range,Q):即统计图中箱子的高度,常用于偏态资料离散度的描述,多与M 合用。