概率统计复习题
- 格式:doc
- 大小:605.50 KB
- 文档页数:5
概率统计综合练习1 一个不透明的口袋内装有材质、重量、大小相同的7个小球,且每个小球的球面上要么只写有数字“08”,要么只写有文字“奥运”.假定每个小球每一次被取出的机会都相同,又知从中摸出2个球都写着“奥运”的概率是71。
现甲、乙两个小朋友做游戏,方法是:不放回从口袋中轮流摸取一个球,甲先取、乙后取,然后甲再取,直到两个小朋友中有1人取得写着文字“奥运”的球时游戏终止,每个球在每一次被取出的机会均相同. (1)求该口袋内装有写着数字“08”的球的个数; (2)求当游戏终止时总球次数不多于3的概率.2设每门高射炮命中飞机的概率为0.6,试求:(1)两门高射炮同时射击一发炮弹而命中飞机的概率;(2)若今有一飞机来犯,问需要多少门高射炮射击,才能以至少99%的概率命中它?3 已知8人组成的抢险小分队中有3名医务人员,将这8人分为A 、B 两组,每组4人. (1)求A 、B 两组中有一组恰有一名医务人员的概率; (2)求A 组中至少有两名医务人员的概率; (3)求A 组中医务人员人数 的分布列.4 甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m 个球,乙袋中共有2m 个球,从甲袋中摸出1个球为红球的概率为25,从乙袋中摸出1个球为红球的概率为2P . (1)若m =10,求甲袋中红球的个数;(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是13,求2P 的值; (3)设2P =15,从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次,求摸出的3个球中恰有2个红球的概率.5 某工厂为了保障安全生产,每月初组织工人参加一次技能测试。
甲、乙两名工人通过每次测试的概率分别是45和34.假设两人参加测试是否通过相互之间没有影响.(1)求甲连续3个月参加技能测试,至少有1次未通过的概率;(2)求甲、乙两人各连续3个月参加技能测试,甲恰好通过2次且乙恰好通过1次的概率;(3)工厂规定:工人连续2次没通过测试,则被撤销上岗资格.求乙恰好参加4次测试后,被撤销上岗资格的概率.6 已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设ξ为取出的4个球中红球的个数,求ξ的分布列.,,,四个不同的岗位服务,每个岗位至少有一名7甲、乙等五名奥运志愿者被随机地分到A B C D志愿者.(Ⅰ)求甲、乙两人同时参加A岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.8 设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
概率统计复习题基本概念题型1.设A ,B 为随机事件,P(A)=0.8,P(A-B)=0.2,求)(AB P .2.设 A 、B 为随机事件, P (A)=0.5,()0.6P B =,P(B A)=0.8,求P(B )A .3. 若()1P B A =,求()P A B -。
4.设工厂A 和工厂B 的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,求该次品属A 生产的概率. 5.设X 和Y 为两个随机变量,且74}0{}0{,73}0,0{=≥=≥=≥≥Y P X P Y X P 求P{max(X, Y)≥0}。
6.已知X~N(150,9),Y~N(100,16), 且X与Y相互独立,设Z=-2X+Y ,求D(Z)。
7. 设DX=16,DY=1,ρXY =0.3,则D (3X- 2Y )。
8.设随机变量X 和Y 独立同分布,记U=X-Y ,V=X+Y ,求UV ρ。
9.设容量n = 10 的样本的观察值为(5,8,7,6,9,8,7,5,9,6),求样本均值和样本方差。
10.设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++-有CY ~2(2)χ,求C 。
11.1216,,,X X X 是来自总体),10(N ~X 的一简单随机样本,设:222218916Z X X Y X X =++=++,求YZ服从何种分布。
综合应用题型1. 设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车来的概率分别为0.3、0.2、0.5,如果他乘火车、轮船、汽车来的话,迟到的概率分别为1/4,1/3,1/12。
(1)求此人迟到的概率;(2)现此人迟到,试推断他乘哪一种交通工具的可能性最大? 解(1)设=B {此人迟到 }=1A {此人乘火车来},=2A {此人乘轮船来 },=3A {此人乘汽车来 })|()()|()()|()()(332211A B p A p A B p A p A B p A p B p ++=183.060111215.0312.0413.0==⨯+⨯+⨯=;(2)111110.3()()(|)94(|)11()()2260P A B P A P B A P A B P B P B ⨯====1146011312.0)()|()()()()|(2222=⨯===B P A B P A P B P B A P B A P 333310.5()()(|)512(|)11()()2260P A B P A P B A P A B P B P B ⨯==== 所以,若此人迟到,则他乘坐火车的可能性最大。
复习题 (A )备用数据:220.990.9950.9950.0050.9952.326,(99) 2.575,(99)66.510,(99)138.987u t u χχ=≈===一、选择题(20分,每题4分,请将你选的答案填在( )内)1、 下列结论哪一个不正确 ( )设A,B 为任意两个事件,则; )(A A B A B -= 若,则A,B 同时发生或A,B 同时不发生; )(B A B =若,且,则; )(C A B ⊂B A ⊂A B =若,则A-B 是不可能事件.)(D A B ⊂2、 设的联合概率函数为(,)X Y Y X012301/81/41/80101/81/41/8则(1)概率等于(13,0)P Y X ≤<≥( ); ; ; .)(A 58)(B 12)(C 34)(D 78(2)的概率函数为Z X Y =+( ))(A Z01234概率1/83/81/41/81/8()B Z1234概率3/81/41/41/8()C Z1234概率1/81/41/43/8()DZ01234概率1/81/41/41/41/83、 如果,,且X 与Y 满足,则必有 2EX <∞2EY <∞()()D X Y D X Y +=-( )X 与Y 独立; X 与Y 不相关; ; .)(A )(B )(C ()0D Y =)(D ()()0D X D Y =4、若,X 和Y 的相关系数,则的协方差()25,()36D X D Y ==,0.4X Y ρ=,X Y (,)Cov X Y 等于( )5; 10; 12; 36.)(A )(B )(C )(D 二、(12分)设X,Y 为随机变量,且,3(0,0)7P X Y ≥≥=4(0)(0)7P X P Y ≥=≥=求(1);(2).(min(,)0)P X Y <(max(,)0)P X Y ≥三、(10分)一个男子在某城市的一条街道遭到背后袭击和抢劫,他断言凶犯是黑人.然而,当调查这一案件的警察在可比较的光照条件下多次重新展现现场情况时,发现受害者正确识别袭击者肤色的概率只有80%,假定凶犯是本地人,而在这个城市人口中90%是白人,10%是黑人,且假定白人和黑人的犯罪率相同,(1)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯确实是黑人的概率是多大?(2)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯是白人的概率是多大?四、(10分)某商业中心有甲、乙两家影城,假设现有1600位观众去这个商业中心的影城看电影,每位观众随机地选择这两家影城中的一家,且各位观众选择哪家影城是相互独立的.问:影城甲至少应该设多少个座位,才能保证因缺少座位而使观众离影城甲而去的概率小于0.01. (要求用中心极限定理求解.)五、(16分)设二维随机变量的联合概率密度函数为),(Y X 2,01(,)0,x y f x y <<<⎧=⎨⎩其它(1)求的边缘密度函数; (2)求条件概率Y X ,(),()X Y f x f y ; 113(0)224P X Y <<<<(3)问:X 与Y 是否相互独立?请说明理由; (4)求的概率密度函数.Z X Y =+()Z f z 六、(14分)某地交通管理部门随机调查了100辆卡车,得到它们在最近一年的行驶里程(单位:100km )的数据,由数据算出,样本标准差.假设卡车12100,,,x x x 145x =24s =一年中行驶里程服从正态分布,分别求出均值和方差的双侧0.99置信区间.),(2σμN μ2σ(请保留小数点后两位有效数字.)七、(18分) 设是取自总体的简单随机样本,总体的密度函数为n X X X ,,,21 X X ,其中为未知参数,.(1),(;)0,e x x ef x θθθθ-+⎧>=⎨⎩其它θ01θ<<(1)求出的极大似然估计;θ(2)记,求参数的极大似然估计;1αθ=α(3)问:在(2)中求到的的极大似然估计是否为的无偏估计?请说明理由.αα复习题(B )备用数据:220.9750.0250.9750.995(2)0.9772,(8) 2.31,(8) 2.18,(8)17.54, 2.575,t u χχΦ=====一、选择题(共20分,每题4分,请将你选的答案填在( )内)1、 下列命题哪一个是正确的?( )若,则;()A ()()0P A P B >>()()P A B P B A <若,则; ()B ()()0P A P B >>()()P A B P B A ≥若,则; )(C ()0P B >()()P A P A B ≥若,则.)(D ()0P B >()()P A B P AB ≤2、已知,,,判断下1()()()2P A P B P C ===1()()()4P AB P AC P BC ===()0P ABC =列结论哪一个是正确的( )事件,,两两不独立,但事件,,相互独立;)(A A B C A B C 事件,,两两独立,同时事件,,相互独立;)(B A B C A B C 事件,,两两独立,但事件,,不相互独立; )(C A B C A B C 事件,,不会同时都发生.)(D A B C 3、 设相互独立,且都服从参数1的指数分布,则当时,的分布12,X X 0x >12min(,)X X函数为()F x ( ); ; ; .)(A 121(1)e ---)(B 21(1)x e ---)(C 2x e )(D 21x e --4、 已知的联合概率函数为(,)X Y Y X12311/61/91/1821/3αβ若,独立,则的值分别为X Y ,αβ( ); ;)(A 12,99αβ==)(B 21,99αβ== ; .)(C 15,1818αβ==)(D 51,1818αβ==5、 设是取自正态总体的样本,已知15,,X X (0,1)N 22212345()()X a X X b X X +-+-服从分布,则这个分布的自由度为(0,0)a b >>2χ2χ ( )5; 4; 3; 2.)(A )(B )(C )(D 二、(12分)已知男性患色盲的概率为0.005,女性患色盲的概率为0.0025,如在某医院参加体检的人群中,有3000个男性,2000个女性,现从这群人中随机地选一人,(1)求此人患有色盲的概率; (2)若经检验此人的确患有色盲,问:此人为男性的概率是多大?三、(12分)设随机变量服从参数为1的指数分布.定义随机变量Y (1)E , 0,1,k Y kX Y k ≤⎧=⎨>⎩1,2.k =(1)求的联合概率函数; (2)分别求的边缘概率函数.12(,)X X 12,X X 四、(10分)有100位学生在实验室测定某种化合物的PH 值,假设各人测量都是独立进行的,每人得到的测定结果服从相同的分布,且这个相同分布的期望为5,方差为4,设表示第ii X 位学生的测定结果,,,求 .(要求用中心极1,,100i = 10011100i i X X ==∑(4.6 5.4)P X <<限定理求解.)五、(16分) 设二维随机变量的联合概率密度函数为),(Y X 1,01,02(,)0,x y x f x y <<<<⎧=⎨⎩且其它求(1)的边缘密度函数; (2)的概率密度函数;Y X ,(),()X Y f x f y 21Z X =+()Z f z (3); (4). (2)(2)E X Y D X Y --和11()22P Y X ≤≤六、(14分)某医生为研究铅中毒患者与正常成年人的脉搏数的关系,他随机调查了9例患者,测得其脉搏数分别为,并由此算出. 设铅中毒患者129,,,x x x 99211675,50657ii i i xx ====∑∑的脉搏数服从正态分布,分别求出均值和标准差的置信水平0.95的双侧置),(2σμN μσ信区间.(请保留小数点后两位有效数字.)七、(16分) 设是取自总体的简单随机样本,总体的概率密度函数为n X X X ,,,21 X X ,其中是未知参数,。
概率统计复习题word版.概率论与数理统计1.从⼀批产品中随机抽两次,每次抽1件.以A 表⽰事件“两次都抽得正品”,B 表⽰事件“⾄少抽得⼀件次品”,则下列关系式中正确的是().A.A B ? B.B A ? C.A B=D.A B =2.设1()()2P A P B ==,则下列结论⼀定正确的是().A.1()4P AB =B.()1P A B +=C.1()2P AB =D.()(P A B P AB =3.抛掷3枚均匀对称的硬币,恰好有两枚正⾯向上的概率是().A.0.125B.0.25C.0.375D.0.54.某⼈连续向⼀⽬标射击,每次命中⽬标的概率为34,他连续射击直到命中为⽌,则射击次数为5的概率是。
5.设某试验成功的概率为p,独⽴地做5次该试验,成功3次的概率为6.设()0.4,P A =()0.3,P B =()0.5,P(A-B)=?P A B ?=求7.每次试验成功率为p(010.⼈们为了解⼀只股票未来⼀定时期内的价格变化,往往会去分析影响股票价格的基本因素,⽐如利率的变化。
现假设⼈们经分析估计利率下调的概率为60%,利率不变的概率为40%。
根据经验,⼈们估计,在利率下调的情况下,该只股票的价格上涨的概率为80%,在利率不变的情况下,其价格上涨的概率为40%,求该只股票将上涨的概率。
11.盒中有3个新球、1个旧球,第⼀次使⽤时从中随机取⼀个,⽤后放回,第⼆次使⽤时从中随机取两个,事件A表⽰“第⼆次取到的全是新球”,求P(A).12.随机地掷⼀颗骰⼦,连续6次,求:(1)恰有⼀次出现“6点”的概率;(2)⾄少有⼀次出现“6点”的概率。
13.设⼀本书的各页的印刷错误个数X服从泊松分布,已知有⼀个和两个印刷错误的页数相同,求随意抽查3页中⽆印刷错误的概率.14.设A、B为两个随机事件,0()1P B<<(|)(|)P A B P A B=且证明事件A与B相互独⽴.15.已知:1234,,,A A A A (1,2,3,4)i A A i ?=三个事件都满⾜证明:1234()()()()()3P A P A P A P A P A ≥+++-第⼆章随机变量及其概率分布1.设随机变量1~(3,3X B 则{1}P X ≥=2.任何⼀个连续型随机变量的概率密度()f x ⼀定满⾜()A.在定义域内单调不减B.0()1f x ≤≤C.()1f x dx +∞-∞=?D.lim ()1x f x →+∞=3.设离散型随机变量X 的概率分布为求C ?4.若(),2,1~2N X 求()()().4 ;1 ;30>≤<≤X P X P X P 5.设随机变量X的的概率密度为2(3)(),()x f x x +-=-∞<<+∞则Y =()~(0,1)N 6.设随机变量X 的分布律为{},1,2,3,4,515k{}3()P X >=X -101P2C0.4C7.设⼀本书的各页的印刷错误个数X 服从泊松分布,已知有⼀个和两个印刷错误的页数相同,求随意抽查3页中⽆印刷错误的概率p.8.已知随机变量X 的概率密度函数为2,01()0,x x f x <其他求:{1},P X =-{0.5},P X<{3}.P X ≤9.某地抽样调查结果表明,某次统考中,考⽣的数学成绩2σ(百分制)X 服从正态分布N(72,2σ),且96分以上的考⽣占考⽣总数的2.3%。
专题六、概率统计 1、计数原理、二项式定理热点一 两个原理、排列与组合例1、从A ,B ,C ,D ,E 五名学生中选出四名分别参加数学、物理、化学、英语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ).A .24B .48C .72D .120变式训练:1、若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ).A .60种B .63种C .65种D .66种2、现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,则不同取法的种数为( ).A .232B .252C .472D .4843、将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有________种. 热点二 求展开式中的指定项例2、在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项等于_________.变式训练:1、8的展开式中常数项为( ).A .3516B .358C .354D .1052、若1nx x ⎛⎫+ ⎪⎝⎭的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为_________.3、在5212x x ⎛⎫- ⎪⎝⎭的二项展开式中,x 的系数为( ).A .10B .-10C .40D .-40热点三 求展开式中的各项系数的和例3、若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为( ).A .1B .-1C .0D .2变式训练:1、若(2x -1)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 0+a 1+a 2+a 3+a 4+a 5=________.2、若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=__________.课外训练: 一、选择题1 .已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )A .4-B .3-C .2-D .1-2 .用0,1,,9十个数字,可以组成有重复数字的三位数的个数为 ( )A .243B .252C .261D .279 3 .设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m = ( ) A .5 B .6 C .7 D .84 .)()()8411+x y +的展开式中22x y 的系数是 ( )A .56B .84C .112D .1685 .满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .106 . 10(1)x +的二项展开式中的一项是 ( )A .45xB .290xC .3120xD .4252x7 .使得()3nx n N n+⎛+∈ ⎝的展开式中含有常数项的最小的为 ( )A .4B .5C .6D .78 .从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .209 . (x 2-32x )5展开式中的常数项为 ( )A .80B .-80C .40D .-40二、填空题10.二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答) 11.从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).12.从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答)13. 6x⎛⎝ 的二项展开式中的常数项为______.14.设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 15.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =16.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.17.若8x ⎛+ ⎝的展开式中4x 的系数为7,则实数a =______.18.6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).2、概率、统计与统计案例 热点一 随机事件的概率例1、如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O 两两相连构成一个“立体”,记该“立体”的体积为随机变量V (如果选取的3个点与原点在同一个平面内,此时“立体”的体积V =0).则V =0时的概率为_______变式训练:1、从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ).A .49B .13C .29D .192、某游乐场将要举行狙击移动靶比赛.比赛规则是:每位选手可以选择在A 区射击3次或选择在B 区射击2次,在A 区每射中一次得3分,射不中得0分;在B 区每射中一次得2分,射不中得0分.已知参赛选手甲在A 区和B 区每次射中移动靶的概率分别是14和p (0<p <1).若选手甲在A 区射击,则选手甲至少得3分的概率为_________ 热点二 古典概型与几何概型例2、设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ).A .π4B .π-22C .π6 D .4-π4变式训练:1、在长为18 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为( ).A .56B .12C .13D .162、先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X ,Y ,则log 2X Y =1的概率为( ).A .16B .536C .112D .123、如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( ).A .14B .15C .16D .17热点三 统计例3、从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( ).A .x 甲<x 乙,m 甲>m 乙B .x 甲<x 乙,m 甲<m 乙C .x 甲>x 乙,m 甲>m 乙D .x 甲>x 乙,m 甲<m 乙变式训练:1、采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ).A .7B .9C .10D .152、某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人,现采用分层抽样抽取容量为30的样本,则抽取各职称的人数分别为( ).A .5,10,15B .3,9,18C .3,10,17D .5,9,16 3、甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ).A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩不比乙的成绩稳定 热点四 独立性检验例4、为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.两个班同学的成绩(百分制)的茎叶图如图所示:按照大于或等于80分为优秀,80分以下为非优秀统计成绩. (1)根据以上数据完成下面的2×2列联表:(2)能否有95%附:K 2=n (ad -bc )2(a +b )(c变式训练:为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?附:K 2的观测值k =n (ad -bc )(a +b )(c +d )(a +c )(b +d ).课外训练: 一、选择题1、某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是( )A .45B .50C .55D .602、某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为( ) A .11 B .12 C .13 D .14 3、某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 4、如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( ) A .14π-B .12π- C .22π-D .4π5、某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( ) A .588 B .480 C .450 D .120 6、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样7、以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( ) A .2,5B .5,5C .5,8D .8,8二、填空题8、盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是___________(结果用最简分数表示)9、从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示.(I)直方图中x 的值为___________; (II)在这些用户中,用电量落在区间[)100,250内的户数为___________.10、利用计算机产生0~1之间的均匀随机数a,则时间“310a ->”发生的概率为________ 11、从n 个正整数1,2,n …中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________. 12、在区间[]3,3-上随机取一个数x ,使得121x x +--≥成立的概率为______.13、现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为______.三、解答题14、某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.3、随机变量及其分布列热点一 相互独立事件、互斥事件、对立事件及其概率例1、现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分至少1分的概率; (3)求该射手的总得分至多3分的概率.热点二 二项分布及其应用例2、某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.记ξ为射手射击3次后的总得分数,求p(ξ=3)和p(ξ<2).热点三 离散型随机变量的分布列、均值与方差 例3、交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,交通指数取值范围为0~10,分为五个级别,0~2 畅 通;2~4 基本畅通;4~6 轻度拥堵;6~8 中度拥堵;8~10 严重拥堵.早高峰时段,从昆明市交通指挥中心随机1 7 92 0 1 53 0选取了二环以内的50个交通路段,依据其交通指数数据绘制的直方图如右图.(1)据此估计,早高峰二环以内的三个路段至少有一个是严重拥堵的概率是多少?(2)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.课外训练:1、某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y,求3X 的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?2、一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(1) 求取出的4张卡片中, 含有编号为3的卡片的概率.(2) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.3、经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品,以X(单位:t,150≤X)100≤表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内销商该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量X∈,则落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)取105X=的概率等于需求量落入[100,110)的概率),求利润T的数X=,且105学期望.。
概率统计复习题答案1. 随机变量X服从标准正态分布,求P(X > 1.96)。
答案:根据标准正态分布表,P(X > 1.96) = 1 - P(X ≤ 1.96) = 1 - 0.975 = 0.025。
2. 设随机变量X服从二项分布B(n, p),其中n=10,p=0.3,求X的期望E(X)和方差Var(X)。
答案:E(X) = np = 10 × 0.3 = 3,Var(X) = np(1-p) = 10 × 0.3 × 0.7 = 2.1。
3. 某工厂生产的零件寿命服从指数分布,其概率密度函数为f(x) = λe^(-λx),其中λ > 0,求该零件寿命超过1000小时的概率。
答案:P(X > 1000) = ∫(1000, +∞) λe^(-λx) dx = e^(-λ×1000)。
4. 已知随机变量X和Y的联合概率密度函数为f(x, y),求X和Y的协方差Cov(X, Y)。
答案:Cov(X, Y) = E[(X - E(X))(Y - E(Y))] = ∫∫(x -E(X))(y - E(Y))f(x, y) dxdy。
5. 某地区连续三天的降雨量分别为X1, X2, X3,若X1, X2, X3相互独立且都服从正态分布N(μ, σ^2),求三天总降雨量X = X1 + X2 + X3的分布。
答案:X = X1 + X2 + X3,由于X1, X2, X3相互独立且都服从正态分布,根据正态分布的性质,X也服从正态分布,即X ~ N(3μ,3σ^2)。
6. 设随机变量X服从泊松分布,其参数为λ,求X的期望E(X)和方差Var(X)。
答案:对于泊松分布,其期望和方差都等于参数λ,即E(X) = λ,V ar(X) = λ。
7. 某工厂生产的零件合格率为0.95,求在100个零件中至少有90个合格的概率。
答案:设Y为100个零件中合格的零件数,则Y服从二项分布B(100, 0.95)。
CDBAE概率与统计专项训练一、选择题:1、4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .342、调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表: 你认为婴儿的性别与出生时间有关系的把握为( ) A.80% B.90% C.95% D.99%3、在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为( )(A )511 (B )681 (C )3061 (D )40814、某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是( ) A.256625B.192625C.96625D.166255、已知样本7,8,9,,x y 的平均数是8,标准差是2,则xy 的值为( )A、8 B、32 C、60 D、806、把一根匀均匀木棒随机地按任意点拆成两段,则“其中一段的长度大于另一段长度的2倍”的概率为( )(A)23 (B)25 (C)35 (D)137、如图,四边形ABCD 为矩形,3=AB ,1=BC ,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是( ). (A)31 (B)23 (C)25 (D)358.某学生通过计算初级水平测试的概率为21,他连续测试两次, 则恰有1次获得通过的概率为 ( )43.41.21.31.D C B A 9.下面事件①若a 、b ∈R ,则a·b=b·a ;②某人买彩票中奖;③6+3>10;④抛一枚硬币出现正面向上,其中必然事件有 ( ) A .① B .② C .③④ D .①②10.在4次独立重复实验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率的范围是 ( )A .[O .4,1]B .(O ,0.4]C .(O ,0.6]D .[0.6,1)11.设袋中有8个球,其中3个白球,3个红球,2个黑球,除了颜色不同外,其余均相同.若取得1个白球得1分,取得1个红球扣1分,取得一个黑球既不得分,也不扣分,则任摸3个球后的所得总分为正分的概率为( )5623.289.74.5619.D C B A 12.从1、2、3、4、5中随机抽取3个数字(允许重复)组成一个三位数,则和等于9的概率为 ( )12513.12416.12518.12519.D C B A 13.甲、乙两人独立地对同一目标各射击一次,其命中率一分别为0.6和0.5,现已知目标被击中,则它恰是甲射中的概率为 ( )A .0.45B .0.6C .0.65D .0.75 14. 教某气象站天气预报的准确率为80%.则5次预报中至少有4次准确的概率为 ( ) A ,0.2 B .0.41 C .0.74 D .0.6715.有一道试题,A 解决的概率为21,B 解决的概率为31,C 解决的概率为41,则A 、B 、C三人独立解答此题,只有1人解出的概率为 ()31.2417.2411.241.D C B A则两人射击成绩的稳定程度是__________________。
第 1 页概率统计练习题一、选择题1. 设C B A ,,是三个随机事件,则事件“C B A ,,不多于一个发生”的对立事件是( )A .CB A ,,至少有一个发生 B.C B A ,,至少有两个发生 C. C B A ,,都发生 D. C B A ,,不都发生2.如果( )成立,则事件A 与B 互为对立事件。
(其中S 为样本空间)A .AB f = B. A B S =U C. AB A B S fì=ïïíï=ïîU D. 0)(=-B A P 3.设,A B 为两个随机事件,则()P A B ⋃=( ) A .()()P A P B - B. ()()()P A P B P AB -+C. ()()P A P AB - D. ()()()P A P B P AB +-4.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4点的概率为( )。
A .12 B. 23 C. 16 D. 135.设~(1.5,4)X N ,则{24}P X -<<=( )A .0.8543 B. 0.1457 C. 0.3541 D. 0.2543 6.设)4,1(~N X ,则{0 1.6}P X <<=( )。
A .0.3094 B. 0.1457 C. 0.3541 D. 0.2543 7.设2~(,)X N μσ则随着2σ的增大,2{}P X μσ≤-=( )A .增大 B. 减小 C. 不变 D. 无法确定8.设随机变量X 的概率密度21()01x x f x x θ-⎧>=⎨≤⎩,则θ=( )。
A .1 B.12 C. -1 D. 329.设随机变量X 的概率密度为21()01tx x f x x -⎧>=⎨≤⎩,则t =( )A .12 B. 1 C. -1 D. 3210.设连续型随机变量X 的分布函数和密度函数分别为()F x 、()f x ,则下列选项中正确的是( ) A .0()1F x ≤≤ B.0()1f x ≤≤ C. {}()P X x F x == D. {}()P X x f x ==11.若随机变量12Y X X =+,且12,X X 相互独立。
专题训练16统计与概率一、选择题(每小题3分,共24分) 1.下列调查工作需采用的普查方式的是()(A )环保部门对淮河某段水域的水污染情况的调查. (B )电视台对正在播出的电视节目收视率的调查. (C )质检部门对各家生产的电池使用寿命的调查. (D )企业在给职工做工作服前进行的尺寸大小的调查.2.筹建中的安徽芜湖核电站芭茅山厂址位于长江南岸繁昌县狄港镇,距离繁昌县县城约17km ,距离芜湖市区约35km ,距离无为县城约18km ,距离巢湖市区约50km ,距离 铜陵市区约36km ,距离合肥市区约99km .以上这组数据17、35、18、50、36、99 的中位数为( )4.在一个暗箱里放有Q 个除颜色外其它完全相同的球,这Q 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发 现,摸到红球的频率稳定在25%,那么可以推算出Q 大约是()(A ) 18.(B ) 50.3 .下列事件中,必然事件是()(A )中秋节晚上能看到月亮.(C )早晨的太阳从东方升起.(C ) 35.(D ) 35.5.(B )今天考试小明能得满分. (D )明天气温会升高. (A) 12. (B) 9. (C ) 4. (D ) 3.5.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()1v 3 <33超(A ) — .(B ) -兀.(C ) ――^ .(D ) ----- .2 6 9几6.将50个个体编成组号为①④的四个组,如下表:组号 ① ②③ ④统计图,在一片果园中,有不同种类的果树,为了反映某种果树的种10 .有长为2、4、6、8、10的五根木棍,从中任意抽取三根,能构成三角形的概率是 11 .某校学生会调查60名同学体育爱好项目的统计图如图所示,根据图中信息,喜欢各12 .某地湖水在一年中各个月的最高温度和最低温度统计图如图所示.由图可知,全年湖频数 14 1113(A) 24.(B) 0.24.(C) 12.(D) 0.12.7.甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出 的统计图如图所示,则符合这一结果的实验可能是 (A )掷一枚正六面体的骰子,出现1点的概率. (B) 一个袋子中有2个白球和1个红球从中8. 二、 9. 任取一个球,则取到红球的概率. (C )抛一枚硬币,出现正面的概率.(D )任意写一个整数,它能被2整除的概率.在—2, — 1, 0, 1, 2中任取一个数 2 (C) 5填空题(每小题3分,共18分) 反映某种股票涨跌情况,应选用40% 30% 20% 10%200 400 600 次数 … .2 + x .................... ....恰好使分式___有意义的概率是()4(D) 5(E) 1.统计图;学校统计各年级的总人数应选值面积占整个果园的面积百分比,应选用统计图.那么第③组的频率为(频率(第11题)(第12题) (第13项体育项目的人数极差.水的最低温度是___________ ,温差最大的月份是 __________ .13.如图,数轴上两点A B,在线段AB上任取一点,则点C到表示1的点的距离不大于2的概率是___________ .14.为备站2008年奥运会,教练要判断刘翔100米跨栏成绩是否稳定,对他10次训练成绩进行统计分析,则教练需了解刘翔这10次成绩的.三、解答题(每小题6分,共24分)15.请将表示下列事件的序号按其发生概率的大小标在下图中.A.掷一枚均匀的硬币,正面朝上.B.在分别标有1〜9连续自然数的九张卡片中,随机抽出两张,和大于17.C任意找到两个负数,它们的乘积为正数.D.在某次有奖销售活动中,共准备了1000个抽奖号码,其中设一等将10个,二等将40个,三等将50个,顾I I I I I I I I I I I客摸一次中奖. 0 116.某校学生会生活部长王敏同学随机调查部分同学对食堂伙食的评价,准备绘制成统计图表,现已完成其中的一部分,请你运用统计知识将其他空缺部分逐一补上.食堂伙食意见统计表食堂伙食意见条形统计图食堂伙食意见扇形统计图17.下表是某校九(1)班20名学生某次数学测验的成绩统计表.成绩/分60708090100■人数/人151y(1)若这20名学生的平均成绩为82分,求1和y的值;(2)在(1)的条件下,求这20名学生本次测验成绩的众数与中位数.18.某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.画树形图或列表求下列事件发生的概率.(1)甲、乙、丙三名学生在同一个餐厅用餐;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐.四、解答题(每小题7分,共14分)19.“十•一”七天长假期间,很多同学都和父母一起旅游,下图是班长小明将本班同学出游2天、3天、4天的数据绘制成扇形统计图的一部分:(1)若问一位出游的同学十一期间旅游几天,那么最有可能的回答是 ______ 天;............ ,一」,,3 …… 一、」…八, (2)小明说旅游4天的人数是2天的;,请你通过这一信息,并通过计算将扇形统计4图补充完整.20.在背面图案一样的四张卡片的正面标有数字1、2、3、4,将正面朝上洗匀后抽取一张数字为m,把此卡片放回洗匀后以同样的方式再次抽取一张卡片数字为n .若把m、n作为点的横、纵坐标,求点(m , n)在函数y 2x的图象上的概率.五、解答题(每小题10分,共20分)21 .张明、王成两位同学的10次数学单元自我检测成绩分别如下图所示:(3)根据图表信息,请你对这两位同学各提一条不超过20个字的学习建议.张明同学王成同学1 1 S -1 5 6 7 3 1 W %号 成结/7T sT5 77 m 号(1)完成下表:(2)如果将90分以上(含90分)的成绩视为优秀,则获得优秀次数较多的同学22. A、B、C三个工程队共修建一段长240km的公路,图中分别反映了每个工程队的工程比例及每月完成公路的进度.(1)根据图中的信息,求出每个工程队的工程量;(2)若B队9个月的工程量与A队6个月的工程量相同,求a的的值;(3)在(2)的条件下,同时开工,完成全部工程需要几个月时间.参考答案一、选择题1. D2. D3. C4. A5. C6. B7. B8. C 二、填空题29.折线,条形,扇形10. 0.3 11. 25名12. 22℃, 9月份13. 3 14.方差 三、解答题15 . P (A )=0.5, P (B )=0, P (C )=1, P (D )=0.1,图略.16 .一般:20,好:(10+20+120);(1—50%)X 50% = 50,条形、扇形统计图略. 17 . (1) X + J = 12, 8 X + 9 J = 103,解得了 = 5, J = 7; (2) 90 分,80 分. 18 .树形图或列表如图所示:(1) P (甲、乙、丙三名学生在同一餐厅用餐)=1.47 (2) P (甲、乙、丙三名学生中至少有一人在B 餐厅用餐)=-. 8四、解答题19. (1) 3; (2)人数是2天的百分比为20%,人数是4天的百分比为15%,图略. 20. 点(m , n )共有16种情况,而在函数J = 2X 图象上的点有(1, 2) (2, 4)两种,丙 ABABABAB甲 A A A A B B B B 乙 A A BB A A B B 丙 A B AB A B AB-8所以点(m , n )在函数J = 2X图象上的概率为0.125.五、解答题21. (1)平均成绩均为80分,张明的方差为60分2,王成的中位数为85分,众数为90分;(2)王成;(3)王成的学习要持之以恒,保持稳定;张明的学习还须加油,提高优秀率(答案不唯一,只有你的建议合理即可).22. (1) A 工程队的工程量为:35% x 240 = 84, C 工程队的工程量为:45%x 240 = 108 ,B 工程队的工程量为:20% x 240 = 48.(2) 4x 9 = 6a , a = 6.答:三个工程队同时开工需要14个月完成全部工程. (3) T 二 14,手二 12,T = 13.5 .。
第 1 页概率统计练习题一、选择题1. 设C B A ,,是三个随机事件,则事件“C B A ,,不多于一个发生”的对立事件是〔 B 〕A .CB A ,,至少有一个发生 B.C B A ,,至少有两个发生 C. C B A ,,都发生 D. C B A ,,不都发生2.如果〔 C 〕成立,则事件A 与B 互为对立事件。
(其中S 为样本空间)A .ABB. AB S C.AB A BSD. 0)(=-B A P3.设,A B 为两个随机事件,则()P A B ⋃=〔 D 〕 A .()()P A P B - B. ()()()P A P B P AB -+C. ()()P A P AB - D. ()()()P A P B P AB +-4.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4点的概率为〔D 〕。
A .12 B. 23 C. 16 D. 135.设~(1.5,4)X N ,则{24}P X -<<=〔 〕A .0.8543 B. C. D. 6.设)4,1(~N X ,则{0 1.6}P X <<=〔 〕。
A . B. C. D.7.设2~(,)X N μσ则随着2σ的增大,2{}P X μσ≤-=〔 〕A .增大 B. 减小 C. 不变 D. 无法确定8.设随机变量X 的概率密度21()01x x f x x θ-⎧>=⎨≤⎩,则θ=〔 〕。
A .1 B.12 C. -1 D. 329.设随机变量X 的概率密度为21()01tx x f x x -⎧>=⎨≤⎩,则t =〔 〕A .12 B. 1 C. -1 D. 3210.设连续型随机变量X 的分布函数和密度函数分别为()F x 、()f x ,则以下选项中正确的选项是〔 〕 A .0()1F x ≤≤ B.0()1f x ≤≤ C. {}()P X x F x == D. {}()P X x f x ==11.假设随机变量12Y X X =+,且12,X X 相互独立。
~(0,1)i X N 〔1,2i =〕,则〔 〕。
第 2 页A .~(0,1)Y N B. ~(0,2)Y N C. Y 不服从正态分布 D. ~(1,1)Y N 12.设X 的分布函数为()F x ,则21Y X =-的分布函数()G y 为〔 〕A .⎪⎭⎫⎝⎛-2121y F B. ()12+y F C. 1)(2+y F D. ⎪⎭⎫ ⎝⎛+2121y F13.设随机变量1X ,2X 相互独立,1~(0,1)X N ,2~(0,2)X N ,以下结论正确的选项是〔 〕 A .12X X = B.{}121P X X == C. 12()3D X X += D. 以上都不对14.设X 为随机变量,其方差存在,C 为任意非零常数,则以下等式中正确的选项是〔 〕 A .)()(X D C X D =+ B. C X D C X D +=+)()( C. C X D C X D -=-)()( D. )()(X CD CX D =15.设~(01)X N ,,~(11)Y N ,,Y X ,相互独立,令2Z Y X =+,则~Z 〔 〕 A .)5,2(-N B. )5,1(N C. )6,1(N D. )9,2(N 16.对于任意随机变量Y X ,,假设)()()(Y E X E XY E =,则〔 〕A .)()()(Y D X D XY D = B. )()()(Y D X D Y X D +=+ C. Y X ,相互独立 D. Y X ,不相互独立17.设总体()2~,X N μσ,其中μ未知,2σ已知,12,,,n X X X 为一组样本, 以下各项不是..统计量的是〔 〕A .11n i i X X n ==∑ B. 142X X μ+- C. 2211()n i i X X σ=-∑ D. 11()3n i i X X =-∑18设总体X 的数学期望为μ,123,,X X X 是取自于总体X 的简单随机样本,则统计量〔 〕是μ的无偏估计量。
A .123111234X X X ++ B. 123111235X X X ++ C. 123111236X X X ++ D. 123111237X X X ++二、填空题1.设,A B 为互不相容的随机事件,5.0)(,2.0)(==B P A P 则()P AB =2.设有10件产品,其中有2件次品,今从中任取1件为正品的概率是3.袋中装有编号为1,2,3,4,5,6,7的7张卡片,今从袋中任取3张卡片,则所取出的3张卡片中有“6”无“4”的概率为______第 3 页4.设,A B 为互不相容的随机事件,()0.1,()0.7,P A P B ==则()P A B = 5.设,A B 为独立的随机事件,且()0.2,()0.5,P A P B ==则()P AB =6.设随机变量X 的概率密度⎩⎨⎧≤≤=其它,010,1)(x x f 则{}0.3P X >=7.设离散型随机变量X 的分布律为)5,4,3,2,1(,5}{===k akk X P ,则a =__________. 8.设随机变量则()D X = ______________9.设随机变量X 的概率密度660()00.xe xf x x -⎧>=⎨≤⎩ 则}61{>X P =10.设2~(10,0.02)X N ,则{}9.9510.05P X <<= 11.已知随机变量X 的概率密度是2()x f x -=,则()E X = ______12.设()D X =5, ()D Y =8,,X Y 相互独立。
则()D X Y += 13.设()9D X =, ()16D Y =, 0.5XY ρ=,则()D X Y += 三、计算题1.某种电子元件的寿命X 是一个随机变量,其概率密度为21010()010x f x x x ⎧≥⎪=⎨⎪<⎩ 。
某系统含有三个这样的电子元件〔其工作相互独立〕,求:〔1〕在使用150小时内,三个元件都不失效的概率; 〔2〕在使用150小时内,三个元件都失效的概率。
2.有两个口袋。
甲袋中盛有2个白球,1个黑球;乙袋中盛有1个白球,2个黑球。
由甲袋中任取一球放入乙袋,再从乙袋任取一球,问取得白球的概率是多少?3.假设有两箱同种零件,第一箱内装50件,其中10件一等品;第二箱内装30件,其中18件一等品。
现从两箱中随意挑出一箱,然后从该箱中先后随机取两个零件〔取出的零件均不放回〕,试求: 〔1〕第一次取出的零件是一等品的概率;〔2〕在第一次取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的概率。
4.某厂有三台机器生产同一产品,每台机器生产的产品依次..占总量的0.3,0.25,0.45,这三台机器生产的产品的次品率依次..为0.05,0.04,0.02。
现从出厂的产品中取到一件次品,问这件次品是第一台机器生产的概率是多少?5.甲、乙、丙三个工厂生产同一种产品,每个厂的产量分别占总产量的40%,35%,25%,这三个厂的次品率分别为,。
现从三个厂生产的一批产品中任取一件,求恰好取到次品的概率是多少?第 4 页6.设连续型随机变量X 的密度为50()0xke x f x x -⎧>=⎨≤⎩(1)确定常数k ; (2)求{0.3}P X(3)求分布函数()F x .〔4〕求()E X7.设连续型随机变量X 的密度函数为()sin 00A x x f x π<<⎧=⎨⎩其它求:〔1〕系数A 的值 〔2〕X 的分布函数 〔3〕{0}4P X π<<。
8.假设随机变量X 的分布函数为:()arctan (-)F x A B x x =+∞<<+∞ 求:〔1〕系数,A B ;〔2〕X 落在区间〔-1,1〕内的概率;〔3〕X 的密度函数。
9.设某种电子元件的寿命X 服从指数分布,其概率密度函数为10(,)00xex f x y x θθ-⎧>⎪=⎨⎪≤⎩,其中0θ>,求随机变量X 的数学期望和方差。
10.设连续型随机变量X 的概率密度为: (1)01()0kx x x f x -≤≤⎧=⎨⎩其它 1〕求常数k ;2〕设2Y X =,求Y 的概率密度()Y f y ;3〕求()D X11.设连续型随机变量X 的概率密度110()1010x x f x x x +-≤<⎧⎪=-≤≤⎨⎪⎩其它,求(),()E X D X 。
12.设随机变量X 的数学期望()0E X >,且21122E X ⎛⎫-=⎪⎝⎭,11122D X ⎛⎫-= ⎪⎝⎭,求:()E X 13.设随机变量X 和Y 相互独立,且()E X =()E Y =1,()D X =2,()D Y =4,求:2)(Y X E +14.设二维随机变量),(Y X 的概率密度为⎩⎨⎧≤≤=其它01),(22y x y Cx y x f求:〔1〕确定常数C ;〔2〕求边缘概率密度。
15.设二维连续型随机变量),(Y X 的联合概率密度函数为401,01(,)0xy x y f x y <<<<⎧=⎨⎩其它, (1) 求边缘密度函数(),()X Y f x f y ;〔2〕问X 与Y 是否独立?〔3〕求2{}P Y X ≤第 5 页16.设二维随机变量(,)X Y 的联合分布密度26,01(,)0x y x x f x y ⎧<<<<=⎨⎩其它分别求随机变量X 和随机变量Y 的边缘密度函数。
17.设二维连续型随机变量(,)X Y 的联合密度函数为-0,(,)0ye x y xf x y ⎧>>=⎨⎩其他求〔1〕X 、Y 的边缘分布密度;〔2〕问X 与Y 是否独立 18.设二维随机变量(,)X Y 的概率密度为: 4.8(2)0,01(,)0y x y x x f x y -≤≤≤≤⎧=⎨⎩其它求:〔1〕求X 、Y 的边缘概率密度;〔2〕X 与Y 是否独立?19.设总体()~1X B p ,其中p 是未知参数,12345,,,,X X X X X 是总体的样本。
求:(1)假设样本观测值为1,1,0,1,0, 求样本均值和样本方差。
(2) p 的矩估计值。
20.设总体(,)Xb n p ,n 已知,12m X X X 为来自总体的简单随机样本,试求参数p 的矩估计量与最大似然估计量。
21.有一大批袋装食盐。
现从中随机地抽取16袋,称得重量的平均值503.75x =克,样本标准差 6.2022S =。
求总体均值μ的置信度为的置信区间。