2—2熔滴过渡及作用力
- 格式:ppt
- 大小:1.96 MB
- 文档页数:22
二氧化碳电弧焊常用的熔滴过渡方式一、引言二氧化碳电弧焊是一种常见的金属焊接方法,广泛应用于工业生产中。
熔滴过渡方式是二氧化碳电弧焊中一个重要的概念,它对焊接质量和效率都有着重要的影响。
本文将介绍二氧化碳电弧焊常用的熔滴过渡方式。
二、熔滴过渡方式的定义熔滴过渡方式是指在二氧化碳电弧焊中,熔滴从钨极处分离出来后,到达工件表面之前所经历的各种状态和变化过程。
这个过程包括了熔滴形成、脱离、运动、凝固等多个阶段。
三、常用的熔滴过渡方式1. 滴落式滴落式是最基本的熔滴过渡方式,在这种方式下,每个熔滴都会从钨极处逐一分离出来,并在空气中自由落下,直到与工件表面接触并融合为止。
这种方式下,每次只有一个熔滴参与焊接,因此焊接速度较慢。
2. 喷射式喷射式是一种常用的高效熔滴过渡方式。
在这种方式下,电弧能量足够大,可以将熔滴从钨极处喷射出来,并在空气中快速运动到工件表面附近。
这种方式下,多个熔滴可以同时参与焊接,因此焊接速度较快。
3. 桥式桥式是一种介于滴落式和喷射式之间的熔滴过渡方式。
在这种方式下,每个熔滴会从钨极处分离出来,并在空气中自由落下,但是电弧能量足够大,在熔滴接触工件表面之前可以形成一个桥梁状的电弧,在这个电弧中会产生更多的熔化金属,从而加快焊接速度。
4. 转移式转移式是一种特殊的熔滴过渡方式,在这种方式下,每个熔滴不会从钨极处分离出来,而是通过电弧能量和惯性力的作用,在钨极上形成一个薄薄的液态金属层,并随着电弧向前运动。
当液态金属层到达工件表面时,它会融合并形成焊缝。
这种方式下,焊接速度非常快,但是需要精密的电弧控制技术和高质量的钨极。
四、熔滴过渡方式的选择选择哪种熔滴过渡方式应该根据具体的焊接需求来决定。
如果焊接速度要求不高,可以选择滴落式;如果需要高效率的生产,可以选择喷射式或桥式;如果需要最快的焊接速度,则可以选择转移式。
同时,也需要考虑材料、板厚、电流、电压等因素对熔滴过渡方式的影响。
五、总结熔滴过渡方式是二氧化碳电弧焊中一个重要的概念,不同的熔滴过渡方式对焊接质量和效率都有着重要的影响。
[收藏]•自由过渡滴状过渡:这其中又可以分为大滴状过渡和细颗粒过渡两种形式。
大滴状过渡当电弧电流较小和电弧电压较高时,弧长较长,熔滴不易与熔池接触,也就是说这时很难发生短路过渡。
由于电流较小,弧根面积较小,焊丝和熔滴之间的电磁推力以及熔滴和弧根之间的电磁推力很难使熔滴形成缩颈,而斑点压力对熔滴过渡起阻碍作用,因此这时只有依靠重力来抵消表面张力使得熔滴过渡到熔池。
以上为大滴状过渡的描述,具体到各种焊接方法:(1)熔化极气体保护焊DCSP时,无论是用的氩气还是二氧化碳气体,由于阴极斑点压力较大,都会出现大滴状过渡。
(2)二氧化碳气体保护焊时(电流较小时),由于二氧化碳气体高温解离吸热以及很高的导热系数,对电弧有很强的冷却作用。
因而电弧收缩,弧根面积难于扩展,斑点压力较大而有碍熔滴过渡最终形成大滴状过渡。
(DCRP)(3)高电压小电流的MIG和MAG中也是会出现这种过渡形式。
细颗粒过渡这种过渡形式主要出现在二氧化碳气体保护焊中。
随着焊接电流的增加,斑点面积增加,电磁推力增加,斑点压力逐渐有利于熔滴过渡。
这时熔滴过渡的频率增加,熔滴直径相对较小。
这种过渡形式就是细颗粒过渡。
(这时的熔滴直径仍然大于焊丝直径)这种过渡形式在二氧化碳气体保护焊中应用非常广泛,主要针对于中厚板。
注:二氧化碳气体保护焊中存在大滴状过渡,短路过渡以及细颗粒过渡。
但是大滴状过渡很少用。
喷射过渡这种过渡形式又可以分为射滴过渡、射流过渡以及亚射流过渡。
喷射过渡主要出现在氩气或者是富氩气体保护焊中。
射滴过渡这种过渡形式主要出现在钢和铝的MIG焊中。
由于电流较大,弧根面积可以笼罩整个熔滴,熔滴直径接近于焊丝直径。
这时电磁推力和斑点压力都有利于熔滴过渡,阻碍熔滴过渡的只有表面张力。
值得说明的是,这种过渡形式的电流区间是比较窄的,在焊接过程中并没有可以采用这种形式。
射流过渡射流过渡主要出现在钢的大电流的MIG焊中。
其实钢的氩气保护焊或者富氩保护焊中出现的过渡形式有:大滴状过渡、射滴过渡(甚至有学者认为钢的M IG焊中不存在这种形式)、射流过渡。
射流过渡、熔滴过渡、脉冲过渡和短路过渡。
射流过渡、熔滴过渡、脉冲过渡和短路过渡是电弧焊接过程中常见的四种过渡状态。
这些过渡状态对焊接质量和焊接速度都有着重要的影响。
在本文中,我们将详细介绍这四种过渡状态的特点、影响和应对措施。
一、射流过渡射流过渡是电弧焊接过程中最常见的过渡状态之一。
在这种状态下,电弧的能量主要用于将金属表面加热并蒸发,形成一个高温、高速的气流。
这个气流可以将金属表面的氧化物和杂质吹走,从而清洁焊接区域,提高焊缝的质量。
射流过渡的特点是电弧稳定,焊接速度较快,但焊接质量较差。
这是因为在射流过渡状态下,电弧的能量主要用于加热和蒸发金属表面,而不是用于熔化金属。
因此,焊接区域的温度较低,焊缝的质量也较差。
应对措施:为了提高焊接质量,可以采取以下措施:1.增加电流密度,提高焊接区域的温度,促进金属的熔化。
2.增加焊接速度,减少射流过渡状态的时间,降低气流对焊缝的影响。
3.使用气体保护,减少氧化物和杂质的生成,提高焊缝的质量。
二、熔滴过渡熔滴过渡是电弧焊接过程中另一种常见的过渡状态。
在这种状态下,电弧的能量主要用于熔化金属,形成熔滴。
这些熔滴会从电极上脱落,落在焊缝上,形成焊缝。
熔滴过渡的特点是电弧不稳定,焊接速度较慢,但焊接质量较好。
这是因为在熔滴过渡状态下,电弧的能量主要用于熔化金属,形成熔滴。
这些熔滴可以充分熔化金属,形成均匀的焊缝。
应对措施:为了提高焊接速度,可以采取以下措施:1.减小电流密度,降低焊接区域的温度,减少熔滴的形成。
2.增加焊接速度,减少熔滴过渡状态的时间,提高焊接效率。
3.使用适当的电极直径和电极形状,使电弧稳定,减少熔滴的飞溅。
三、脉冲过渡脉冲过渡是一种特殊的焊接过渡状态。
在这种状态下,电弧的能量以脉冲形式释放,每个脉冲的时间很短,但能量很大。
这种方式可以使焊接区域的温度快速升高,熔化金属,形成焊缝。
脉冲过渡的特点是焊接速度快,焊接质量好,但需要特殊的焊接设备和技术。
co2气体保护焊熔滴过渡形式CO2气体保护焊是一种常用的焊接方法,它利用CO2气体来保护焊接熔滴和熔池,以达到焊接质量的要求。
本文将详细介绍CO2气体保护焊的熔滴过渡形式及其特点。
我们来了解一下焊接熔滴过渡的概念。
焊接熔滴过渡是指焊接过程中,从熔池中逸出的熔滴在自由状态下向焊缝移动的过程。
焊接熔滴过渡形式有两种,一种是滴落传递式过渡,另一种是喷射式过渡。
CO2气体保护焊的滴落传递式过渡是指焊接熔滴从熔池中逸出后,受到惯性力的作用,沿着焊缝方向滴落到工件表面。
在这个过程中,CO2气体通过喷嘴向熔滴周围喷射,形成一层保护气氛,防止熔滴与空气接触,避免氧化反应的发生。
CO2气体还能吹扫熔滴周围的杂质和气泡,使焊缝更加纯净。
CO2气体保护焊的喷射式过渡是指焊接熔滴从熔池中逸出后,受到气体流动力的作用,被喷射到焊缝上。
这种过渡形式的特点是焊接熔滴喷射速度较快,能够有效地填充焊缝,提高焊接效率。
同时,CO2气体的喷射也能够将熔滴周围的杂质和气泡冲刷掉,确保焊缝的质量。
CO2气体保护焊的熔滴过渡形式具有以下几个特点:1. 熔滴过渡形式可根据不同的焊接要求进行调整。
在滴落传递式过渡中,可以通过调整CO2气体喷射的角度和流量来控制熔滴的滴落速度和喷射方向。
在喷射式过渡中,可以通过调整气体流动的速度和方向来控制熔滴的喷射速度和填充效果。
2. CO2气体的保护作用使焊接熔滴与空气隔离,减少了氧化反应的发生,从而提高了焊缝的质量。
3. CO2气体的喷射作用可以冲刷掉熔滴周围的杂质和气泡,保证焊缝的纯净度。
4. CO2气体的喷射速度和流量可以根据焊接材料和焊接厚度进行调整,以适应不同的焊接要求。
CO2气体保护焊的熔滴过渡形式是滴落传递式和喷射式两种。
滴落传递式过渡通过惯性力使熔滴滴落到焊缝上,喷射式过渡则通过气体流动力将熔滴喷射到焊缝上。
这两种过渡形式都能有效地保护焊接熔滴和熔池,提高焊接质量。
同时,CO2气体的保护和喷射作用还能够冲刷掉熔滴周围的杂质和气泡,确保焊缝的纯净度。
二氧化碳气体保护焊熔滴过渡形式在焊接工艺中,焊接熔滴过渡形式是指焊接过程中焊接熔滴的状态变化过程。
而二氧化碳气体保护焊作为一种常用的焊接方法,其熔滴过渡形式对焊接质量和效率有着重要的影响。
焊接熔滴的过渡形式主要有三种:喷射形式、滴形式和喷射-滴混合形式。
在二氧化碳气体保护焊过程中,焊接熔滴的过渡形式主要是由焊接电弧的热效应和气体保护的作用共同决定的。
喷射形式是指焊接电弧作用下,熔滴被电弧强烈喷射而形成的一种过渡形式。
在二氧化碳气体保护焊过程中,由于二氧化碳气体的喷射作用,焊接熔滴会被迅速喷射出来,形成尖锐的熔滴形状。
这种形式下,熔滴的喷射速度较快,能量较高,焊缝的熔深较大,但焊缝宽度较窄。
滴形式是指焊接熔滴形成一个圆滴并从焊丝上滴落的一种过渡形式。
在二氧化碳气体保护焊过程中,当熔滴从焊丝上滴落时,会形成一个较为圆滑的熔滴。
这种形式下,熔滴的滴落速度较慢,能量较低,焊缝的熔深较浅,但焊缝宽度较宽。
喷射-滴混合形式是指焊接熔滴既具有喷射形式的特点,又具有滴形式的特点的一种过渡形式。
在二氧化碳气体保护焊过程中,焊接熔滴在喷射的同时也会形成一个圆滑的熔滴,并从焊丝上滴落。
这种形式下,熔滴的喷射速度和滴落速度相对平衡,能量适中,焊缝的熔深和宽度也相对均衡。
二氧化碳气体保护焊熔滴过渡形式的选择对焊接质量和效率有着重要的影响。
喷射形式下,由于焊缝宽度较窄,适用于对焊缝宽度要求较高的情况。
滴形式下,由于焊缝宽度较宽,适用于对焊缝宽度要求较低的情况。
而喷射-滴混合形式则可以在熔滴的喷射速度和滴落速度之间取得平衡,适用于对焊缝宽度和熔深都有一定要求的情况。
二氧化碳气体保护焊熔滴过渡形式的选择应根据具体的焊接要求来确定。
不同的过渡形式会对焊缝的宽度和熔深产生不同的影响,从而影响焊接质量和效率。
因此,在进行二氧化碳气体保护焊时,需要根据具体的焊接要求和工件材料特性选择合适的熔滴过渡形式,以保证焊接质量和效率的要求。
气体保护焊熔滴过渡与飞溅的关系孙咸(太原理工大学焊接材料研究所,山西太原030024)摘要:探讨了CO2气体保护焊熔滴过渡与飞溅的关系。
结果表明,存在三种熔滴过渡形态:滴状过渡、短路过渡和混合过渡形态。
三种过渡形态的焊接飞溅形式各异,飞溅产生机理以熔滴内部爆炸和液桥爆炸为主因,影响因素中焊丝成分及电流、电压、极性仍是关键因素。
熔滴过渡形态与飞溅关系的内在联系是熔滴的非轴向性、熔滴尺寸,以及熔滴中的气体含量,三个参数数值高时焊接飞溅大,反之飞溅小。
工程上多种控制熔滴过渡形态与飞溅关系的方案各具特色,其中应用最好的首推CMT工艺,已经为众多企业赢得可观的经济效益。
关键词:焊接飞溅;熔滴过渡;实心焊丝;CO2气体保护焊中图分类号:TG444+.73,TG403文献标志码:A文章编号:1001-2303(2020)02-0006-08 DOI:10.7512/j.issn.1001-2303.2020.02.02本文参考文献引用格式:孙咸.CO2气体保护焊熔滴过渡与飞溅的关系[J].电焊机,2020,50(2):6-13.收稿日期:2019-11-22作者简介:孙咸(1941—),男,教授,主要从事焊接材料及金属焊接性方面的研究和教学工作,对焊接材料软件开发具有丰富经验;获国家科技进步二等奖1项(2000年),省(部)级科技进步一等奖2项,二等奖3项,1992年获国务院颁发的政府特殊津贴,已发表学术论文180多篇。
E-mail:sunxian99@。
0前言CO2气体保护焊虽然存在飞溅大、气孔敏感、氧化性强等缺点,但作为一种先进的高效、自动化焊接工艺方法,多年来在普通钢结构制作中获得了广泛应用,并积累了丰富的经验,其主要原因是该工艺方法操作简便、CO2气体容易获得、价格便宜。
CO2气体保护焊工艺的应用主要采用熔滴短路过渡形态,较少采用滴状过渡形态。
数十年以来,在CO2气体保护焊工艺方面取得了许多进展,涉及短路过渡的文献有之[1],涉及焊接飞溅的文献有之[2],但专题性探讨CO2气体保护焊熔滴过渡与飞溅关系的文献罕见。
co2气体保护焊的熔滴过渡形式CO2气体保护焊是一种常用的焊接方法,它使用CO2气体作为保护气体,以保护熔池免受空气中氧气和水蒸气的侵蚀。
在CO2气体保护焊过程中,焊工需要掌握熔滴过渡形式,以确保焊接质量和效率。
首先,让我们来理解什么是熔滴过渡形式。
在焊接过程中,焊接电弧所产生的热量会使焊接材料(工件和焊丝)熔化,形成熔滴,并通过熔滴的传送与焊件融为一体,从而完成焊接。
而熔滴过渡形式指的是焊接过程中熔滴的形态变化。
熔滴的过渡形式主要有滴落式、喷射式和短脉冲式三种。
滴落式熔滴过渡形式是最常见的形式。
在焊接开始阶段,焊丝在电弧烧蚀下形成小颗粒熔滴,这些熔滴相对较大,重力的作用下从焊丝底部滴落到焊件上,并在焊件表面凝固。
这种形式下,焊丝的滴落速度是稳定的,而且既能保证焊缝质量又能提高焊接效率。
喷射式熔滴过渡形式则是在滴落式基础上发展而来。
当焊接电弧稳定后,焊丝熔化后的熔滴将在电弧的作用下向前喷射,形成悬挂在焊丝末端的熔滴。
这种形式下,焊丝的滴落速度相对较快,焊接质量更高,但焊接速度相对较慢,因为喷射式会使热量更加集中在一个小区域,能够提供更高的焊接温度和更好的焊缝质量。
短脉冲式熔滴过渡形式是一种技术复杂度较高的形式。
焊接电弧通过调节电流和电压的变化,实现了熔滴短脉冲的形成。
这种形式下,焊丝的熔滴会以非常快的速度喷出,并迅速接触到焊件表面,焊缝形成后熔滴迅速冷却凝固。
这种形式下,焊接热输入较小,可避免焊接变形,能够用于焊接薄板。
掌握不同熔滴过渡形式的方法对焊工来说非常重要,因为不同的形式适用于不同材料和焊接要求。
在实际操作中,焊工需要根据焊接材料的厚度、焊缝形式和焊接速度等因素,选择合适的熔滴过渡形式,以保证焊接质量和效率。
总结起来,熔滴过渡形式是CO2气体保护焊中关键的焊接参数之一。
通过了解滴落式、喷射式和短脉冲式三种形式的特点和适用范围,焊工可以选择合适的熔滴过渡形式,提高焊接质量和效率,确保焊接工作的顺利进行。