【高中数学】2018最新版本高中数学必修一:1.2.1《函数的概念》教案
- 格式:doc
- 大小:174.11 KB
- 文档页数:5
1.2.1函数的概念(第1课时)一、教学目标 (一)核心素养通过这节课学习,了解构成函数的基本要素,理解并掌握函数的概念,熟悉用“区间”、“无穷大”等符号表示取值范围,在数学抽象、数学建模中体会对应关系在刻画函数概念中的作用. (二)学习目标 1.通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型.2.学习用集合语言和对应关系刻画函数,并明确函数的基本要素,掌握判别两个函数是否相同的方法.3.会求一些简单函数的定义域,并能正确使用“区间”表示.(三)学习重点 1.体会函数的重要模型化思想,了解构成函数的要素并理解函数的概念.2.会求一些简单函数的定义域,并能正确使用“区间”表示.(四)学习难点1.体会并理解函数概念中的“任意性”和“唯一性”.2.符号“y=f (x )”的含义. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第15页至第18页,填空:设B A ,是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作()x f y =,A x ∈.其中,x 叫做自变量,x 的取值范围A 叫做定义域,与x 的值相对应的y 值叫做函数值,函数值的集合(){}A x x f ∈叫做函数的值域. (2)写一写:区间(设a <b )定义名称区间数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b } 开区间 (a ,b ){x |a ≤x <b } 半开半闭区间 [a ,b ) {x |a <x ≤b } 半开半闭区间 (a ,b ] {x |x ≥a } 半开半闭区间 [a ,+∞) {x |x >a } 开区间 (a ,+∞) {x |x ≤a } 半开半闭区间 (-∞,a ] {x |x <a } 开区间(-∞,a )2.预习自测(1)()x f 与()a f 的区别与联系?答:()a f 表示当a x =时函数()x f 的值,是一个常量,而()x f 是自变量x 的函数,在一般情况下,它是一个变量;()a f 是()x f 的一个特殊值.(2)通过学习函数的概念,你觉得函数的基本要素有哪些?定义两个函数是否相等时,是否需要函数的几个基本要素必须都相同?答:基本要素有定义域、对应关系、值域。
高中数学核心概念——《函数的概念》教学设计教材与分析函数贯穿于整个高中数学的教学中,是整个高中的主体内容,而函数概念更是数学中重要基础概念之一。
在数学教学中,函数蕴涵着极其丰富的教学辩证思想,是学生辩证唯物主义教育的良好素材,同时,对学生数学思维的培养起着重要的作用。
在新教材中,函数成为高一学生上半学期学习和研究的主要内容。
函数在中学教材中分三个阶段,虽然在初中学生已学过函数概念,但仅仅是从变量的角度对函数概念的感性认识。
本章是函数教学的第二阶段,即函数概念的再认识阶段。
本阶段教学的顺利完成,关键在于函数概念这节课的学习。
教学目标知识目标:函数的概念、三要素、函数符号的理解、函数定义域的初步求解能力目标:使学生理解函数的概念,明确函数的三要素,会准确使用函数符号;在学会知识的过程中,进一步熟练求函数的定义域;培养学生运用类比等数学思想方法解决问题的能力;培养学生综合运用知识解决问题的能力;培养学生的元认知能力情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境教学重难点教学重点:体会函数是描述变量间依赖关系的数学模型,正确理解函数的概念教学难点:函数概念及对符号f(x)的理解教学方法与策略由于高中函数概念比较抽象和学生思维发展水平等原因,使其成为教学中的一个难点。
本设计从学生已学过的初中函数概念入手,结合建构主义学习理论,利用多元表征对函数的概念进行再认识。
本节内容计划两课时,第一课时理解函数概念,三要素,定义域初步求解;第二课时强化函数概念,理解映射概念及值域的求解。
为了不冲淡函数概念在这节课的主导地位, 故将函数定义域的区间表示部分内容调整到上一章集合部分。
教学原理与流程教学用具PPT、交互式电子白板、几何画板《函数的概念》(第一课时)一、回忆旧知,引入课题问题1:你还记得初中所学的函数的概念吗?并举例说明已经学过的函数。
[设计意图]通过回忆初中的函数及函数的定义,为下列情境作铺垫。
1.2.1函数的概念一、关于教学内容的思考教学任务:帮助学生认识函数的构成要素;明确函数的定义;理解定义域、对应关系、值域的含义;掌握判断两个函数是否相等的方法;正确使用区间表示定义域、值域; 教学目的:引导学生树立函数思想研究变量之间的关系。
教学意义:培养学生通过观察事物的表象,分析事物变化的本质,揭示变量之间内在相互联系、相互制约的关系。
二、教学过程1.在背景材料下,引出函数的定义:一般地,设A,B是非空的数集,如果按照某种确定的对应关系f ,使对于集合A中的任意一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么就称:f A B →为从集合A到集合B的一个函数,记作(),y f x x A =∈。
其中,x 叫做自变量,x 的取值范围A叫做函数的定义域;与x 的值对应的y 值叫做函数值;函数值的集合{()|}f x x A ∈叫做函数的值域,值域是集合B的子集。
注意:两个非空数集;一对一或多对一;集合A中的任意一个数已知R x ∈,在解析式x y x y x y 2,|||,|2===中,哪些可以成为函数的解析式? 2.一个函数的构成要素:定义域、对应关系和值域。
3.函数相等具备的条件:定义域、对应关系完全一致。
4.对应关系常见形式:①解析法②图象法③列表法5.理解和正确使用区间符号:),(],,(),,(),,[),,(),,[],,(],,[b b a a b a b a b a b a -∞-∞+∞+∞ 注意:对区间[,],(,],[,),(,)a b a b a b a b 来说,(前提条件b a <)6.求函数定义域:①由问题的实际背景确定;②能使解析式有意义的实数的集合。
注意:通过解析式求定义域,无需化简,应注意自变量取值的等价性。
7.掌握常数函数、一元一次函数、一元二次函数、反比例函数的值域情况。
三、教材节后练习(可以在课堂上随着教学内容穿插进行)四、教学备用例子 1.已知函数15)(2+=x x x f ,若2)(=a f ,则=a 。
1.2.1函数的概念(一)教学目标1.知识与技能(1)理解函数的概念;体会随着数学的发展,函数的概念不断被精炼、深化、丰富.(2)初步了解函数的定义域、值域、对应法则的含义.2.过程与方法(1)回顾初中阶段函数的定义,通过实例深化函数的定义.(2)通过实例感知函数的定义域、值域,对应法则是构成函数的三要素,将抽象的概念通过实例具体化.3.情感、态度与价值观在函数概念深化的过程中,体会数学形成和发展的一般规律;由函数所揭示的因果关系,培养学生的辨证思想.(二)教学重点与难点重点:理解函数的概念;难点:理解函数符号y = f (x)的含义.(三)教学方法回顾旧知,通过分析探究实例,深化函数的概念;体会函数符号的含义. 在自我探索、合作交流中理解函数的概念;尝试自学辅导法.(四)教学过程提出问题中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与对应. 那么就说y是x的函数,其中x叫做自变量.义是什么.生:回忆并口述初中函数的定义.(师生共同完善、概念)函数的概念. 形成概念示例分析示例1:一枚炮弹发射后,经过26s落到地面击中目标. 炮弹的射高①为845m,且炮弹距地面的高度h (单位:m)随时间t (单位:s)变化的规律是h = 130t– 5t2.示例2:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空沿问题. 下图中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.示例 3 国际上常用恩格尔系数②反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高,下表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.“八五”计划以来我国城镇居民恩格尔系数变化情况时间(年)1991 1992 1993 1994 1995 1996城镇居民家庭恩格尔系数(%)53.8 52.9 50.1 49.9 49.9 48.6时间(年)1997 1998 1999 2000 2001城镇居民家庭恩格尔系数(%)46.4 44.5 41.9 39.2 37.9函数的概念:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A老师引导、分析三个示例,师生合作交流揭示三个示例中的自变量以及自变量的变化范围,自变量与因变量之间的对应关系.师生共同探究利用集合与对应的语言描述变量之间的因果关系.利用示例,探究规律,形成并深化函数的概念.体会函数新定义的精确性及实质.归纳总结 1.函数的概念; 2.函数的三要素; 3.函数的表达式. 师生共同回顾总结,并简要阐述. 总结知识,形成系统课后作业 1.2第一课时习案独立完成 巩固知识 备选例题例1 函数y = f (x )表示( C )A .y 等于f 与x 的乘积B .f (x )一定是解析式C .y 是x 的函数D .对于不同的x ,y 值也不同例2 下列四种说法中,不正确的是( B )A .函数值域中每一个数都有定义域中的一个数与之对应B .函数的定义域和值域一定是无限集合C .定义域和对应关系确定后,函数的值域也就确定了D .若函数的定义域只含有一个元素,则值域也只含有一个元素例3 已知f (x ) = x 2+ 4x + 5,则f (2) = 2.7 ,f (–1) = 2 .例4 已知f (x ) = x 2 (x ∈R ),表明的“对应关系”是 平方 ,它是 R → R 的函数.例5 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如右图示,那么水瓶的形状是下图中的( B )【解析】取水深2H h ,注水量V ′>2V ,即水深为一半时,实际注水量大小水瓶总水量的一半,A 中V ′<2V ,C 、D 中V ′=2V ,故排除A、C、D.。
1.2.1 函数的概念(第一课时)课 型:新授课 教学目标:(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的三要素;(3)能够正确使用“区间”的符号表示某些集合。
教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学过程: 一、问题链接:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。
表示方法有:解析法、列表法、图象法. 二、合作探究展示: 探究一:函数的概念: 思考1:(课本P 15)给出三个实例:A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-。
B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。
(见课本P 15图)C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表。
(见课本P 16表)讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着怎样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为:对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B →函数的定义:设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。
1.2.1 函数的概念课前预习·预习案【学习目标】1.通过实例,体会函数是描绘变量之间对应关系的重要数学模型.2.体会对应关系在刻画函数概念中的作用.3.了解构成函数的要素,会求一些简单函数的定义域.4.理解函数的三要素及函数符号的深刻含义.5.会求一些简单函数的定义域和值域.6.能够正确使用区间表示数集.【学习重点】1.体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念。
2.理解函数的模型化思想,用集合与对应的语言来刻画函数。
【学习难点】符号“y=f(x)”的含义,函数定义域和值域的区间表示【自主学习】1.函数的概念(1)前提:A,B是非空的.(2)对应:集合A中的一个数,在集合B中都有的数和它对应.(3)结论:f:A称为的一个函数.(4)表示:.(5)相关概念:①自变量;②定义域:的取值范围A;③函数值:与的值相对应的;④值域:函数值的集合;⑤函数的三要素:定义域、对应关系和.2.函数相等由于函数的值域是由和决定的,所以,如果两个函数的相同,并且完全一致,就称这两个函数相等.3.区间的有关概念根据提示完成下表( 为实数,且).4.无穷大的概念(1)实数集R用区间表示为.“ ”读作,“ ”读作,“ ”读作.(2)无穷区间的几种表示:【预习评价】1.下列式子中不能表示函数的是A. B.C. D.2.函数的值域为A. B. C. D.R3.已知,,则 .4.集合用区间可表示为 .5.与函为相同函数的是(填序号).①;②;③.知识拓展·探究案【合作探究】1.函数的概念根据给出的两个对应,回答下面的问题:①,这里②,这里(1)判断当取某一值时,是否都有唯一的值与其对应?(2)根据函数的概念,判断这两个对应是否为的函数?并说明理由. 2.构成函数的要素若将函数的定义域改为,所得的函数与函数相同吗?3.区间的概念观察集合的区间表示法如,思考下面的问题:区间是不是一个集合?区间与区间之间可不可以用集合的运算符号连接?4.函数的值域根据函数的概念“当A,B是非空数集时,对应f:A称为从集合A到集合B的函数”,探究下面的问题:(1)给定一个函数,函数的值域是函数值的集合吗?(2)集合B与函数的值域存在怎样的关系?【教师点拨】1.对函数相等的三点说明(1当两函数的定义域和值域分别相同时,若对应关系不同,两函数不相等。
五步教学设计模式教学案:必修1 主备人:禹丽芹一、教学目标:能说出函数的定义,能用集合与对应的语言刻画函数,记住构成函数的要素;会判断一个对应是否为函数;会根据函数的要素判断两个函数是否相等;会用区间表示数集。
教学重点:函数的定义,函数的构成要素及函数定义的应用,用区间表示数集。
教学难点:函数定义的理解。
二、预习导学(一)知识梳理(以问题或填空题的形式呈现)1、函数的概念:2、函数相等:3、区间:三、问题引领,知识探究问题1、函数定义中集合A 、B 有什么要求?问题2、函数定义中由A 到B 时什么性质对应(一对一、多对一、一对多)?问题3、函数符号“)(x f y =”中)(x f 含义是什么?例1 :判断下列对应是否为从集合A 到集合B 的函数。
(1)21:,,xy x f R B R A =→== (2)x y x f R B N A ±=→==:,,(3)2:*,,-=→==x y x f N B N A(4)4)3(,3)2()1(,},3,2,1{=====f f f R B A变式1:集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).A. B. C. D.问题4:何为两个函数相等?例2:下列函数中哪个与函数y=x 相等?(1)2)(x y =;(2)33x y =;(3)2x y =;(4)xx y 2=.变式2:判断下列各组的两个函数是否相同,并说明理由: (1)22x x y x y ==与;(2)⎩⎨⎧<-≥==0,20,22x x x x y x y 与;(3))()(u f y x f y ==与。
例3:把下列数集用区间表示。
(1)}2|{≥x x (2)}0|{<x x(3)}62,11|{<≤<<-x x x 或变式3:集合}52|{<≤x x 用区间表示为 集合}5|{≤x x 用区间表示为四、目标检测1、下列图像中,能表示函数)(x f y =图像的是( )2、判断下列各组的两个函数是否相同,并说明理由: (1)N x x y R x x y ∈-=∈-=,1,1与; (2)2242+⋅-=-=x x y x y 与;(3)xu x y 1111+=+=与; 3、集合{}321≤<=x x x 或用区间表示为五、分层配餐A 组1、与函数)(222R x x x y ∈+-=是相等的函数是( ) A.)(222R x x x y ∈+-= B.)(22R x x x y ∈-=C.)0(1)1(2≤+-=x x yD.)(1)1(2R x x y ∈+-= 2、函数图像与直线1=x 的交点最多有( )A.0个 B .1个 C .2个 D .以上都不对 3、已知区间]12,[+a a ,则实数a 范围是 ( ) A.RB.31-≥aC.31->aD.31-<a 4、集合{}1,51≠<≤-x x x 且用区间表示为B 组5、设集合 )13,5[),10,[=-∞=B A ,则=)(B A C U (用区间表示)6、下列给的集合不能用区间表示的是( )A.}11|{<<-x xB.}55|{≤≤x xC.}2|{≤x xD.}|{R x x ∈C 组7、判断下列函数是否是实数集R 上的函数: (1);13:+x x f 对应到把 (2);1:+x x g 对应到把 (3);521:-x x h 对应到把 (4);63:+x x f 对应到把。
《1.2.1函数的概念》
教学设计
《函数的概念》的教学设计
一、教学目标
知识与技能——通过函数概念这节课的学习,了解函数的定义及其三要素,掌握区间的符号表
示,会求简单函数的定义域和值域。
培养学生分析、判断、抽象、归纳概括的逻辑思维能力
过程与方法——通过函数定义获得的学习过程,体会由具体逐步过渡到符号化、代数化,特殊到
一般的数学思想。
情感态度与价值观—— 通过本节的学习,培养学生的抽象思维能力、渗透静与动的辩证唯物主
义观点;树立“数学源于实践,又服务于实践”的数学应用意识。
二、教学重点与难点
重点:了解函数定义及其三要素,掌握区间的符号表示方法,会求简单函数的定义域和值域。
难点:理解函数符号)(x f y 的含义,掌握区间的符号表示方法及无穷大的概念。
函数的概念》的教学设计【教材分析】本节课选自《普通高中课程标准实验教科书数学Ⅰ必修本( A 版)》的第一章 1.2.1 函 数的概念。
函数是中学数学中最重要的基本概念之一, 它贯穿在中学代数的始终, 从初一字 母表示数开始引进了变量, 使数学从静止的数的计算变成量的变化, 而且变量之间也是相互 联系、 相互依存、相互制约的, 变量间的这种依存性就引出了函数。
在初中已初步探讨了函 数概念、 函数关系的表示法以及函数图象的绘制。
到了高一再次学习函数, 是对函数概念的 再认识, 是利用集合与对应的思想来理解函数的定义, 从而加深对函数概念的理解。
函数与 数学中的其他知识紧密联系,与方程、不等式等知识都互相关联、 互相转化。
函数的学习也 是今后继续研究数学的基础。
在中学不仅学习函数的概念、性质、 图象等知识,尤为重要的 是函数的思想要更广泛地渗透到数学研究的全过程。
函数是中学数学的主体内容, 起着承上启下的作用。
函数又是初等数学和高等数学衔接 的枢纽, 特别在应用意识日益加深的今天, 函数的实质是揭示了客观世界中量的相互依存又 互有制约的关系。
因此对函数概念的再认识, 既有着不可替代的重要位置, 又有着重要的现 实意义。
本节的内容较多,分二课时。
本课时的内容为:函数的概念、函数的三要素、简单 函数的定义域及值域的求法、区间表示等。
(第二课时内容为:函数概念的复习、较复杂函 数的定义域及值域的求法、分段函数、函数图象等)【学情分析】 学生在学习本节内容之前, 已经在初中学习过函数的概念, 并且知道可以用函数描述变 量之间的依赖关系。
然而, 函数概念本身的表述较为抽象, 学生对于动态与静态的认识尚为 薄弱,对函数概念的本质缺乏一定的认识, 对进一步学习函数的图象与性质造成了一定的难 度。
初中是用运动变化的观点对函数进行定义, 虽然这种定义较为直观, 但并未完全揭示出 函数概念的本质。
例如,对于函数如果用集合与对应的观点来解释,就十分自然。
《函数的概念》教案
教学目标
1、理解函数的概念及其符号表示,能够辨别函数的例证和反例.
2、会求简单函数的定义域与值域.
3、掌握构成函数的三要素,学会判别两个函数是否相等,理解函数的整体性.
4、通过情景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.
5、通过函数概念学习的过程,培养学生从“特殊到一般”的分析问题能力以及抽象概括能力.
教学重难点
重点:函数的概念,构成函数的三要素.
难点:函数符号y=f(x)的理解.
教学过程
一、情景导入
情景一:
一枚炮弹发射后,经过26s落到地面击中目标.炮弹的射高为845m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是:
2
1305
=-;
h t t
提问:你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t的变化范围是什么?炮弹距离地面高度h的变化范围是什么?
情景二:。