浙江省浙南名校联盟2018_2019学年高二数学上学期期末联考试题(含解析)
- 格式:doc
- 大小:859.50 KB
- 文档页数:19
2018年学年第一学期浙南名校联盟期末联考高二年级数学学科试题选择题部分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则使成立的的值是()A. -1B. 0C. 1D. -1或1【答案】A【解析】【分析】根据集合A,B,以及B⊆A即可得出,从而求出a=﹣1.【详解】解:∵A={﹣1,0,1},B={a,a2},且B⊆A;∴∴a=﹣1.故选:A.【点睛】本题考查列举法的定义,集合元素的互异性,以及子集的定义.2.已知复数,则()A. B. C. D.【答案】A【解析】【分析】把z=﹣2+i代入,再利用复数代数形式的乘除运算化简得答案.【详解】解:由z=﹣2+i,得.故选:A.【点睛】本题考查了复数代数形式的乘除运算,是基础题.3.若为实数,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】【分析】求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.【详解】解:由得0<a<1,则“a<1”是“”的必要不充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键.4.若实数,满足约束条件,则的最大值为()A. B. 0 C. D. 1【答案】C【解析】【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x+2y对应的直线进行平移,可得当x,y时,z取得最大值.【详解】解:作出变量x,y满足约束条件表示的平面区域,得到如图的△ABC及其内部,其中A(,),B(,﹣1),C(2,﹣1)设z=F(x,y)=x+2y,将直线l:z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值=F(,).故选:C.【点睛】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.在中,是的中点,,点在上且满足,则等于()A. B. C. D.【答案】B【解析】【分析】由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.【详解】解:∵M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足∴P是三角形ABC的重心∴又∵AM=1∴∴故选:B.【点睛】判断P点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:或取得最小值③坐标法:P点坐标是三个顶点坐标的平均数.6.设函数,将的图像向平移个单位后,所得的函数为偶函数,则的值可以是()A. 1B.C. 2D.【答案】D【解析】【分析】利用函数y=A sin(ωx+φ)的图象变换规律,可得平移后函数的解析式,再根据三角函数的奇偶性,求得ω的值.【详解】解:将函数f(x)=2sin(ωx)的图象向右平移个单位后,可得y=2sin(ωx)的图象.∵所得的函数为偶函数,∴kπ,k∈Z.令k=﹣1,可得ω,故选:D.【点睛】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,三角函数的奇偶性,属于基础题.7.函数的图像可能是()A. B.C. D.【答案】A【解析】【分析】判断函数的奇偶性和对称性,利用特征值的符号是否一致进行排除即可.【详解】解:f(﹣x)f(x),则函数f(x)是奇函数,图象关于原点对称,排除B,D,函数的定义域为{x|x≠0且x≠±1},由f(x)=0得sin x=0,得距离原点最近的零点为π,则f()0,排除C,故选:A.【点睛】本题主要考查函数图象的识别和判断,利用对称性以及特殊值进行排除是解决本题的关键.8.设等差数列的前项和为,数列的前项和为,下列说法错误..的是()A. 若有最大值,则也有最大值B. 若有最大值,则也有最大值C. 若数列不单调,则数列也不单调D. 若数列不单调,则数列也不单调【答案】C【解析】【分析】根据等差数列的性质知数列{a2n﹣1}的首项是a1,公差为2d,结合等差数列的前n项和公式以及数列的单调性和最值性与首项公差的关系进行判断即可.【详解】解:数列{a2n﹣1}的首项是a1,公差为2d,A.若S n有最大值,则满足a1>0,d<0,则2d<0,即T n也有最大值,故A正确,B.若T n有最大值,则满足a1>0,2d<0,则d<0,即S n也有最大值,故B正确,C.S n=na1•d n2+(a1)n,对称轴为n,T n=na1•2d=dn2+(a1﹣d)n,对称轴为n•,不妨假设d>0,若数列{S n}不单调,此时对称轴n,即1,此时T n的对称轴n•1,则对称轴•有可能成立,此时数列{T n}有可能单调递增,故C错误,D.不妨假设d>0,若数列{T n}不单调,此时对称轴n•,即2,此时{S n}的对称轴n2,即此时{S n}不单调,故D正确则错误是C,故选:C.【点睛】本题主要考查与等差数列有关的命题的真假关系,涉及等差数列前n项和公式的应用以及数列单调性的判断,综合性较强,难度较大.9.已知椭圆和双曲线有共同的焦点,,点是,的交点,若是锐角三角形,则椭圆离心率的取值范围是()A. B. C. D.【答案】C【解析】【分析】设∠F1PF2=θ,则,得出,利用椭圆和双曲线的焦点三角形的面积公式可得出,结合c=2,可得出,然后将椭圆和双曲线的方程联立,求出交点P的横坐标,利用该点的横坐标位于区间(﹣c,c),得出,可得出,从而得出椭圆C1的离心率e的取值范围.【详解】解:设∠F1PF2=θ,则,所以,,则,由焦点三角形的面积公式可得,所以,,双曲线的焦距为4,椭圆的半焦距为c=2,则b2=a2﹣c2=a2﹣4>3,得,所以,椭圆C1的离心率.联立椭圆C1和双曲线C2的方程,得,得,由于△PF1F2为锐角三角形,则点P的横坐标,则,所以,.因此,椭圆C1离心率e的取值范围是.故选:C.【点睛】本题考查椭圆和双曲线的性质,解决本题的关键在于焦点三角形面积公式的应用,起到了化简的作用,同时也考查了计算能力,属于中等题.10.如图,在棱长为1正方体中,点,分别为边,的中点,将沿所在的直线进行翻折,将沿所在直线进行翻折,在翻折的过程中,下列说法错误..的是()A. 无论旋转到什么位置,、两点都不可能重合B. 存在某个位置,使得直线与直线所成的角为C. 存在某个位置,使得直线与直线所成的角为D. 存在某个位置,使得直线与直线所成的角为【答案】D【解析】【分析】利用圆锥的几何特征逐一判断即可.【详解】解:过A点作AM⊥BF于M,过C作CN⊥DE于N点在翻折过程中,AF是以F为顶点,AM为底面半径的圆锥的母线,同理,AB,EC,DC也可以看成圆锥的母线;在A中,A点轨迹为圆周,C点轨迹为圆周,显然没有公共点,故A正确;在B中,能否使得直线AF与直线CE所成的角为60°,又AF,EC分别可看成是圆锥的母线,只需看以F为顶点,AM为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B正确;在C中,能否使得直线AF与直线CE所成的角为90°,只需看以F为顶点,AM为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故C正确;在D中,能否使得直线与直线所成的角为,只需看以B为顶点,AM为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故D不成立;故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查逻辑推理能力,考查数形结合思想,是中档题.非选择题部分二、填空题.11.双曲线的渐近线方程是____;焦点坐标____.【答案】(1). (2).【解析】【分析】直接根据双曲线的简单性质即可求出.【详解】解:在双曲线1中,a2=2,b2=1,则c2=a2+b2=3,则a,b=1,c,故双曲线1的渐近线方程是y=±x,焦点坐标(,0),故答案为:y=±x,(,0)【点睛】本题考查了双曲线的简单性质,属于基础题.12.在中,内角,,所对的边分别为,,,若,,则___;的面积是___【答案】(1). 2(2).【解析】【分析】由余弦定理可求c,利用同角三角函数的基本关系式求出sin C,然后由△ABC的面积公式求解即可.【详解】解:在△ABC中,a=b,cos C,由余弦定理得:c2=a2+b2﹣2ab cos C4,则c=2;在△ABC中,∵cos C,∴sin C,∴S△ABC ab•sin C.故答案为:2;.【点睛】本题考查余弦定理,考查同角三角函数的基本关系式的应用,考查三角形的面积公式,是基础题.13.已知某几何体的三视图如图所示,则该几何体的体积为____;表面积为____.【答案】(1). 3(2). 9+【解析】【分析】根据三视图知该几何体是直三棱柱,结合图中数据求出它的体积和表面积.【详解】解:根据三视图知该几何体是直三棱柱,如图所示;则该几何体的体积为V=S△ABC•AA13×1×2=3;表面积为S=2S△ABC=23×1+3×2+22=9+22.故答案为:3,9+22.【点睛】本题考查了根据三视图求几何体体积和表面积的应用问题,是基础题.14.若实数,满足,则的最小值为____.【答案】4【解析】【分析】由已知可知,2(a﹣1)+b﹣2=2,从而有()[2(a﹣1)+b﹣2)],利用基本不等式可求最小值.【详解】解:∵a>1,b>2满足2a+b﹣6=0,∴2(a﹣1)+b﹣2=2,a﹣1>0,b﹣2>0,则()[2(a﹣1)+b﹣2)],(4),当且仅当且2a+b﹣6=0即a,b=3时取得最小值为4.故答案为:4.【点睛】本题主要考查了基本不等式求解最值的应用,解题的关键是配凑基本不等式的应用条件.15.已知直线,曲线,若直线与曲线相交于、两点,则的取值范围是____;的最小值是___.【答案】(1). (2).【解析】【分析】因为过定点的直线与半圆C的图象有两个交点,结合图象知:k PE≤k≤k PO,求出直线PO和PE的斜率即可;当PC⊥AB 时,|AB|最小.【详解】解:直线l:kx﹣y k=0过定点(1,),曲线C为半圆:(x﹣2)2+y2=4(y≥0)如图:由图可知:k OP,k PE,∴;要使弦长AB最小,只需CP⊥AB,此时|AB|=22,故答案为:[,];.【点睛】本题考查了直线与圆的位置关系,考查了垂径定理,考查了数形结合思想,属于中档题.16.点是边长为2的正方形的内部一点,,若,则的取值范围为___.【答案】(]【解析】【分析】根据题意可知λ,μ>0,根据条件对λμ两边平方,进行数量积的运算化简,利用三角代换以及两角和与差的三角函数,从而便可得出λμ的最大值.【详解】解:如图,依题意知,λ>0,μ>0;根据条件,12=λ22+2λμ•μ22=4λ2+4μ2.令λ,μ=sinθ,.∴λμ=cosθsinθ=sin(θ);θ, sin(θ)(]∴的取值范围为(]故答案为(].【点睛】本题考查向量数量积的运算及计算公式,以及辅助角公式,三角代换的应用,考查转化思想以及计算能力.17.函数,若此函数图像上存在关于原点对称的点,则实数的取值范围是____.【答案】【解析】【分析】根据函数图象上存在关于原点对称的点,转化为f(﹣x)=﹣f(x)有解,利用参数分离法进行转化求解即可.【详解】解:若函数图象上存在关于原点对称的点,即f(﹣x)=﹣f(x)有解,即a﹣2x﹣ma﹣x=﹣(a2x﹣ma x)=﹣a2x+ma x,即a2x+a﹣2x=m(a x+a﹣x),即m(a x+a﹣x),设t=a x+a﹣x,则t≥22,则(a x+a﹣x)t在[2,+∞)为增函数,∴h(t)=t h(2)=2﹣1=1,则要使m=h(t)=t有解,则m≥1,即实数m的取值范围是[1,+∞),故答案为:[1,+∞).【点睛】本题主要考查函数与方程的应用,根据条件转化为f(﹣x)=﹣f(x)有解,利用参数分离法进行转化是解决本题的关键,综合性较强,有一定的难度.三、解答题(解答应写出文字说明、证明过程或演算步骤.)18.已知函数.(Ⅰ)若为锐角,且,求的值;(Ⅱ)若函数,当时,求的单调递减区间.【答案】(Ⅰ) (Ⅱ)【解析】【分析】(Ⅰ)由已知利用同角三角函数基本关系式可求sinα的值,进而根据二倍角的正弦函数公式即可计算得解;(Ⅱ)由已知利用三角函数恒等变换的应用可求g(x)=2sin(2x),根据正弦函数的单调性即可求解.【详解】(Ⅰ)为锐角,,,,,(Ⅱ),,,所以单调递减区间是【点睛】本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式,三角函数恒等变换的应用,正弦函数的单调性的综合应用,考查了数形结合思想和转化思想,属于基础题.19.如图,在四棱锥中,平面,,,,,.(Ⅰ)求证平面;(Ⅱ)求直线与平面所成线面角的正弦值.【答案】(Ⅰ)见证明;(Ⅱ)【解析】【分析】(Ⅰ)推导出AC⊥PC,AC⊥CD,由此能证明AC⊥平面PCD;(Ⅱ)过D作直线DH⊥PC,AC⊥DH,DH⊥平面P AC,从而∠DCH为直线CD与平面P AC所成线面角,由此能求出直线CD与平面P AC所成线面角的正弦值.【详解】(Ⅰ),,,,,,,,有公共点,,(Ⅱ)方法1:过作直线垂直于,为垂足,,,,为所求线面角,,,方法2:如图建立空间直角坐标系,,,,直线与所成线面角的正弦值为.【点睛】本题考查线面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.已知数列满足:,.(Ⅰ)求证:是等比数列,并求数列的通项公式;(Ⅱ)令,设数列的前项和为,若对一切正整数恒成立,求实数的取值范围.【答案】(Ⅰ)见证明;(Ⅱ)【解析】【分析】(Ⅰ)运用等比数列的定义和通项公式,即可得到所求;(Ⅱ)求得b n=log2(a n+1)=2n﹣1,(),由裂项相消求和,可得S n,再由参数分离和基本不等式可得所求范围.【详解】(Ⅰ)由得且是以4为公比的等比数列,,(Ⅱ),,,,且,当且仅当n=2时取等号,,【点睛】本题考查等比数列的定义、通项公式的运用,考查数列的裂项相消求和,考查不等式恒成立问题解法,注意运用基本不等式,考查运算能力,属于中档题.21.已知椭圆过点,且离心率为.过抛物线上一点作的切线交椭圆于,两点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在直线,使得,若存在,求出的方程;若不存在,请说明理由.【答案】(Ⅰ)椭圆(Ⅱ)见解析【解析】【分析】(Ⅰ)根据已知条件列有关a、b、c的方程组,求出a和b的值,即可得出椭圆C1的方程;(Ⅱ)设直线l的方程为y=kx+t,先利用导数写出直线l的方程,于是得到k=2x0,,将直线l的方程与椭圆C1的方程联立,列出韦达定理,由并代入韦达定理,通过计算得出t的值,可得出x0的值,从而可得出直线l的方程.【详解】(Ⅰ)由题知,得,所以椭圆,(Ⅱ)设的方程:,由(1)知,的方程:,故 . 由,得.所以,即(4t2-4)(k2+1)-8k2t(t-1)+(t-1)2(4k2+1)=0,化简有5t2-2t-3=0,所以t=1或t=,,,【点睛】本题考查直线与椭圆的综合问题,考查椭圆的方程以及韦达定理设而不求法的应用,同时也考查了计算能力,属于中等题.22.已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若,求证:.【答案】(Ⅰ)见解析(Ⅱ)见证明【解析】【分析】(Ⅰ)利用导数与函数单调性的关系求解;(Ⅱ)af(x)>lnx⇔.令F(x),F′(x)(x>0).①当∈(0,1]时,F′(x)<0,F(x)单调递减,F(x)≥F(1)=ae>0;②当>1时,令G(x),利用导数求得最小值大于0即可.【详解】解.(1)f(x)的定义域为(﹣∞,0)∪(0,+∞),∵,∴x∈(﹣∞,0),(0,1)时,f′(x)<0,x∈(1,+∞)时,f′(x)>0∴函数f(x)的单调增区间为:(1,+∞),减区间为(﹣∞,0),(0,1).(2)af(x)>lnx⇔.令F(x),F′(x).(x>0).①当∈(0,1]时,F′(x)<0,F(x)单调递减,F(x)≥F(1)=ae>0;②当>1时,令G(x),G.∴G(x)在(1,+∞)单调递增,∵x→1时,G(x)→﹣∞,G(2)=e20,∴G(x)存在唯一零点0∈(1,2),F(x)min=F(x0)∵G(x0)=0,.综上所述,当时,af(x)>lnx成立.【点睛】利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.。
2018-2019学年浙江省浙南名校联盟高二下学期期末数学试题一、单选题1.已知集合U N =,{}*|2,A x x n n N ==∈,{|16}B x x =<,则()U A B =( ) A .{2,3,4,5,6} B .{2,4,6}C .{1,3,5}D .{3,5}【答案】D【解析】按照补集、交集的定义,即可求解. 【详解】{}*|2,A x x n n N ==∈,{|16}B x x =<,()UA B ={3,5}.故选:D. 【点睛】本题考查集合的混合计算,属于基础题.2.双曲线22221y x a b-=的渐近线方程为y =,则其离心率为( )A .32B .2C .3 D【答案】B【解析】根据渐近线得到a =,得到离心率.【详解】双曲线22221y x a b-=的渐近线方程为y =,则a =,=c ,62c ea . 故选:B . 【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力.3.如图,某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A .72B .73C .76D .7【答案】C【解析】根据三视图知几何体为上下底面为等腰直角三角形,高为1的三棱台,计算体积得到答案. 【详解】根据三视图知:几何体为上下底面为等腰直角三角形,高为1的三棱台,故111117111221122322226V ⎛=⨯⨯⨯⨯+⨯⨯+⨯⨯⨯⨯⨯= ⎝. 故选:C . 【点睛】本题考查了三视图求体积,意在考查学生的计算能力和空间想象能力. 4.若复数2(1)ai +(i 为虚数单位)是纯虚数,则实数a =( ) A .1± B .1-C .0D .1【答案】A【解析】因为22(1)12ai a ai +=-+是纯虚数,210, 1.a a ∴-==± 5.已知平面α,β,直线a ,满足αβ⊥,l αβ=,则下列是a β⊥的充分条件是( ) A .//a α B .a α⊂C .a l ⊥D .,a l a α⊥⊂【答案】D【解析】根据直线和平面,平面和平面的位置关系,依次判断每个选项的充分性和必要性,判断得到答案. 【详解】当//a α时,可以a β⊥,//a β或a β⊂,或,a β相交,不充分,A 错误; 当a α⊂时,可以a β⊥,//a β或a β⊂,或,a β相交,不充分,B 错误; 当a l ⊥时,不能得到a β⊥,C 错误;当a l ⊥,a α⊂时,则a β⊥,充分性;当a β⊥时,l β⊂,故a l ⊥,a 与α关系不确定,故不必要,D 正确;故选:D . 【点睛】本题考查了直线和平面,平面和平面的位置关系,充分条件,意在考查学生的空间想象能力和推断能力.6.已知实数,a b 满足cos cos a b a b ->-,则下列说法错误..的是( ) A . cos cos a b a b +>+ B .cos cos a b b a ->- C .sin sin a b a b ->- D .sin sin a b b a ->-【答案】A【解析】设()cos f x x x =-,证明()f x 单调递增,得到a b >,构造函数根据单调性到BCD 正确,取1a =,1b =-,则 cos cos a b a b +>+不成立,A 错误,得到答案. 【详解】设()cos f x x x =-,则()'1sin 0f x x =+≥恒成立,故()f x 单调递增,cos cos a b a b ->-,即cos cos a a b b ->-,即()()f a f b >,a b >.取1a =,1b =-,则 cos cos a b a b +>+不成立,A 错误;设()cos g x x x =+,则()'1sin 0g x x =-≥恒成立,()g x 单调递增, 故()()g a g b >,就cos cos a b b a ->-,B 正确; 同理可得:CD 正确. 故选:A . 【点睛】本题考查了根据函数的单调性比较式子大小,意在考查学生对于函数性质的综合应用. 7.已知随机变量ξ,η的分布列如下表所示,则( )A .E E ξη<,D D ξη<B .E E ξη<,D D ξη>C .E E ξη<,D D ξη= D .E E ξη=,D D ξη=【答案】C【解析】由题意分别求出E ξ,D ξ,E η,D η,由此能得到E ξ<E η,D ξ>D η. 【详解】 由题意得: E ξ111123326=⨯+⨯+⨯=116, D ξ22211111111151(1)(2)(3)636108266=-⨯+-⨯+-⨯=. E η111131236236=⨯+⨯+⨯=,D η=(1316-)216⨯+(2136-)212⨯+(3136-)21513108⨯=, ∴E ξ<E η,D ξ=D η. 故选:C . 【点睛】本题考查离散型随机变量的分布列、数学期望、方差的求法,考查运算求解能力,是中档题.8.如图,在三棱锥S ABC -中,SA ⊥面ABC ,AB BC E F ⊥,、是SC 上两个三等分点,记二面角E AB F --的平面角为α,则tan α( )A .有最大值43B .有最大值34C .有最小值43D .有最小值34【答案】B【解析】将三棱锥放入长方体中,设AB a ,BC b =,AS c =,计算1tan 2c bα=,2tan 2b c α=,则123tan tan 24πααα⎛⎫=--≤⎪⎝⎭,得到答案. 【详解】将三棱锥放入长方体中,设AB a ,BC b =,AS c =,如图所示: 过E 作EN ⊥平面ABC 与N ,NM AB ⊥与M ,连接ME , 则EMN ∠为二面角E AB C --的平面角,设为1α,则13NE c =,23MN b =,故1tan 2cbα=. 同理可得:设二面角F AB S --的平面角为2α,2tan 2b cα=. 12121231tan tan 34tan tan 2tan tan 422c b b cααπααααα-⎛⎫=--==≤ ⎪+⎝⎭+,当22c bb c=,即b c =时等号成立. 故选:B .【点睛】本题考查了二面角,和差公式,均值不等式,意在考查学生的计算能力,空间想象能力和综合应用能力.9.已知2a b a b ==⋅=,c tb -的最小值为c a -,则4ba c c a +-+-的最小值为( ) A .31 B .2C 3D 31【答案】C【解析】如图所示:在直角坐标系中,取点3,02F ⎛⎫ ⎪ ⎪⎝⎭,3,12A ⎛⎫-- ⎪ ⎪⎝⎭,3,12B ⎛⎫- ⎪ ⎪⎝⎭,得到C 的轨迹方程为223y x =,故4ba c c a CD CF CD CM DN +-+-=+=+≤,得到答案. 【详解】如图所示:在直角坐标系中,取点3,02F ⎛⎫ ⎪ ⎪⎝⎭,3,12A ⎛⎫-- ⎪ ⎪⎝⎭,3,12B ⎛⎫- ⎪ ⎪⎝⎭,则()3,1a AF ==,()0,2b AB ==,满足2a b a b ==⋅=,设c AC =,过点C 作CM 垂直于AB 所在的直线与M ,则c tb -的最小值为MC , 即MC CF =,根据抛物线的定义知C 的轨迹方程为:223y x =.取33,42b a AD ⎛⎫+== ⎪⎝⎭,故31,22D ⎛⎫ ⎪ ⎪⎝⎭, 即34ba c c a CD CF CD CM DN +-+-=+=+≥=, 当DC 垂直于准线时等号成立. 故选:C .【点睛】本题考查了向量和抛物线的综合应用,根据抛物线的定义得到C 的轨迹方程是解题的关键.10.已知数列{}n a 的前n 项和为n S ,且满足()21n n n a S a -=,则下列结论中( )①数列{}2n S 是等差数列;②n a <11n n a a +<A .仅有①②正确B .仅有①③正确C .仅有②③正确D .①②③均正确【答案】D【解析】由条件求得2211n n S S --=,可判断①,由①得n a ,可判断②;由n a 判断③,可知①②③均正确,可选出结果. 【详解】①由条件知,对任意正整数n ,有1=a n (2S n ﹣a n )=(S n ﹣S n ﹣1)(S n +S n ﹣1)221n n S S -=-,又()2111111,211,1n a S a a S =±==∴=-所以{2n S }是等差数列.②由①知n S =或显然,当1n n n n S a S S -==-≤n S =,n a =<②正确③仅需考虑a n ,a n +1同号的情况,不失一般性,可设a n ,a n +1均为正(否则将数列各项同时变为相反数,仍满足条件),由②故有n S =,1n S +=,此时n a =1n a +=从而1n n a a +<=<1.故选:D . 【点睛】本题考查数列递推式,不等式的证明,属于一般综合题.二、填空题11.《孙子算经》是我国古代重要的数学著作,约成书于四、五世纪,传本的《孙子算经》共三卷,其中下卷“物不知数”中有如下问题:“今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?”其意思为:“现有一堆物品,不知它的数目.3个3个数,剩2个;5个5个数,剩3个;7个7个数,剩2个.问这堆物品共有多少个?”试计算这堆物品至少有__________个. 【答案】23【解析】除以3 余2 且除以7 余2的数是除以21 余2的数. 3和7的最小公倍数是21.21的倍数有21,42,63,82...... 除以3 余2 且除以7 余2的数有23,45,65,85,… 其中除以5 余3 的数最小数为23 ,这些东西有23个,故答案为23 .【方法点睛】本题主要考查阅读能力及建模能力,属于难题.弘扬传统文化与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过中国古代数学名著及现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.12.若,x y 满足约束条件220,240,330,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则22x y +的最小值为___________,最大值为___________. 【答案】4513 【解析】如图所示,画出可行域和目标函数,根据目标函数的几何意义得到答案. 【详解】如图所示,画出可行域和目标函数,22z x y =+表示点(),x y 到原点距离的平方.根据图像知:当取B 点,即2,3x y ==时,22z x y =+有最大值为13. 原点到直线220x y +-=的距离为d =22z x y =+有最小值为245d =. 故答案为:45;13.【点睛】本题考查了线性规划问题,将22z x y =+转化为点(),x y 到原点距离的平方是解题的关键.13.从正方体的8个顶点中选4个点作一个平面,可作___________个不同的平面,从正方体的8个顶点中选4个点作一个四面体,可作___________个四面体. 【答案】12 58【解析】根据题意,共有正方体的6个面和6个对角面,共12个不同平面,可作4812C -个四面体,得到答案. 【详解】正方体的8个顶点中选4个点作一个平面,共有正方体的6个面和6个对角面,共12个不同平面,故可作481258C -=个四面体.故答案为:12;58. 【点睛】本题考查了不同平面和四面体的个数,意在考查学生的计算能力和空间想象能力. 14.在ABC 中,内角,,A B C 所对的边,,a b c 依次成等差数列,且() cos cos b C k B c =-,则k 的取值范围___________,若2k=,则cos B 的值为___________. 【答案】1,33⎛⎫ ⎪⎝⎭1116【解析】根据正弦定理得到a k c =,根据等差数列和余弦定理到2332cos 8k kB k+-=,根据三角函数的有界性解得答案. 【详解】()cos cos b C k B c =-,故cos sin cos cos sin sin cos sin sin b C B C B C A ak B c C C c+=+===, 边,,a b c 依次成等差数列,故2b a c =+,且0,2B π⎛⎫∈ ⎪⎝⎭,0cos 1B <<. 根据余弦定理:2222cos b a c ac B =+-,化简整理得到:222332332cos 88a c ac k k B ac k +-+-==,故2332018k kk+-<<,解得1,33k ⎛⎫∈ ⎪⎝⎭.当2k =时,233211cos 816k k B k +-==.故答案为:1,33⎛⎫ ⎪⎝⎭;1116. 【点睛】本题考查了正弦定理,余弦定理,意在考查学生的综合应用能力和计算能力.15.在444x x ⎛-⎫⎪⎝⎭+的展开式中,各项系数和为_______,其中含2x 的项是________.【答案】1 2112x【解析】取1x =,各项系数和为1,8444xx +-=⎫ ⎪⎝⎛⎭,展开式的通项为:4182r r r r T C x -+=⋅,计算得到答案.【详解】444x x ⎛-⎫⎪⎝⎭+的展开式中,取1x =,则各项系数和为1;8444xx +-=⎫ ⎪⎝⎛⎭,则展开式的通项为:()8418822rrr r r r r T C x C x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭. 取2r,则含2x 的项是:222282112C x x ⋅=.故答案为:1;2112x . 【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.16.已知椭圆C :()222210x y a b a b+=>>的左,右焦点分别为1F ,2F ,焦距为2c ,P是椭圆C 上一点(不在坐标轴上),Q 是12F PF ∠的平分线与x 轴的交点,若22QF OQ =,则椭圆离心率的范围是___________.【答案】1,13⎛⎫⎪⎝⎭【解析】由已知结合三角形内角平分线定理可得|PF 1|=2|PF 2|,再由椭圆定义可得|PF 2|23a=,得到a ﹣c 23a a c +<<,从而得到e 13c a =>,再与椭圆离心率的范围取交集得答案. 【详解】∵22QF OQ =,∴223QF c =,143QF c =,∵PQ 是12F PF ∠的角平分线, ∴1243223c PF PF c ==,则122PF PF =,由12232PF PF PF a +==,得223a PF =, 由23a a c a c -<<+,可得13c e a =>,由01e <<,∴椭圆离心率的范围是1,13⎛⎫ ⎪⎝⎭. 故答案为:1,13⎛⎫ ⎪⎝⎭【点睛】本题考查椭圆的简单性质,训练了角平分线定理的应用及椭圆定义的应用,是中档题. 17.对于任意的实数b ,总存在[]0,1x ∈,使得21x ax b ++≥成立,则实数a 的取值范围为_____.【答案】1a ≥或3a ≤-【解析】当1b ≥时,取0x =,满足21x ax b ++≥,考虑11b -<<的情况,讨论02a-≤,1022a <-≤,1122a <-<,12a -≥四种情况,分别计算得到答案. 【详解】当1b ≥时,取0x =,满足21x ax b ++≥,成立; 现在考虑11b -<<的情况: 当02a-≤,即0a ≥时,[]2,1x ax b b b a ++∈++,只需满足11b a ++≥恒成立,1a ≥;当1022a <-≤,即10a -≤<时,22,14a x ax b b b a ⎡⎤++∈-++⎢⎥⎣⎦,只需满足11b a ++≥恒成立,或214a b -≤-恒成立,无解;当1122a <-<,即21a -<<-时,22,4a x ax b b b ⎡⎤++∈-⎢⎥⎣⎦,只需满足214a b -≤-恒成立, 无解; 当12a-≥,即2a ≤-时,[]21,x ax b b a b ++∈++,只需满足11b a ++≤-恒成立,3a ≤-;综上所述:1a ≥或3a ≤-. 故答案为:1a ≥或3a ≤-. 【点睛】本题考查了恒成立问题,意在考查学生的分类讨论的能力,计算能力和应用能力.三、解答题18.已知函数()30,22f x x πωϕωϕ⎛⎫⎛⎫=+><⎪⎪⎝⎭⎝⎭对任意实数x 满足()566f f x f ππ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭. (1)当()f x 的周期最大值时,求函数()f x 的解析式,并求出()f x 单调的递增区间;(2)在(1)的条件下,若,0,26a a f ππ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∈=,求()2f a 的值.【答案】(1)()3f x x π=+⎛⎫⎪⎝⎭,()52,266k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2 【解析】(1)计算周期最大值为2π,从而min 23ω=,3πϕ=,得到函数解析式,取22232kx x k ππππ-+≤+≤+,解得答案.(2)化简得到3cos 5a =,4sin 5a =,代入计算得到答案. 【详解】(1)由题意知周期最大满足5266T πππ=+=,故周期最大值为2π,从而min 23ω=,又函数()f x 图象的一条对称轴为6x π=,所以62()kx k Z ππϕ+=+∈,因为2πϕ<,所以3πϕ=,所以()3f x x π=+⎛⎫⎪⎝⎭. 当()f x 单调递增时,22232kx x k ππππ-+≤+≤+,因此()f x 单调的递增区间为()52,266k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)()3f x x π=+⎛⎫⎪⎝⎭,又6f a π⎛⎫ ⎪=⎝⎭+63a a ππ⎛⎫=⎪⎭=⎝++,即3cos 5a =, 因为0,2a π⎛⎫∈ ⎪⎝⎭,所以4sin 5a =,4324sin 22sin cos 25525a a a ==⨯⨯=,27cos22cos 125a x =-=-,所以()3222cos 232f a a a a π⎛⎫=+=+ ⎪⎝⎭243725225=-⨯=. 【点睛】本题考查了三角恒等变换,三角函数周期,三角函数单调性,意在考查学生对于三角函数知识的综合应用.19.如图,已知四棱锥P -ABCD 中,底面ABCD 是直角梯形,AD //BC ,BC =2AD ,AD ⊥CD ,PD ⊥平面ABCD ,E 为PB 的中点.(1)求证:AE //平面PDC ;(2)若BC =CD =PD ,求直线AC 与平面PBC 所成角的余弦值. 【答案】(1)证明见解析;(2)155【解析】(1)取PC 的中点F ,连结DF 、EF ,推导出四边形ADFE 是平行四边形,从而//AE DF ,由此能证明//AE 平面PDC .(2)推导出DF PC ⊥,由//AE DF ,得AE PC ⊥,再推导出PD BC ⊥,BC CD ⊥,从而BC ⊥平面PDC ,BC DF ⊥,BC AE ⊥,AE PC ⊥,进而AE ⊥平面PBC ,连结EC ,AC ,则AEC ∠就是直线AC 与平面PBC 所成角,由此能求出直线AC 与平面PBC 所成角的余弦值. 【详解】解:(1)证明:取PC 的中点F ,连结DF 、EF ,E 是PB 的中点,//EF BC ∴,且2BC EF =,//AD BC ,2BC AD =,//AD EF ∴,且AD EF =,∴四边形ADFE 是平行四边形,//AE DF ∴,又DF ⊂平面PDC ,//AE ∴平面PDC .(2)解:PD DC =,PDC ∴∆是等腰三角形,DF PC ∴⊥,又//AE DF ,AE PC ∴⊥,PD ⊥平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,BC ∴⊥平面PDC ,DF ⊂平面PDC ,BC DF ∴⊥,BC AE ∴⊥,又AE PC ⊥,AE ∴⊥平面PBC ,连结EC ,AC ,则AEC ∠就是直线AC 与平面PBC 所成角, 设2PD CD BC ===,在Rt PCB ∆中,解得22=PC ,23PB =,3EC =,在Rt ADC ∆中,解得5AC =,∴在Rt AEC ∆中,315cos 55EC ECA AC ∠===, ∴直线AC 与平面PBC 所成角的余弦值为155.【点睛】本题考查线面平行的证明,考查线面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.已知数列{}n a 满足12a =,()1*121222n n n n a a a na n N -+++⋅⋅⋅+=∈.(1)求n a ;(2)求证:()*122311113261112n n a a a n n n N a a a +----<++⋅⋅⋅+<∈---. 【答案】(1)2nn a =;(2)证明见解析【解析】(1)根据题意变换得到数列{}n a 是首项为2,公比为2的等比数列,得到通项公式.(2)11112n n n a b a +-=<-,11111232n n nn a b a +-=≥--⋅,代入计算得到答案.【详解】(1)由1121222n n n n a a a na -+++⋅⋅⋅+=得3121212222n n n na a na a a +-+++⋅⋅⋅+=, 所以当2n ≥时 ()312122112222n n n n n a a a a a ----+++⋅⋅⋅+=, 因此有()()112112222nn n n n n a a na n +---=-≥,即()1221n n n a na n a +=--, 整理得12(2)n n a a n +=≥,又12a =,212a a =,所以数列{}n a 是首项为2,公比为2的等比数列,求得2nn a =.(2)记1111212112121212n nn n n n n a b a +++---==<=---, 故122311111111112222n n a a a na a a +---++⋅⋅⋅+<++⋅⋅⋅+=---,又112111212111111122121212222422232nnn nn n n n nn a b a ++++----====-=-≥-----⋅-⋅, 所以122311111111111326211112233223612n n n n a a a n n n n a a a +⎛⎫- ⎪----⎝⎭++⋅⋅⋅+≥-=-+⋅>-=----. 【点睛】本题考查了数列的通项公式,证明数列不等式,意在考查学生对于数列的放缩能力和应用能力.21.已知点M 为抛物线2:4C y x =上异于原点O 的任意一点,F 为抛物线的焦点,连接MF 并延长交抛物线C 于点N ,点N 关于x 轴的对称点为A . (1)证明:直线MA 恒过定点;(2)如果FM OM λ=,求实数λ的取值范围.【答案】(1)证明见解析;(2)2λ≥【解析】(1)设()()2211()4,404,4M t t t N t t ≠,,计算得到114t t=-,直线AM 的方程为()24141ty x t =++,得到答案. (2)计算()224218116t t tλ-=++,设2181m t =-<,讨论0m =,0m <,01m <<三种情况,分别计算得到答案.【详解】(1)设()()2211()4,404,4M t t t N t t ≠,,因为()1,0F ,所以()()2211,14,441,4MF t t FN t t =--=-,由M F N ,,三点共线得()()22111444140t t t t -⋅+-⋅=,化简得114t t=-, 即211,4N t t ⎛⎫ ⎪⎝⎭,由此可得211,4A t t ⎛⎫⎪⎝⎭,所以直线AM 的方程为()2244441t y t x t t -=-+, 即()24141ty x t =++,因此直线MA 恒过定点()1,0-.(2)()()222222422424116181161616FM t t t t t t tOMλ-+-===+++,0λ≥,令2181m t =-<, 如果0m =,则1λ=; 如果0m ≠,则2114910m mλ=+⋅+-, 当0m <时,96m m +≤-,3m =-时等号成立,从而2314λ≤<,即12λ≤<; 当01m <<时,函数910y m m=+-在()0,1上单调递减,当1m =时,0y =,故0y >, 故10910m m>+-,所以21λ>,故1λ>. 综上,实数λ的取值范围为λ≥. 【点睛】本题考查了抛物线中直线过定点问题,求参数范围,意在考查学生的计算能力和综合应用能力.22.已知函数()ln f x x a x =-.(1)若()1f x ≥恒成立,求a 的取值范围;(2)在(1)的条件下,()f x m =有两个不同的零点12,x x ,求证:121x x m +>+. 【答案】(1)1;(2)证明见解析 【解析】(1)求导得到()af x x x'-=,讨论0a ≤和0a >两种情况,根据函数单调性得到()ln 1f a a a a =-=,解得答案.(2)要证明121x x m +>+,只需要证明()111ln 1ln 0x x ---<,设()()()1ln 1ln 01h x x x x =---<<,求导得到单调性,得到()()10hx h <=,得到证明.【详解】(1)由已知得函数()f x 的定义域为(0,)+∞,且()1a x a f x x x'-=-=, 当0a ≤时,()0f x '>,()f x 在()0,∞+上单调递增, 且当0x →时,()f x →-∞,不合题意; 当0a >时,由()0f x '=得x a =,所以()f x 在()0,a 上单调递减,在(,)a +∞上单调递增,()f x 在x a =处取到极小值,也是最小值()ln f a a a a =-,由题意,()ln 1f a a a a =-≥恒成立,令()ln g x x x x =-,()ln g x x '=-,()g x 在()0,1上单调递增,在(1,)+∞上单调递减,所以()()ln 11g x x x x g =-≤=,所以()ln 1f a a a a =-=,即1a =. (2)()ln f x x x =-,且()f x 在1x =处取到极小值1,又0x →时,()f x →+∞,x →+∞时,()f x →+∞,故1m 且1201x x <<<, 要证明:121x x m +>+,只需证明211x m x >+-,又2111x m x >+->, 故只需证明:()()211f x f m x >+-,即证:()11m f m x >+-, 即证:()111ln 1m m x m x >+--+-,即证:()111ln 1ln 0x x ---<,设()()()1ln 1ln 01h x x x x =---<<,则()()()11ln 11ln 1ln x x xh x x x x x -+'=-+=--,因为01x <<,所以()1ln 0x x ->,由(1)知ln 1x x ≤-恒成立, 所以11ln1,ln 1x x x x x≤-∴-≤-,即1ln 0x x x -+≥, 所以()h x 在01x <<上为增函数,所以()()10h x h <=,即命题成立. 【点睛】本题考查了不等式恒成立,零点问题,意在考查学生的计算能力和转化能力,综合应用能力.。
浙江省浙南名校联盟2018-2019学年高二数学上学期期末联考试题(含解析)选择题部分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则使成立的的值是()A. -1B. 0C. 1D. -1或1【答案】A【解析】【分析】根据集合A,B,以及B⊆A即可得出,从而求出a=﹣1.【详解】解:∵A={﹣1,0,1},B={a,a2},且B⊆A;∴∴a=﹣1.故选:A.【点睛】本题考查列举法的定义,集合元素的互异性,以及子集的定义.2.已知复数,则()A. B. C. D.【答案】A【解析】【分析】把z=﹣2+i代入,再利用复数代数形式的乘除运算化简得答案.【详解】解:由z=﹣2+i,得.故选:A.【点睛】本题考查了复数代数形式的乘除运算,是基础题.3.若为实数,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】【分析】求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.【详解】解:由得0<a<1,则“a<1”是“”的必要不充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键.4.若实数,满足约束条件,则的最大值为()A. B. 0 C. D. 1【答案】C【解析】【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x+2y对应的直线进行平移,可得当x,y时,z取得最大值.【详解】解:作出变量x,y满足约束条件表示的平面区域,得到如图的△ABC及其内部,其中A(,),B(,﹣1),C(2,﹣1)设z=F(x,y)=x+2y,将直线l:z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值=F(,).故选:C.【点睛】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.在中,是的中点,,点在上且满足,则等于()A. B. C. D.【答案】B【解析】【分析】由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.【详解】解:∵M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足∴P是三角形ABC的重心∴又∵AM=1∴∴【点睛】判断P点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:或取得最小值③坐标法:P点坐标是三个顶点坐标的平均数.6.设函数,将的图像向平移个单位后,所得的函数为偶函数,则的值可以是()A. 1B.C. 2D.【答案】D【解析】【分析】利用函数y=A sin(ωx+φ)的图象变换规律,可得平移后函数的解析式,再根据三角函数的奇偶性,求得ω的值.【详解】解:将函数f(x)=2sin(ωx)的图象向右平移个单位后,可得y=2sin(ωx)的图象.∵所得的函数为偶函数,∴kπ,k∈Z.令k=﹣1,可得ω,故选:D.【点睛】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,三角函数的奇偶性,属于基础题.7.函数的图像可能是()A. B.C. D.【答案】A【分析】判断函数的奇偶性和对称性,利用特征值的符号是否一致进行排除即可.【详解】解:f(﹣x)f(x),则函数f(x)是奇函数,图象关于原点对称,排除B,D,函数的定义域为{x|x≠0且x≠±1},由f(x)=0得 sin x=0,得距离原点最近的零点为π,则f()0,排除C,故选:A.【点睛】本题主要考查函数图象的识别和判断,利用对称性以及特殊值进行排除是解决本题的关键.8.设等差数列的前项和为,数列的前项和为,下列说法错误..的是()A. 若有最大值,则也有最大值B. 若有最大值,则也有最大值C. 若数列不单调,则数列也不单调D. 若数列不单调,则数列也不单调【答案】C【解析】【分析】根据等差数列的性质知数列{a2n﹣1}的首项是a1,公差为2d,结合等差数列的前n项和公式以及数列的单调性和最值性与首项公差的关系进行判断即可.【详解】解:数列{a2n﹣1}的首项是a1,公差为2d,A.若S n有最大值,则满足a1>0,d<0,则2d<0,即T n也有最大值,故A正确,B.若T n有最大值,则满足a1>0,2d<0,则d<0,即S n也有最大值,故B正确,C.S n=na1•d n2+(a1)n,对称轴为n,T n=na1•2d=dn2+(a1﹣d)n,对称轴为n•,不妨假设d>0,若数列{S n}不单调,此时对称轴n,即1,此时T n的对称轴n•1,则对称轴•有可能成立,此时数列{T n}有可能单调递增,故C错误,D.不妨假设d>0,若数列{T n}不单调,此时对称轴n•,即2,此时{S n}的对称轴n2,即此时{S n}不单调,故D正确则错误是C,故选:C.【点睛】本题主要考查与等差数列有关的命题的真假关系,涉及等差数列前n项和公式的应用以及数列单调性的判断,综合性较强,难度较大.9.已知椭圆和双曲线有共同的焦点,,点是,的交点,若是锐角三角形,则椭圆离心率的取值范围是()A. B. C. D.【答案】C【解析】【分析】设∠F1PF2=θ,则,得出,利用椭圆和双曲线的焦点三角形的面积公式可得出,结合c=2,可得出,然后将椭圆和双曲线的方程联立,求出交点P的横坐标,利用该点的横坐标位于区间(﹣c,c),得出,可得出,从而得出椭圆C1的离心率e 的取值范围.【详解】解:设∠F1PF2=θ,则,所以,,则,由焦点三角形的面积公式可得,所以,,双曲线的焦距为4,椭圆的半焦距为c=2,则b2=a2﹣c2=a2﹣4>3,得,所以,椭圆C1的离心率.联立椭圆C1和双曲线C2的方程,得,得,由于△PF1F2为锐角三角形,则点P的横坐标,则,所以,.因此,椭圆C1离心率e的取值范围是.故选:C.【点睛】本题考查椭圆和双曲线的性质,解决本题的关键在于焦点三角形面积公式的应用,起到了化简的作用,同时也考查了计算能力,属于中等题.10.如图,在棱长为1正方体中,点,分别为边,的中点,将沿所在的直线进行翻折,将沿所在直线进行翻折,在翻折的过程中,下列说法错误..的是()A. 无论旋转到什么位置,、两点都不可能重合B. 存在某个位置,使得直线与直线所成的角为C. 存在某个位置,使得直线与直线所成的角为D. 存在某个位置,使得直线与直线所成的角为【答案】D【解析】【分析】利用圆锥的几何特征逐一判断即可.【详解】解:过A点作AM⊥BF于M,过C作CN⊥DE于N点在翻折过程中,AF是以F为顶点,AM为底面半径的圆锥的母线,同理,AB,EC,DC也可以看成圆锥的母线;在A中,A点轨迹为圆周,C点轨迹为圆周,显然没有公共点,故A正确;在B中,能否使得直线AF与直线CE所成的角为60°,又AF,EC分别可看成是圆锥的母线,只需看以F为顶点,AM为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B正确;在C中,能否使得直线AF与直线CE所成的角为90°,只需看以F为顶点,AM为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故C正确;在D中,能否使得直线与直线所成的角为,只需看以B为顶点,AM为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故D不成立;故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查逻辑推理能力,考查数形结合思想,是中档题.非选择题部分二、填空题.11.双曲线的渐近线方程是____;焦点坐标____.【答案】 (1). (2).【解析】【分析】直接根据双曲线的简单性质即可求出.【详解】解:在双曲线1中,a2=2,b2=1,则c2=a2+b2=3,则a,b=1,c,故双曲线1的渐近线方程是y=±x,焦点坐标(,0),故答案为:y=±x,(,0)【点睛】本题考查了双曲线的简单性质,属于基础题.12.在中,内角,,所对的边分别为,,,若,,则___;的面积是___【答案】 (1). 2 (2).【解析】【分析】由余弦定理可求c,利用同角三角函数的基本关系式求出sin C,然后由△ABC的面积公式求解即可.【详解】解:在△ABC中,a=b,cos C,由余弦定理得:c2=a2+b2﹣2ab cos C4,则c=2;在△ABC中,∵cos C,∴sin C,∴S△ABC ab•sin C.故答案为:2;.【点睛】本题考查余弦定理,考查同角三角函数的基本关系式的应用,考查三角形的面积公式,是基础题.13.已知某几何体的三视图如图所示,则该几何体的体积为____;表面积为____.【答案】 (1). 3 (2). 9+【解析】【分析】根据三视图知该几何体是直三棱柱,结合图中数据求出它的体积和表面积.【详解】解:根据三视图知该几何体是直三棱柱,如图所示;则该几何体的体积为V=S△ABC•AA13×1×2=3;表面积为S=2S△ABC=23×1+3×2+22=9+22.故答案为:3,9+22.【点睛】本题考查了根据三视图求几何体体积和表面积的应用问题,是基础题.14.若实数,满足,则的最小值为____.【答案】4【解析】【分析】由已知可知,2(a﹣1)+b﹣2=2,从而有()[2(a﹣1)+b﹣2)],利用基本不等式可求最小值.【详解】解:∵a>1,b>2满足2a+b﹣6=0,∴2(a﹣1)+b﹣2=2,a﹣1>0,b﹣2>0,则()[2(a﹣1)+b﹣2)],(4),当且仅当且2a+b﹣6=0即a,b=3时取得最小值为4.故答案为:4.【点睛】本题主要考查了基本不等式求解最值的应用,解题的关键是配凑基本不等式的应用条件.15.已知直线,曲线,若直线与曲线相交于、两点,则的取值范围是____;的最小值是___.【答案】 (1). (2).【解析】【分析】因为过定点的直线与半圆C的图象有两个交点,结合图象知:k PE≤k≤k PO,求出直线PO和PE 的斜率即可;当PC⊥AB时,|AB|最小.【详解】解:直线l:kx﹣y k=0过定点(1,),曲线C为半圆:(x﹣2)2+y2=4(y≥0)如图:由图可知:k OP,k PE,∴;要使弦长AB最小,只需CP⊥AB,此时|AB|=22,故答案为:[,];.【点睛】本题考查了直线与圆的位置关系,考查了垂径定理,考查了数形结合思想,属于中档题.16.点是边长为2的正方形的内部一点,,若,则的取值范围为___.【答案】(]【解析】【分析】根据题意可知λ,μ>0,根据条件对λμ两边平方,进行数量积的运算化简,利用三角代换以及两角和与差的三角函数,从而便可得出λμ的最大值.【详解】解:如图,依题意知,λ>0,μ>0;根据条件,12=λ22+2λμ•μ22=4λ2+4μ2.令λ,μ=sinθ,.∴λμ=cosθsinθ=sin(θ);θ, sin(θ)(]∴的取值范围为(]故答案为(].【点睛】本题考查向量数量积的运算及计算公式,以及辅助角公式,三角代换的应用,考查转化思想以及计算能力.17.函数,若此函数图像上存在关于原点对称的点,则实数的取值范围是____.【答案】【解析】【分析】根据函数图象上存在关于原点对称的点,转化为f(﹣x)=﹣f(x)有解,利用参数分离法进行转化求解即可.【详解】解:若函数图象上存在关于原点对称的点,即f(﹣x)=﹣f(x)有解,即a﹣2x﹣ma﹣x=﹣(a2x﹣ma x)=﹣a2x+ma x,即a2x+a﹣2x=m(a x+a﹣x),即m(a x+a﹣x),设t=a x+a﹣x,则t≥22,则(a x+a﹣x)t在[2,+∞)为增函数,∴h(t)=t h(2)=2﹣1=1,则要使m=h(t)=t有解,则m≥1,即实数m的取值范围是[1,+∞),故答案为:[1,+∞).【点睛】本题主要考查函数与方程的应用,根据条件转化为f(﹣x)=﹣f(x)有解,利用参数分离法进行转化是解决本题的关键,综合性较强,有一定的难度.三、解答题(解答应写出文字说明、证明过程或演算步骤.)18.已知函数.(Ⅰ)若为锐角,且,求的值;(Ⅱ)若函数,当时,求的单调递减区间.【答案】(Ⅰ) (Ⅱ)【解析】【分析】(Ⅰ)由已知利用同角三角函数基本关系式可求sinα的值,进而根据二倍角的正弦函数公式即可计算得解;(Ⅱ)由已知利用三角函数恒等变换的应用可求g(x)=2sin(2x),根据正弦函数的单调性即可求解.【详解】(Ⅰ)为锐角,,,,,(Ⅱ),,,所以单调递减区间是【点睛】本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式,三角函数恒等变换的应用,正弦函数的单调性的综合应用,考查了数形结合思想和转化思想,属于基础题.19.如图,在四棱锥中,平面,,,,,.(Ⅰ)求证平面;(Ⅱ)求直线与平面所成线面角的正弦值.【答案】(Ⅰ)见证明;(Ⅱ)【解析】【分析】(Ⅰ)推导出AC⊥PC,AC⊥CD,由此能证明AC⊥平面PCD;(Ⅱ)过D作直线DH⊥PC,AC⊥DH,DH⊥平面PAC,从而∠DCH为直线CD与平面PAC所成线面角,由此能求出直线CD与平面PAC所成线面角的正弦值.【详解】(Ⅰ),,,,,,,,有公共点,,(Ⅱ)方法1:过作直线垂直于,为垂足,,,,为所求线面角,,,方法2:如图建立空间直角坐标系,,,,直线与所成线面角的正弦值为.【点睛】本题考查线面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.已知数列满足:,.(Ⅰ)求证:是等比数列,并求数列的通项公式;(Ⅱ)令,设数列的前项和为,若对一切正整数恒成立,求实数的取值范围.【答案】(Ⅰ)见证明;(Ⅱ)【解析】【分析】(Ⅰ)运用等比数列的定义和通项公式,即可得到所求;(Ⅱ)求得b n=log2(a n+1)=2n﹣1,(),由裂项相消求和,可得S n,再由参数分离和基本不等式可得所求范围.【详解】(Ⅰ)由得且是以4为公比的等比数列,,(Ⅱ),,,,且,当且仅当n=2时取等号,,【点睛】本题考查等比数列的定义、通项公式的运用,考查数列的裂项相消求和,考查不等式恒成立问题解法,注意运用基本不等式,考查运算能力,属于中档题.21.已知椭圆过点,且离心率为.过抛物线上一点作的切线交椭圆于,两点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在直线,使得,若存在,求出的方程;若不存在,请说明理由. 【答案】(Ⅰ)椭圆(Ⅱ)见解析【解析】(Ⅰ)根据已知条件列有关a、b、c的方程组,求出a和b的值,即可得出椭圆C1的方程;(Ⅱ)设直线l的方程为y=kx+t,先利用导数写出直线l的方程,于是得到k=2x0,,将直线l的方程与椭圆C1的方程联立,列出韦达定理,由并代入韦达定理,通过计算得出t的值,可得出x0的值,从而可得出直线l的方程.【详解】(Ⅰ)由题知,得,所以椭圆,(Ⅱ)设的方程:,由(1)知,的方程:,故 . 由,得.所以,即(4t2-4)(k2+1)-8k2t(t-1)+(t-1)2(4k2+1)=0,化简有5t2-2t-3=0,所以t=1或t=,,,【点睛】本题考查直线与椭圆的综合问题,考查椭圆的方程以及韦达定理设而不求法的应用,同时也考查了计算能力,属于中等题.22.已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若,求证:.【答案】(Ⅰ)见解析(Ⅱ)见证明【解析】(Ⅰ)利用导数与函数单调性的关系求解;(Ⅱ)af(x)>lnx⇔.令F(x),F′(x)(x>0).①当∈(0,1]时,F′(x)<0,F(x)单调递减,F(x)≥F(1)=ae>0;②当>1时,令G(x),利用导数求得最小值大于0即可.【详解】解.(1)f(x)的定义域为(﹣∞,0)∪(0,+∞),∵,∴x∈(﹣∞,0),(0,1)时,f′(x)<0,x∈(1,+∞)时,f′(x)>0∴函数f(x)的单调增区间为:(1,+∞),减区间为(﹣∞,0),(0,1).(2)af(x)>lnx⇔.令F(x),F′(x).(x>0).①当∈(0,1]时,F′(x)<0,F(x)单调递减,F(x)≥F(1)=ae>0;②当>1时,令G(x),G.∴G(x)在(1,+∞)单调递增,∵x→1时,G(x)→﹣∞,G(2)=e20,∴G(x)存在唯一零点0∈(1,2),F(x)min=F(x0)∵G(x0)=0,.综上所述,当时,af(x)>lnx成立.【点睛】利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.。
2018-2019学年浙江省宁波市高二(上)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有项是符合题目要求的.)1.(4分)已知圆C的方程为(x+2)2+(y﹣3)2=2,则它的圆心和半径分别为()A.(﹣2,3),2B.(2,﹣3),2C.(﹣2,3),D.(2,﹣3),2.(4分)直线x+y+1=0的倾斜角为()A.B.C.D.3.(4分)已知空间向量=(3,1,0),=(x,﹣3,1),且⊥,则x=()A.﹣3B.﹣1C.1D.24.(4分)已知直线ax+y﹣2+a=0在两坐标轴上的截距相等,则实数a=()A.1B.﹣1C.﹣2或1D.2或15.(4分)对于实数m,“1<m<2”是“方程+=1表示双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.(4分)若x,y满足约束条件,则z=x+y()A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值7.(4分)设a,b为空间两条直线,α,β为空间两个平面,则下列命题中真命题的是()A.若a不平行α,则在α内不存在b,使得b平行aB.若a不垂直α,则在α内不存在b,使得b垂直aC.若α不平行β,则在β内不存在a,使得a平行αD.若α不垂直β,则在β内不存在a,使得a垂直α8.(4分)已知两点M(﹣2,0),N(2,0),若直线y=k(x﹣3)上存在四个点P(i=1,2,3,4),使得△MNP是直角三角形,则实数k的取值范围是()A.(﹣2,2)B.(﹣,)C.(﹣,0)∪(0,)D.(﹣,0)∪(0,)9.(4分)已知双曲线C1:﹣=1(a>0,b>0),C2:﹣=1(m>0,n>0),若双曲线C1,C2的渐近线方程均为y=±kx(k>0),且离心率分别为e1,e2,则e1+e2的最小值为()A.B.2C.D.210.(4分)在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,已知四棱锥S﹣ABCD为阳马,且AB=AD,SD⊥底面ABCD.若E是线段AB上的点(不含端点),设SE与AD所成的角为α,SE与底面ABCD所成的角为β,二面角S﹣AE﹣D的平面角为γ,则A.β≤γ≤αB.β≤α≤γC.α≤γ≤βD.α≤β≤γ二、填空题(本大题共7小题,单空题每题4分,多空题每题6分,共36分)11.(6分)椭圆x2+=1的长轴长为,左顶点的坐标为.12.(6分)命题“若整数a,b都是偶数,则a+b是偶数”的否命题可表示为,这个否命题是一个命题.(可填:“真”,“假”之一)13.(6分)已知圆C:x2+y2﹣4x+a=0,则实数a的取值范围为;若圆x2+y2=1与圆C外切,则a的值为.14.(4分)已知AE是长方体ABCD﹣EFGH的一条棱,则在这个长方体的十二条棱中,与AE异面且垂直的棱共有条.15.(4分)已知双曲线﹣=1(m>0)的一个焦点为F1(5,0)(设另一个为F2,P是双曲线上的一点,若|PF1|=9,则|PF2|=.(用数值表示)16.(4分)如图,在棱长为3的正方体ABCD﹣A1B1C1D1中,点E是BC的中点,P是平面CDD1C1内一点,且满足S△APD=S△CPE,则线段C1P的长度的取值范围为.17.(6分)已知A(﹣3,0),B(3,0)及两直线l1:x﹣y+1=0,l2:x﹣y﹣1=0,作直线l3垂直于l1,l2,且垂足分别为C、D,则|CD|=,|AC|+|CD|+|DB|的最小值为三、解答题(本大题共5小题,共74分.解谷题应写出文字说明、证明过程或演算步骤.)18.(14分)在平面直角坐标系中,已知直线l经过直线4x+3y+2=0和2x+y+2=0的交点P.(Ⅰ)若l与直线2x+3y﹣1=0垂直,求直线l的方程;(Ⅱ)若l与圆x2+2x+y2=0相切,求直线l的方程.19.(15分)如图,α∥β∥γ,直线a与b分别交α,β,γ于点A,B,C和点D,E,F (Ⅰ)求证:=;(Ⅱ)若AB=BC,AD=2,BE=,CF=4,求直线AD与CF所成的角.20.(15分)如图,在四棱锥M﹣ABCD中,平面ABCD⊥平面MCD,底面ABCD是正方形,点F在线段DM上,且AF⊥MC.(Ⅰ)证明:MC⊥平面ADM;(Ⅱ)若AB=2,DM=MC,且直线AF与平面MBC所成的角的余弦值为,试确定点F的位置.21.(15分)已知抛物线C:x2=2py(p>0)的焦点为F,M是抛物线C上位于第一象限内的任意一点,O为坐标原点,记经过M,F,O三点的圆的圆心为Q,且点Q到抛物线C 的准线的距离为.(Ⅰ)求点Q的纵坐标;(可用p表示)(Ⅱ)求抛物线C的方程;(Ⅲ)设直线l:y=kx+与抛物线C有两个不同的交点A,B.若点M的横坐标为2,且△QAB的面积为2,求直线l的方程.22.(15分)已知椭圆E:+=1(a>b>0)的离心率为,直线l:y=﹣x与椭圆E相交于M,N两点,点P是椭圆E上异于M,N的任意一点,若点M的横坐标为﹣,且直线l外的一点Q满足:⊥,⊥.(Ⅰ)求椭圆E的方程;(Ⅱ)求点Q的轨迹;(Ⅲ)求△MNQ面积的最大值.2018-2019学年浙江省宁波市高二(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有项是符合题目要求的.)1.【解答】解:由圆C的方程为(x+2)2+(y﹣3)2=2,可得它的圆心和半径分别为(﹣2,3),.故选:C.2.【解答】解:直线的斜率等于﹣,设它的倾斜角等于θ,则0≤θ<π,且tanθ=﹣,∴θ=,故选:A.3.【解答】解:∵∴∴3x﹣3=0解得x=1故选:C.4.【解答】解:﹣2+a=0,即a=2时,直线ax+y﹣2+a=0化为2x+y=0,它在两坐标轴上的截距为0,满足题意;﹣2+a≠0,即a≠2时,直线ax+y﹣2+a=0化为+=1,它在两坐标轴上的截距为=2﹣a,解得a=1;综上所述,实数a=2或a=1.故选:D.5.【解答】解:若方程+=1表示双曲线,则(m﹣1)(m﹣2)<0,得1<m<2,则“1<m<2”是“方程+=1表示双曲线”的充要条件,故选:C.6.【解答】解:x,y满足的平面区域如图:当直线y=﹣x+z经过A时z最小,经过B时z最大,由得到A(2,0)所以z的最小值为2+0=2,由于区域是开放型的,所以z无最大值;故选:B.7.【解答】解:若a不平行α,则当a⊂α时,在α内存在b,使得b∥a,故A错误;若a不垂直α,则在α内至存在一条直线b,使得b垂直a,故B错误;若α不平行β,则在β内在无数条直线a,使得a平行α,故C错误;若α不垂直β,则在β内不存在a,使得a垂直α,由平面与平面垂直的性质定理得D 正确.故选:D.8.【解答】解:当P1M⊥x,P4M⊥x时,此时存在两个直角三角形,当MN为直角三角形的斜边时,△MNP是直角三角形,要使直线y=k(x﹣3)上存在四个点P(i=1,2,3,4),使得△MNP是直角三角形,等价为以MN为直径的圆和直线y=k(x﹣3)相交,且k≠0,圆心O到直线kx﹣y﹣3k=0的距离d=<2,平方得9k2<4(1+k2)=4+4k2,即5k2<4,即k2<,得﹣<k<,即﹣<k<,又k≠0,∴实数k的取值范围是(﹣,0)∪(0,),故选:D.9.【解答】解:∴双曲线C1,C2的渐近线方程均为y=±kx,∴=k,=k,∴e1==,e2===,∴e12﹣1=k2,e22﹣1=,∴(e12﹣1)(e22﹣1)=1,∴e12e22﹣(e12+e22)=0,∴e12e22﹣(e1+e2)2+e1e2=0∴()4﹣(e1+e2)2+()2≥0,当且仅当e1=e2=时取等号,即k =1时取等号,∴(e1+e2)2≥8∴e1+e2≥2故选:B.10.【解答】解:四棱锥S﹣ABCD为阳马,且AB=AD,SD⊥底面ABCD.E是线段AB上的点(不含端点),设SE与AD所成的角为α,SE与底面ABCD所成的角为β,二面角S﹣AE﹣D的平面角为γ,∴β<γ=∠SAD<α,∴β≤γ≤α.故选:A.二、填空题(本大题共7小题,单空题每题4分,多空题每题6分,共36分)11.【解答】解:由椭圆x2+=1可知,椭圆焦点在y轴上,∴,∴长轴长2a=10,左顶点的坐标为(﹣1,0).故答案为:10;(﹣1,0).12.【解答】解:命题“若整数a,b都是偶数,则a+b是偶数”的否命题可表示为“若整数a,b不都是偶数,则a+b不是偶数”,由a,b均为奇数,可得a+b为偶数,则原命题的否命题为假命题,故答案为:若整数a,b不都是偶数,则a+b不是偶数,假.13.【解答】解:由x2+y2﹣4x+a=0得(x﹣2)2+y2=4﹣a,若方程表示圆,则4﹣a>0,得a<4,即实数a的取值范围是(﹣∞,4),圆心C(2,0),半径R=,若圆x2+y2=1与圆C外切,则|OC|=R+1,即2=+1,即=1,即4﹣a=1,得a=3,故答案为:(﹣∞,4),3.14.【解答】解:作出长方体ABCD﹣EFGH,在这个长方体的十二条棱中,与AE异面且垂直的棱有:GH,CD,BC,GF,共4条.故答案为:4.15.【解答】解:∵双曲线﹣=1(m>0)的一个焦点为F1(5,0),∴c=5,∴a2=c2﹣b2=25﹣9=16,∴a=4,∵P为双曲线上一点,且|PF1|=9,∴||PF2|﹣|PF1||=2a=8,∴|PF2|=17,或|PF2|=1,故答案为:17或116.【解答】解:由S△APD=S△CPE,得2PD=PC,在平面CDD1C1内,以D为原点建立坐标系如图,设P(x,y),则4(x2+y2)=(x﹣3)2+y2,整理得(x+1)2+y2=4,设圆心为M,求得|C1M|=5,∴C1P的取值范围是:[5﹣2,5+2],故答案为:[3,7].17.【解答】解:∵两直线l1:x﹣y+1=0,l2:x﹣y﹣1=0互相平行,作直线l3垂直于l1,l2,且垂足分别为C、D,∴|CD|==,∵A(﹣3,0),B(3,0)及两直线l1:x﹣y+1=0,l2:x﹣y﹣1=0,作直线l3垂直于l1,l2,且垂足分别为C、D,∴当直线CD的方程为:x+y=0时,|AC|+|CD|+|DB|取最小值,联立,得C(﹣),联立,得D(),∴|AC|+|CD|+|DB|的最小值为:++=.故答案为:,.三、解答题(本大题共5小题,共74分.解谷题应写出文字说明、证明过程或演算步骤.)18.【解答】解:(Ⅰ)由,解得x=﹣2,y=2,则点P(﹣2,2)由于点P(﹣2,2),且所求直线l与直线2x+3y﹣1=0垂直,设所求直线l的方程为3x﹣2y+m=0,将点P坐标代入得3×(﹣2)﹣2×2+m=0,解得m=10.故所求直线l的方程为3x﹣2y+10=0.(II)圆的标准方程为(x+1)2+y2=1,所以圆心为(﹣1,0),半径为2,若直线l的斜率不存在,此时x=﹣2,满足条件,若直线l的斜率存在,设直线l的方程为y﹣2=k(x+2),则圆心到直线l的距离d==1,解得k=﹣19.【解答】(Ⅰ)证明:连接AF交平面β于G,连接AD,BE,CF,BG,EG.∵β∥γ,平面ACF∩β=BG,平面ACF∩γ=CF,∴BG∥CF,则,同理,由α∥β,可得GE∥AD,则.∴=;(Ⅱ)解:∵BG∥CF,GE∥AD,∴∠BGE(或其补角)就是直线AD与CF所成的角.∵,,∴BG=2,GE=1,又BE=,CF=4,∴由余弦定理可得cos,得∠BGE=120°.∴直线AD与CF所成的角为60°.20.【解答】证明:(Ⅰ)平面ABCD⊥平面MCD,平面ABCD∩平面MCD=CD,AD⊥CD,AD⊂平面ABCD,∴AD⊥平面MCD,∵MC⊂平面MCD,∴AD⊥MC,又AF⊥MC,AD∩AF=A,∴MC⊥平面ADM.解:(Ⅱ)由MC⊥平面ADM,知MC⊥MD,∴MC=MD=,过M作MO⊥CD,交CD于O,∵平面ABCD⊥平面MCD,∴MO⊥平面ABCD,以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角坐标系,则A(2,0,0),B(2,2,0),C(0,2,0),D(0,0,0),M(0,1,1),设=,(λ>0),则F(0,λ,λ),∴=(﹣2,λ,λ),=(﹣2,0,0),=(﹣2,﹣1,1),设平面MBC的一个法向量=(x,y,z),则由,得,取y=1,得=(0,1,1),设直线AF与平面MBC所成的角为θ,则cosθ=,∴sinθ===,解得,∴F是DM的中点.21.【解答】解:(Ⅰ)设Q(x Q,y Q),∵焦点F(0,)以及△MFO的外接圆的圆心为Q,∴Q点的纵坐标为y Q=,(Ⅱ)∵抛物线C的准线方程为y=﹣,∴﹣(﹣)=,解得p=2,∴抛物线C的方程x2=4y.(Ⅲ)可知M(2,1),F(0,1),O(0,0),∴△MFO为直角三角形,其外接圆圆心在MO的中点上,即Q的坐标为(1,),∴点Q到直线AB的距离d=,设A(x1,y1),B(x2,y2),联立方程组,消y可得x2﹣4kx﹣2=0,∴x1+x2=4k,x1x2=﹣2,∴|AB|=•=•,∴S△QAB=|AB|•d==2,解得k2=2,即k=±,∴直线l的方程为y=±x+22.【解答】解:(Ⅰ)可知,又M在E上,所以,另外,所以可解得a=2,,得E的方程为;(Ⅱ)由直线l与椭圆E相交于M、N两点,得知M、N关于原点对称,所以,设点Q(x,y),P(x0,y0),则,,,,由,,得,即,两时相乘得.又因为点P(x0,y0)在E上,所以,,即,代入,即.当时,得2x2+y2=5;当时,则得或.此时,或,也满足方程2x2+y2=5.若点P与点M重合,即.由,解得或.若点P与点N重合时,同理可得或.故所求点Q的轨迹是:椭圆2x2+y2=5除去四个点、、、的曲线;(Ⅲ)因为点Q(x,y)到直线的距离,且易知,所以,△MNQ的面积为===═=.当且仅当时,即当或时,等号成立,所以,△MNQ面积的最大值为;(一)几何相切法:设l的平行直线,由,得,由△=0得.可得此时椭圆2x2+y2=5与l′相切的切点为、,易得△MNQ面积的最大值为(因为).(二)三角换元法:由Q的轨迹方程2x2+y2=5,设,,代入,∴.易得△MNQ面积的最大值为(因为).。
浙江省浙南名校联盟(温州九校)2018-2019学年高一上学期期末联考数学试题一、选择题(本大题共10小题,共40.0分)1.A. B. C. D.【答案】B【】【分析】直接利用诱导公式化简求值.【详解】,故选:B.【点睛】本题主要考查诱导公式化简求值,意在考察学生对该知识的理解掌握水平.2.下列函数中,即不是奇函数也不是偶函数的是A. B.C. D.【答案】B【】【分析】对四个选项逐一分析,从而得出正确选项.【详解】对于A选项,,故函数为偶函数.对于C选项,,故为奇函数.对于D选项,正切函数是奇函数,排除A,C,D三个选项,则B选项符合题意.对于B选项由,解得,定义域不关于原点对称,即不是奇函数也不是偶函数.故选B.【点睛】本小题主要考查函数的奇偶性的定义以及函数奇偶性的判断,属于基础题.3.将函数的图象沿x轴向右平移个单位,得到函数的图象,则是A. B. C. D.【答案】D【】【分析】的图象沿轴向右平移个单位,即,化简后求得的表达式.【详解】依题意的图象沿轴向右平移个单位,得到,即,故选D.【点睛】本小题主要考查三角函数图像变换,属于基础题.变换过程中要注意的系数的影响.4.已知点,,向量,则向量A. B. C. D.【答案】A【】【分析】先求得的坐标,然后利用减法求得的坐标.【详解】依题意,所以,故选A.【点睛】本小题主要考查向量减法的坐标运算,考查运算求解能力,属于基础题.5.若,则A. B. C. D.【答案】C【】【分析】先根据已知确定位于第二或第四象限,再根据x的范围讨论选项三角函数值的符合得解. 【详解】,位于第二或第四象限,若x位于第二象限,则,,此时,若x位于第四象限,则,,此时,综上,故选:C.【点睛】本题主要考查三角函数的象限符合,考察二倍角的公式,意在考察学生对这些知识的理解掌握水平和分析推理计算能力.6.已知向量,,t为实数,则的最小值是A. 1B.C.D.【答案】B【】【分析】先求得的坐标,利用模的运算列出表达式,用二次函数求最值的方法求得最小值.【详解】依题意,故,当时,取得最小值为.故选B.【点睛】本小题主要考查向量减法的坐标运算,考查向量模的坐标表示,考查二次函数最值的求法,属于中档题.7.若m是函数的零点,则m在以下哪个区间A. B. C. D.【答案】C【】【分析】计算的值,利用零点的存在性定理判断所在的区间.【详解】由于,,根据零点的存在性定理可知,在区间,故选C.【点睛】本小题主要考查零点存在性定理的应用,考查函数零点区间的判断,属于基础题.8.已知t为常数,函数在区间上的最大值为2,则t的值为A. B. C. D.【答案】A【】【分析】注意到为上的增函数,按,两类,求得的最大值并由此列方程,解方程求得的值. 【详解】令,为上的增函数.当,即时,,,舍去.当,即时,由于单调递增,故函数的最值在端点处取得..若,解得(舍去).当时,符合题意. 当,解得.当时,,不符合题意.当时,符合题意.故或.所以选A.【点睛】本小题主要考查函数的单调性,考查含有绝对值的函数的最值有关的问题,考查分类讨论的数学思想方法.由于函数是含有绝对值的,对于绝对值内的函数的符号就是解题的关键.而绝对值内的函数是单调递增函数,加了绝对值后,最大值会在区间的端点取得,由此分类讨论求得的的值.9.在中,,若,则的最大值是A. B.C.D.【答案】B 【】 【分析】利用向量数量积模的表示化简,利用余弦定理求得的表达式,求得的最小值,由此求得的最大值.【详解】由得,故为钝角,且,.由余弦定理得,即,所以的最大值为,故选B.【点睛】本小题主要考查向量数量积的表示,考查余弦定理的应用,考查利用基本不等式求最小值,考查余弦函数的性质,综合性较强,属于中档题.向量在本题中是一个工具的作用,由此得到三角形的边角关系.要求角的最大值,则要求得其余弦值的最小值,利用基本不等式可以求得这个最小值.10.已知函数是偶函数,且,若,,则下列说法错误的是A. 函数的最小正周期是10B. 对任意的,都有C. 函数的图象关于直线对称D. 函数的图象关于中心对称【答案】A【】【分析】根据的为偶函数以及,可得到函数是周期为的周期函数,假设出符合题意的函数.对四个选项逐一分析,由此得出说法错误的选项.【详解】由于是偶函数,且,所以函数是周期为的周期函数,不妨设.对于选项,由于,所以函数的最小正周期为,故A选项说法错误.对于B选项,函数,由于是的周期,故是的周期,故,故B选项说法正确.对于C选项,由于,结合前面分析可知,故C选项判断正确.对于D选项.,,故函数关于对称,D选项说法正确.综上所述,本小题选A.【点睛】本小题考查函数的奇偶性,考查函数的对称性,考查函数的周期性等知识,属于中档题.二、填空题(本大题共7小题,共36.0分)11.已知向量,则______;的夹角为______.【答案】 (1). (2).【】【分析】利用数量积的坐标运算取得,利用夹角公式求得两个向量夹角的余弦值,由此求得两个限量的夹角.【详解】依题意,而,所以,所以两个向量的夹角为.【点睛】本小题主要考查向量的数量积运算,考查向量的夹角公式,属于基础题.12.已知,且,则______;______.【答案】 (1). (2).【】【分析】先求得的范围,然后利用同角三角函数关系求得的值,利用,展开后求得的值.【详解】由得,所以..【点睛】本小题主要考查同角三角函数的基本关系式,考查两角和的正弦公式,属于基础题.13.已知函数,则的最小正周期是______;的对称中心是______.【答案】 (1). (2). ,【】【分析】根据取得函数的最小正周期,利用求得的对称中心.【详解】依题意的,即函数的最小正周期为.令,解得,所以函数的对称中心是.【点睛】本小题主要考查三角函数的最小正周期,考查三角函数零点的求法,属于基础题.对于函数以及函数,最小正周期的计算公式为.对于,最小正周期的计算公式为.对称中心的求法是类比的对称中心来求解.14.已知二次函数的两个零点为1和n,则______;若,则a 的取值范围是______.【答案】 (1). -3 (2).【】【分析】利用求得,进而求得另一个零点.解一元二次不等式求得的取值范围.【详解】依题意可知,即,,所以另一个零点为即.由得,即,解得.【点睛】本小题主要考查二次函数零点问题,考查十字相乘法,考查一元二次不等式的解法,考查运算求解能力,属于基础题.已知二次函数的一个零点,可以将零点代入函数的表达式,求出里面未知参数的值,从而求得另一个零点.解一元二次不等式主要步骤是先求零点,然后根据开口方向写出不等式的解集.15.已知对数函数的图象过点,则不等式的解集______.【答案】【】【分析】设,利用点求得的值,利用对数运算化简不等式后求得不等式的解集.【详解】设,代入点得,故,即.故原不等式可化为,即,解得,故不等式的解集为.【点睛】本小题主要考查对数函数式的求法,考查对数不等式的解法,属于中档题.16.函数,若方程恰有三个不同的解,记为,,,则的取值范围是______.【答案】【】【分析】画出函数的图像,根据图像与有三个不同的交点,判断出的位置,由此求得的取值范围.【详解】画出函数的图像如下图所示,由图可知,由于,关于对称,即.所以.【点睛】本小题主要考查分段函数的图像与性质,考查指数函数和三角函数图像的画法,考查三角函数的对称性,属于中档题.17.如图,已知正方形ABCD的边长为1,点E,F分别为边AB,DC上动点,则的取值范围是_____.【答案】【】【分析】以为坐标原点建立平面直角坐标系,设出两点的坐标,利用坐标表示,由此求得的取值范围.【详解】以为坐标原点建立平面直角坐标系如下图所示,设故.由于,故当时,取得最大值为.令,则,由于关于的一元二次方程有解,故,即,而,故.综上所述,的取值范围是.【点睛】本小题主要考查向量数量积的坐标表示,考查最大最小值的求法,考查分析和截距问题的能力,属于难题.三、解答题(本大题共5小题,共74.0分)18.已知,,Ⅰ当时,求;Ⅱ若,求实数a的取值范围.【答案】(Ⅰ)(Ⅱ)【】【分析】(I)当是,解一元二次不等式求得,解对数不等式求得,求得在求得.(II)构造函数,根据是集合的子集,可知,解不等式组求得的取值范围.【详解】解:(Ⅰ)当时,由得:则所以(Ⅱ)若,则当时,恒成立令则所以.【点睛】本小题主要考查一元二次不等式的解法,考查集合补集和交集的概念,考查子集的概念,属于中档题.19.已知向量.Ⅰ求的取值范围;Ⅱ若,求的值.【答案】(Ⅰ)(Ⅱ)【】【分析】(I)将两边平方后,利用辅助角公式,化简合并,由此求得的取值范围,进而求得的取值范围.(II)利用求得的值,进而求得的值,利用两角和的正弦公式,求得的值.【详解】解:(Ⅰ)则∴(Ⅱ)若由得则∴【点睛】本小题主要考查向量模的运算,考查三角函数辅助角公式,考查两角和的正弦公式,属于中档题.20.已知函数为偶函数,Ⅰ求实数t的值;Ⅱ是否存在实数,使得当时,函数的值域为?若存在请求出实数a,b的值,若不存在,请说明理由.【答案】(Ⅰ)1(Ⅱ)不存在【】【分析】(I)利用偶函数的定义,通过列方程,由此求得的值.(II)由(I)求得的式,并判断出函数在上为增函数,根据函数的值域列方程组,求得的值,由此判断出不存在符合题意的的值.【详解】解:(Ⅰ)函数为偶函数,∴,∴(Ⅱ),∴在上是增函数若的值域为则解得又∵,所以不存在满足要求的实数,【点睛】本小题主要考查函数的奇偶性,考查函数的单调性以及函数的值域,属于中档题.21.已知函数Ⅰ当时,求的值域;Ⅱ若方程有解,求实数a的取值范围.【答案】(Ⅰ)(Ⅱ)或【】【分析】(I)当时,利用降次公式化简,然后利用换元法将函数转化为二次函数,结合二次函数的知识求得的值域.(II)解法一:同(I)将函数转化为二次函数的形式.对分成三类,讨论函数的是否有解,由此求得的取值范围.解法二:化简的表达式,换元后分离常数,再由此求得的取值范围.【详解】解:(Ⅰ)当时,令,令,则,所以的值域为(Ⅱ)法一:令,令,①当,即时,,且,解得②,即时,,无解③当,即时,且,解得综上所述或法二:令,当,不合题意,∴∴,∵在,递减∴或∴或【点睛】本小题主要考查三角函数降次公式,考查利用换元法转化函数,考查二次函数求最值,考查方程有解的问题的求解策略,考查化归与转化的数学思想方法,考查分类讨论的数学思想,属于难题.解决含有参数的方程有解问题,可以考虑分离常数法将参数分离出来,然后根据表达式的范围,求得参数的范围.22.已知函数在上是减函数,在上是增函数若函数,利用上述性质,Ⅰ当时,求的单调递增区间只需判定单调区间,不需要证明;Ⅱ设在区间上最大值为,求的式;Ⅲ若方程恰有四解,求实数a的取值范围.【答案】(Ⅰ)单调递增区间为,(Ⅱ)(Ⅲ)【】【分析】(I)当时,将函数写为分段函数的形式,结合的单调性,写出函数的单调递增区间.(II)对分成三种情况,结合函数的式,讨论函数的最大值,由此求得的式.(III)分成两种情况,去掉的绝对值,根据解的个数,求得的取值范围.【详解】解:(Ⅰ)当时,的单调递增区间为,(Ⅱ)∵①当时,,②当时,,,③当时,,,,当,即时,当,即时,综上所述(Ⅲ)时,方程为,且,其中.若,即时,由于为增函数,故有且只有两正解. 若,即时,由于为增函数,故无解.所以时,方程有且只有两正解.时,方程为或,只需,可使有且只有两解. 综上所述时,恰有四解【点睛】本小题主要考查含有绝对值函数的单调性的判断,考查含有绝对值函数的最值的求法,考查含有绝对值的方程的求解策略,考查分类讨论的数学思想,考查化归与转化的数学思想方法.属于难题.对于含有绝对值的函数,主要是对自变量分类,去绝对值,将函数转化为分段函数来求解.。
绝密★启用前【校级联考】浙江省浙南名校联盟2018-2019学年高二上学期期末联考数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.设集合 , ,则使 成立的 的值是( ) A .-1 B .0 C .1 D .-1或1 2.已知复数 ,则( )A .B .C .D . 3.若 为实数,则“ ”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.若变量 , 满足约束条件,则 的最大值是A .B .C .0D .5.在 中, 是 的中点, ,点 在 上且满足 ,则 等于( )A .B .C .D .6.设函数,将 的图象向右平移个单位后,所得的函数为偶函数,则 的值可以是 A .1 B .C .2D .…………○…………○…………线…………○※※请※※不※※…………○…………○…………线…………○7.函数的图像可能是( )A .B .C .D .8.设等差数列 的前 项和为 ,数列 的前 项和为 ,下列说法错误..的是( ) A .若 有最大值,则 也有最大值 B .若 有最大值,则 也有最大值 C .若数列 不单调,则数列 也不单调 D .若数列 不单调,则数列 也不单调 9.已知椭圆和双曲线有共同的焦点 , ,点是 , 的交点,若 是锐角三角形,则椭圆 离心率 的取值范围是( ) A .B .C .D .10.如图,在棱长为1正方体 中,点 , 分别为边 , 的中点,将 沿 所在的直线进行翻折,将 沿 所在直线进行翻折,在翻折的过程中,下列说法错误..的是( )A .无论旋转到什么位置, 、 两点都不可能重合B .存在某个位置,使得直线 与直线 所成的角为C .存在某个位置,使得直线 与直线 所成的角为D .存在某个位置,使得直线 与直线 所成的角为………外…………○……订…………○________考号:___________………内…………○……订…………○第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题11.双曲线的渐近线方程是____;焦点坐标____.12.在 中,内角 , , 所对的边分别为 , , ,若 ,,则 ___; 的面积是___13.已知某几何体的三视图如图所示,则该几何体的体积为______;表面积为______.14.若实数 , 满足 ,则的最小值为____.15.已知直线,曲线 若直线 与曲线 相交于 、 两点,则 的取值范围是____; 的最小值是___.16.点 是边长为2的正方形 的内部一点, ,若 ,则 的取值范围为___.17.函数 且 ,若此函数图像上存在关于原点对称的点,则实数 的取值范围是____.18.如图,在四棱锥 中, 平面 , , , , , .(Ⅰ)求证 平面 ;(Ⅱ)求直线 与平面 所成线面角的正弦值.………○…………订在※※装※※订※※线※※内………○…………订三、解答题19.已知函数 . (Ⅰ)若 为锐角,且,求 的值; (Ⅱ)若函数 ,当 时,求 的单调递减区间. 20.已知数列 满足: , . (Ⅰ)求证: 是等比数列,并求数列 的通项公式; (Ⅱ)令 ,设数列的前 项和为 ,若 对一切正整数 恒成立,求实数 的取值范围. 21.已知椭圆过点 ,且离心率为.过抛物线上一点 作 的切线 交椭圆 于 , 两点.(Ⅰ)求椭圆 的方程;(Ⅱ)是否存在直线 ,使得 ,若存在,求出 的方程;若不存在,请说明理由. 22.已知函数.(Ⅰ)求函数 的单调区间; (Ⅱ)若,求证: .参考答案1.A【解析】【分析】根据集合A,B,以及B A即可得出,从而求出a=﹣1.【详解】解:∵A={﹣1,0,1},B={a,a2},且B A;∴∴a=﹣1.故选:A.【点睛】本题考查列举法的定义,集合元素的互异性,以及子集的定义.2.A【解析】【分析】把z=﹣2+i代入,再利用复数代数形式的乘除运算化简得答案.【详解】解:由z=﹣2+i,得.故选:A.【点睛】本题考查了复数代数形式的乘除运算,是基础题.3.B【解析】【分析】求出不等式>的等价条件,结合充分条件和必要条件的定义进行判断即可.【详解】解:由>得0<a<1,则“a<1”是“>”的必要不充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键.4.B【解析】【分析】画出变量,满足的可行域,目标函数经过点时,取得最大值,求出即可。
2018年学年第二学期浙南名校联盟期末联考高二年级数学学科试题参考公式:球的表面积公式 24S R π=球的体积公式243V R π= 其中R 表示球的半径 柱体的体积公式 V Sh = 其中S 表示棱柱的底面面积,h 表示棱柱的高锥体的体积公式 13V Sh = 其中S 表示棱锥的底面面积,h 表示棱锥的高台体的体积公式 ()13a ab b V h S S S S =+⋅+ 其中,a b S S 分别表示台体的上、下底面积 h 表示台体的高一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U N =,{}*|2,A x x n n N ==∈,{|16}B x x =<„,则()UA B =Ið( )A. {2,3,4,5,6}B. {2,4,6}C. {1,3,5}D. {3,5}2.双曲线22221y x a b-=的渐近线方程为2y x =±,则其离心率为( )A.32B.6 C. 3D.33.如图,某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A.72B.73C.76D. 74.若复数2(1)ai +(i 为虚数单位)纯虚数,则实数a =( ) A. 1±B. 1-C. 0D. 15.已知平面α,β,直线a ,满足αβ⊥,l αβ=I ,则下列是a β⊥的充分条件是( )A. //a αB. a α⊂C. a l ⊥D. ,a l a α⊥⊂6.已知实数,a b 满足cos cos a b a b ->-,则下列说法错误..的是( ) A. cos cos a b a b +>+ B. cos cos a b b a ->- C. sin sin a b a b ->-D. sin sin a b b a ->-7.已知随机变量ξ,η的分布列如下表所示,则( )ξ1 2 3P13 12 16η1 2 3P16 12 13A. E E ξη<,D D ξη<B. E E ξη<,D D ξη>C. E E ξη<,D D ξη=D. E E ξη=,D D ξη=8.如图,在三棱锥S ABC -中,SA ⊥面ABC ,AB BC E F ⊥,、是SC 上两个三等分点,记二面角E AB F --的平面角为α,则tan α( )A .有最大值43B. 有最大值34C. 有最小值43D. 有最小值349.已知2a b a b ==⋅=v v v v ,c tb -v v 的最小值为c a -v v,则4b ac c a +-+-vv v v v 的最小值为( )1 B. 2110.已知数列{}n a前n 项和为n S ,且满足()21n n n a S a -=,则下列结论中( )①数列{}2n S 是等差数列;②n a <;③11n n a a +<A. 仅有①②正确B. 仅有①③正确C. 仅有②③正确D. ①②③均正确二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.《孙子算经》是我国古代重要的数学著作,约成书于四、五世纪,传本的《孙子算经》共三卷,其中下卷“物不知数”中有如下问题:“今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?”其意思为:“现有一堆物品,不知它的数目.3个3个数,剩2个;5个5个数,剩3个;7个7个数,剩2个.问这堆物品共有多少个?”试计算这堆物品至少有__________个.12.若,x y 满足约束条件220,240,330,x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩则22x y +的最小值为___________,最大值为___________.13.从正方体的8个顶点中选4个点作一个平面,可作___________个不同的平面,从正方体的8个顶点中选4个点作一个四面体,可作___________个四面体.14.在ABC V 中,内角,,A B C 所对的边,,a b c 依次成等差数列,且()cos cos b C k B c =-,则k 的取值范围___________,若2k =,则cos B 的值为___________.15.在444x x ⎛-⎫⎪⎝⎭+的展开式中,各项系数和为_______,其中含2x 的项是________.16.已知椭圆C :()222210x y a b a b +=>>的左,右焦点分别为1F ,2F ,焦距为2c ,P 是椭圆C 上一点(不在坐标轴上),Q 是12F PF ∠的平分线与x 轴的交点,若22QF OQ =,则椭圆离心率的范围是___________.17.对于任意的实数b ,总存在[]0,1x ∈,使得21x ax b ++≥成立,则实数a 的取值范围为_____.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知函数()30,22f x x πωϕωϕ⎛⎫⎛⎫=+>< ⎪⎪⎝⎭⎝⎭对任意实数x 满足()566f f x f ππ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭. (1)当()f x 的周期最大值时,求函数()f x 的解析式,并求出()f x 单调的递增区间;(2)在(1)的条件下,若,0,3236a a f ππ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∈=,求()2f a 的值.19.如图,已知四棱锥P -ABCD 中,底面ABCD 是直角梯形,AD //BC ,BC =2AD ,AD ⊥CD ,PD ⊥平面ABCD ,E 为PB 的中点.(1)求证:AE //平面PDC ;(2)若BC =CD =PD ,求直线AC 与平面PBC 所成角的余弦值.20.已知数列{}n a 满足12a =,()1*121222n n n n a a a na n N -+++⋅⋅⋅+=∈.(1)求n a ; (2)求证:()*122311113261112n n a a a n n n N a a a +----<++⋅⋅⋅+<∈---. 21.已知点M 为抛物线2:4C y x =上异于原点O 的任意一点,F 为抛物线的焦点,连接MF 并延长交抛物线C 于点N ,点N 关于x 轴的对称点为A . (1)证明:直线MA 恒过定点;(2)如果FM OM λ=,求实数λ的取值范围. 22.已知函数()ln f x x a x =-.(1)若()1f x ≥恒成立,求a 的取值范围;(2)在(1)的条件下,()f x m =有两个不同的零点12,x x ,求证:121x x m +>+.。
2018~2019学年浙江省名校协作体(G12)高二上学期9月联考数学试题(解析版)绝密★启用前浙江省名校协作体(G12)2018~2019学年高二年级上学期9月联考数学试题(解析版)一、选择题(本大题共10小题,共40.0分)1.若集合,,那么A. B. C. D.【答案】A【解析】【分析】先求出集合B,由此利用交集定义能求出A∩B.【详解】∵集合,,∴.故选:A.【点睛】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.设(A)a<c</c【答案】D【解析】试题分析:由对数函数的性质,所以,b<a<c,故选d。
< bdsfid="93" p=""></a<c,故选d。
<> 考点:本题主要考查对数函数的性质。
点评:简单题,涉及比较函数值的大小问题,首先考虑函数的单调性,必要时引入“-1,0,1”等作为“媒介”。
3.将函数的图象向左平移个单位得到的图象,则A. B. C. D.【答案】C【解析】【分析】利用图像平移规律直接写出平移后的函数解析式,整理即可。
【详解】解:将函数的图象向左平移个单位得到的图象, 故选:C.【点睛】本题主要考查诱导公式的应用,函数的图象变换规律,属于基础题.4.函数为自然对数的底数的图象可能是A. B. C. D.【答案】C【解析】【分析】为自然对数的底数是偶函数,由此排除B和D, ,由此排除A.由此能求出结果.【详解】∵(e为自然对数的底数)是偶函数,∴函数(e为自然对数的底数)的图象关于y轴对称,由此排除B和D,∴,由此排除A.故选:C.【点睛】本题考查函数的图象的判断,考查函数的奇偶性、特殖点的函数值的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.5.设实数x,y满足约束条件,则的取值范围是A. B. C. D.【答案】D【解析】。
2018学年第二学期浙江省名校协作体试题高二年级数学学科考生须知:1.本卷满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写学校、班级、姓名、试场号、座位号及准考证号;3.所有答案必须写在答题卷上,写在试卷上无效;4.考试结束后,只需上交答题卷。
第Ⅰ卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项 是符合题目要求的.1.若集合},032{},0{2R x x x x B y y A ∈<--=>=,那么AB = ( ▲ )A .)3,0(B .),1(+∞-C .)1,0(D .),3(+∞2.设2554log 4,(log 3),log 5,a b c ===则 ( ▲ ) A .b c a <<B .a c b << C .c b a << D .c a b <<3.将函数x y 2cos =的图象向左平移4π个单位得到)(x f 的图象,则 ( ▲ ) A .x x f 2sin )(= B .x x f 2cos )(=C .x x f 2sin )(-=D .x x f 2cos )(-=4.函数4cos xy e x =-(e 为自然对数的底数)的图象可能是 ( ▲ )5.设实数x ,y 满足约束条件⎪⎩⎪⎨⎧-≥≥+-≤-,1,032,02x y x y x 则y x z -=的取值范围是( ▲ )A .[2,1]--B .]0,1[-C .]1,1[-D .[2,1]-6.已知1234{,,,}x x x x {0|(3)sin 1}x x x π⊆>-⋅=,则1234x x x x +++的最小值为 ( ▲ ) A.12 B.15 C.12π D.15πA. ()f x 的周期为4B. ()f x 是奇函数C. (4)0f =D. (1)f x +是奇函数 7.已知函数()tan cos f x x x =⋅,则下列说法正确的是 (▲ )A. ()f x 的最小正周期为πB.()f x 的图象关于(,0)2π中心对称C.()f x 在区间(,)2ππ上单调递减 D.()f x 的值域为[1,1]-8.记min{,,}a b c 为,,a b c 中的最小值,若,x y 为任意正实数,令12min ,,M x y yx ⎧⎫=+⎨⎬⎩⎭,则M 的最大值是( ▲ )A.3B.2239.平面向量,a b 满足,()240aa b -⋅-=,3b =,则a 最大值是 ( ▲ )A.3B. 4C. 5D. 6 10.设等比数列{}n a 的前n 项和为n S ,且3341S S S -=.若11a >,则 ( ▲ ) A .1324,a a a a << B .1324,a a a a <>C .1324,a a a a >< D .1324,a a a a >>第Ⅱ卷(非选择题 共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.)11.已知向量,若 ,则 ▲,若则 ▲.12.已知3sin()45πα+=,则3sin()4πα-=____▲____;sin2α=___▲___. 13.已知函数()1f x x x a =---,若()f x 为奇函数且非偶函数,则a =__▲___; 若()1f x >的解集为空集,则a 的取值范围为__▲____.14.已知数列{}n a 中,2111,1(2),n n a a a n -==+≥,则数列{}n a 的通项公式为___▲___; 若1223111110n n a a a a a a ++++<+++,则n 的最大值___▲___.15.已知,a b 都是正数,满足23a b +=,则2a b ab+的最小值为 ▲ .16.已知2()1,f x x x =+若()()1,(,),f a f b a b R ⋅≤∈其中则a b +的最大值为__▲___. 17.已知函数222()|2|(21)22f x x x x m x m =+---+-+有三个不同的零点,则实数m 的 取值范围是 ▲ .三、解答题(本大题共5个题,共74分,解答应写出文字说明、证明过程或演算步骤.) 18.(14分)已知向量2(3sin ,1),(cos ,cos )m x n x x ==, 记()f x m n =⋅. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若3(),[,]10312f x x ππ=-∈--,求cos2x 的值; 19.(15分)如图所示, ABC ∆中,角,,A B C 的对边分别为,,a b ccb=.(Ⅰ)求角C 的大小;(Ⅱ)点D 为边AB 的中点, 2BD =,求ABC ∆面积的最大值.20.(15分)已知等差数列{}n a 的前n 项和为n S ,且555, 5.S a ==数列{}n b 满足12,b =-且113n n nnb b a ++-=.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n b 的通项公式.21.(15分)已知函数:),()(2R n m n mx x x f ∈++=.(Ⅰ)若0=+n m ,解关于x 的不等式x x f ≥)((结果用含m 式子表示); (Ⅱ)若存在实数m ,使得当[]2,1∈x 时,不等式x x f x 4)(≤≤恒成立,求负数..n 的最小值.22.已知函数,21)(2xx x f +=b a ,均为正数. (Ⅰ)若2=+b a ,求证:;3)()(≥+b f a f (Ⅱ)若)()(b f a f =-,求:b a +的最小值.2018学年第一学期浙江省名校协作体高二数学参考答案AD1-5 ADCCD 6-10 ABDBC11.4; 12. 37,525-; 13. 1,[0,2]- ;14.n a =,119; 15.3; 16.0;17.127,13⎛⎛⎫⎪ ⎪⎝⎭⎝⎭-- 17、解:函数()y f x =有三个不同的零点即()()()222()-2-2,,21,22224,2,1f x mx m x x m x m x ⎧⎤⎡⎦⎣⎪⎨⎪⎩∈-∞-+∞=--+-+∈-有三个不同零点 则必有2220mx m +=在(),21,x ⎤⎡⎦⎣∈-∞-+∞上有一解,且()22222240x m x m --+-+=在()2,1x ∈-上有两解.由2220mx m +=在(),21,x ⎤⎡⎦⎣∈-∞-+∞上有一解得2m -≤-或1m -≥,即2m ≥或1m ≤-.由()22222240x m x m --+-+=在()2,1x ∈-上有两解转化为2222422x x mx m ++=+有两解即二次函数与一次函数相切的临界状态由()()22228420m m ∆=++-=解得127m ±127127,13m ⎛⎛⎫⎪ ⎪⎝⎭⎝⎭+-∈-18. (1)31cos 21()2sin(2)262x f x x x π+=+=++. ——————2分 若()f x 单调递增,则2[2,2],622x k k k Z πππππ+∈-++∈ ————————4分解得 ()36k x k k Z ππππ-+≤≤+∈∴单调递增区间为[,]()36k k k Z ππππ-++∈ ———————5分(2)由7()10f x =-知4sin(2),65x π+=- 又∵[,]312x ππ∈--,即 2[,0]62x ππ+∈-———————8分∴3cos(2)65x π+=, ——————11分 ∴334cos 2cos[(2)]66x x ππ-=+-==; —————14分19.(1sin sin BC=,所以tan 3C =故3C π=——————— 5分(2)在BCD ∆中,设BC=,,x CD y =由余弦定理知224x y xy xy +-=≥ , ———10分所以,2sin ABC BCD S S xy C xy ∆∆==⋅=≤此时 2x y == -----------15分20. ()25n a n =-Ⅰ -------------5分 (Ⅱ)当2n ≥时,112211()()()n n n n n b b b b b b b b ---=-+-+-+ 232(3)3(1)3(27)3n n =-+-⋅+-⋅+-⋅记23(3)3(1)3(27)3n t n =-⋅+-⋅++-⋅则3413(3)3(1)3(29)3(27)3n n t n n +=-⋅+-⋅++-⋅+-⋅23412(3)32[333](27)3n n t n +-=-⋅+⋅++⋅--⋅ --------10分所以32123(13)227(27)313n n t n -+⋅--=-+--⋅-154(28)3n n +=---⋅所以127(4)3n t n +=+-⋅ 所以 ()12543n n b n +=+- ----------14分 当1n =时也满足 所以 ()12543n n b n +=+- ----------15分21.2()x x mx m ≤+-Ⅰ()(1)0x m x ∴+-≥ ------------------2分()()(){}21211.21101,-.11.m x R m x m x m x x m m x x x m =-∈≠-+--===>-≥≤-时,时,解得:①时,原不等式的解集为或{}11.m x x m x <-≥-≤②时,原不等式的解集为或 --- -- 7分 [][][]21,24141,2,141,2x x x mx n x nx m x xn nm x m x x x x∈≤++≤≤++≤∈-+≤≤--+∈(Ⅱ)时,恒成立,等价于对恒成立.即存在实数使得-对时恒成立.--------------11分 max min14n n x x x x ⎛⎫⎛⎫∴--+≤--+ ⎪ ⎪⎝⎭⎝⎭2,42nn n ∴-≤-≥-即4.n ∴的最小值为- --------------15分(注:其它做法相应给分)22222.1,0121111()()4242421322a b ab t ab t f a f b a b ab t a b ab t+⎛⎫≤==<≤ ⎪⎝⎭+=+++=-+=-+≥-+=令则 ------7分222211()2221,002a ba b a b a b ab a b a b ab+-=+-=>∴-=>Ⅱ由知2222()()4()a b a b ab a b a b+=-+=+-- -----------------10分 设x a b =-,则0x >,可设2()=()0a b g x x +>()[][)()21222121212121212121212122()0,11,+1222()()21,2,2,()()0.g x x xx x g x g x x x x x x x x x x x x x x x g x g x x x =+∞>≥⎛⎫-=+--=-+- ⎪⎝⎭>≥∴+><∴->下证:在上递减,上递增.设121212()()0()().g x g x x x g x g x ∴>≥>><,同理,当1时, ----------13分()min 3.a b ∴+= 3131a b +-==此时, -------------15分(注:其它做法相应给分)。
2018-2019学年宁波市九校高二上学期期末联考数学试卷一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.椭圆的短轴长为()A. 8B. 10C. 5D. 4【答案】A【解析】【分析】利用椭圆的方程,直接求解即可.【详解】解:椭圆,可知焦点在x轴上,b=4,所以椭圆的短轴长为8.故选:A.2.设复数满足,其中为虚数单位,则复数对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】解:由(1+i)2•z=2+i,得2iz=2+i,∴,∴复数z对应的点的坐标为(,﹣1),位于第四象限.故选:D.3.已知,是两条不同的直线,,是两个不同的平面,下列说法正确的是()A. 若,,,则B. 若,,则C. 若,,则D. 若平面内有不共线的三点到平面的距离相等,则【答案】A【解析】【分析】在A中,由线面垂直的性质定理得m∥n;在B中,α与β相交或平行;在C中,α⊥β;在D中,α与β相交或平行.【详解】解:由m,n是两条不同的直线,α,β是两个不同的平面,知:在A中,若m⊥α,n⊥β,α∥β,则由线面垂直的性质定理得m∥n,故A正确;在B中,若m∥α,m∥β,则α与β相交或平行,故B错误;在C中,若m⊥α,m∥β,则α⊥β,故C错误;在D中,若平面α内有不共线的三点到平面β的距离相等,则α与β相交或平行,故D错误.故选:A.4.有下列四个命题:①“相似三角形周长相等”的否命题;②“若,则”的逆命题;③“若,则”的否命题;④“若,则方程有实根”的逆否命题;其中真命题的个数是()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】【分析】写出命题的逆命题可判断①;写出逆命题,可判断②;写出命题的否命题,可判断③;由判别式法可判断原命题的真假,进而判断④.【详解】解:①“相似三角形周长相等”的逆命题为“周长相等的三角形相似”不正确,根据逆否命题同真同假,可得其否命题不正确;②“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”正确;③“若x=1,则x2+x﹣2=0”的否命题为“若x≠1,则x2+x﹣2≠0”不正确;④“若b≤0,则方程x2﹣2bx+b2+b=0有实根”由△=4b2﹣4(b2+b)=﹣4b≥0,可得原命题正确,其逆否命题也正确.故选:C.5.已知,则“且”是“抛物线的焦点在轴非负半轴上”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】【分析】求出抛物线的标准方程,结合抛物线的焦点坐标,建立不等式关系进行判断即可.【详解】解:抛物线mx2+ny=0的标准方程为x2y=4()y,对应的焦点坐标为(0,),若焦点在y轴非负半轴上,则0,即mn<0,则m<0且n>0或n<0且m>0,则“m<0且n>0”是“抛物线mx2+ny=0的焦点在y轴非负半轴上”的充分不必要条件,故选:A.6.下列命题正确的是()A. 是向量,不共线的充要条件B. 在空间四边形中,C. 在棱长为1的正四面体中,D. 设,,三点不共线,为平面外一点,若,则,,,四点共面【答案】B【解析】【分析】由向量共线和充分必要条件的定义可判断A;由向量的加减和数量积的定义可判断B;由向量数量积的定义计算可判断C;由四点共面的条件可判断D.【详解】解:由||﹣||<||,向量,可能共线,比如共线向量,的模分别是2,3,故A不正确;在空间四边形ABCD中,()••••()•()••0,故B 正确在棱长为1的正四面体ABCD中,1×1×cos120°,故C错误;设A,B,C三点不共线,O为平面ABC外一点,若,由1=2≠1,可得P,A,B,C四点不共面,故D错误.故选:B.7.若椭圆与双曲线有公共的焦点,,点是两条曲线的交点,,椭圆的离心率为,双曲线的离心率为,且,则()A. B. C. D.【答案】B【解析】【分析】设PF1=s,PF2=t,由椭圆的定义可得s+t=2a1,由双曲线的定义可得s﹣t=2a2,运用余弦定理和离心率公式,计算即可得e1的值.【详解】解:不妨设P在第一象限,再设PF1=s,PF2=t,由椭圆的定义可得s+t=2a1,由双曲线的定义可得s﹣t=2a2,解得s=a1+a2,t=a1﹣a2,由∠F1PF2,可得.∴,由e1e2=1,即,得:,解得:(舍),或,即.故选:B.8.已知为双曲线右支上一点,为其左顶点,为其右焦点,满足,,则点到直线的距离为()A. B. C. D.【答案】D【解析】【分析】由题意可得△APF为等边三角形,求出P的坐标,利用双曲线的第二定义,列出方程,可得c=4a,由等边三角形的高可得所求值.【详解】解:由题意,A(﹣a,0),F(c,0),右准线方程为x,|AF|=|PF|,∠PFA=60°,可得△APF为等边三角形,即有P(,(a+c)),由双曲线的第二定义可得,化为c2﹣3ac﹣4a2=0,可得c=4a,由c=4,可得a,则点F到PA的距离为(a+c)•5.故选:D.9.如图,四边形,,,现将沿折起,当二面角的大小在时,直线和所成角为,则的最大值为()A. B. C. D.【答案】C【解析】【分析】取BD中点O,连结AO,CO,以O为原点,OC为x轴,OD为y轴,过点O作平面BCD的垂线为z轴,建立空间直角坐标系,利用向量法能求出直线AB与CD所成角的余弦值取值范围.【详解】解:取BD中点O,连结AO,CO,∵AB=BD=DA=4.BC=CD,∴CO⊥BD,AO⊥BD,且CO=2,AO,∴∠AOC是二面角A﹣BD﹣C的平面角,以O为原点,OC为x轴,OD为y轴,过点O作平面BCD的垂线为z轴,建立空间直角坐标系,B(0,﹣2,0),C(2,0,0),D(0,2,0),设二面角A﹣BD﹣C的平面角为θ,则,连AO、BO,则∠AOC=θ,A(),∴,,设AB、CD的夹角为α,则cosα,∵,∴cos,∴|1|∈[0,1+].∴cos的最大值为.故选:C.10.若长方体中,,,,,分别为,,上的点,,,.分别记二面角,,的平面角为,,,则()A. B.C. D. 与的值有关【答案】C【解析】【分析】过G点作GM⊥CD于M点,过M做MN⊥EF于N点,由=1,所以,设为,则=,又则,即可比较的大小. 【详解】过G点作GM⊥CD于M点,过M做MN⊥EF于N点,由,可知MN<CE∴∴,设为,则=,又,∴∴故选:C二、填空题.11.双曲线的焦点坐标是____,渐近线方程是____.【答案】 (1). (2).【解析】【分析】利用双曲线的a,b,c的关系,直接计算.【详解】解:双曲线1中a2=12,b2=3,则c2=a2+b2=15.且焦点在y轴上,∴双曲线1的焦点坐标是(0,),渐近线方程是y.故答案为:(0,),y=±2x【点睛】本题主要考查圆锥曲线的基本元素之间的关系问题,考查学生的计算能力,属于基础题.12.在空间四边形中,,分别是,的中点,是上一点,且.记,则___,若,,,且,则___.【答案】 (1). () (2).【解析】利用空间向量加法定理能求出(x,y,z);利用空间向量数量积公式能求出||.【详解】解:∵在空间四边形OABC中,E,F分别是AB,BC的中点,H是EF上一点,且EH EF,∴()()[],∵x y z,∴(x,y,z)=().∵⊥,,∠BOC=60°,且||=||=||=1,∴2()22,∴||.故答案为:(),.【点睛】本题考查空间向量的求法,考查向量的模的求法,考查空间向量加法法则、空间向量数量积公式等基础知识,考查运算求解能力,考查数形结合思想,是基础题.13.设复数,其中为虚数单位,则的虚部是____,___.【答案】 (1). 1 (2).【解析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】解:∵,,∴z=()2018+()2019=(﹣i)2018+i2019=i2+i3=﹣1﹣i,∴,则的虚部为1.|z|.故答案为:1;.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.14.一个空间几何体的三视图如图所示,则其表面积是_____,体积是_____.【答案】 (1). (2).【解析】【分析】根据三视图,画出几何体的直观图,利用三视图的数据,代入表面积与体积公式计算.【详解】解:由三视图知几何体是三棱柱与一个正方体一个长方体的组合体,正方体的棱长为1,如图:几何体的表面积:15.∴几何体的体积V=1;故答案为:15;,【点睛】本题考查了由三视图求几何体的表面积与体积,解答此类问题的关键是判断几何体的形状及数据所对应的几何量.15.已知是抛物线上的点,则的最大值是_____.【答案】【解析】【分析】根据题意画出图形,利用数形结合法把x化为|PA|﹣|PF|+2,从而求得最大值.【详解】解:根据题意画出图形,如图所示;由图形知,x=|PA|﹣x=|PA|﹣(|PM|﹣2)=|PA|﹣(|PF|﹣2)=|PA|﹣|PF|+2≤|AF|+22;即x的最大值是2.故答案为:2.【点睛】本题考查了抛物线的方程与应用问题,也考查了数形结合的解题方法,是中档题.16.已知椭圆的左右焦点分别为,,动弦过左焦点.若恒成立,则椭圆的离心率的取值范围是___.【答案】【解析】【分析】由条件可得,转化为,从而得到椭圆的离心率的取值范围. 【详解】由可得∴,即,∴∴故答案为:【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.17.已知矩形中,,为的中点,,交于点,沿着向上翻折,使点到.若在平面上的投影落在梯形内部及边界上,则的取值范围为 ____.【答案】【解析】【分析】首先明确在平面上的投影的轨迹,建立平面直角坐标系,求出直线方程与点的坐标,即可得到的取值范围.【详解】取AB中点为H,连接DH交AE于G,由题意可知:在平面上的投影落在线段GH上,如图建立平面直角坐标系,直线GH方程为,易得:F到直线的距离为:,,故的取值范围为故答案为:【点睛】本题考查线段的长度,考查线面间的位置关系,考查空间想象能力与计算能力,属于中档题.三、解答题(解答应写出文字说明、证明过程或演算步骤.)18.已知,设命题:当时,函数恒成立,命题:双曲线的离心率.(Ⅰ)若命题为真命题,求实数的取值范围;(Ⅱ)若命题和中有且只有一个真命题,求实数的取值范围.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(Ⅰ)由p真,结合对勾函数的单调性和基本不等式,可得最小值,即可得到所求范围;(Ⅱ)由双曲线的离心率公式,可得a的范围,由题意可得p真q假,p假q真,解不等式组,即可得到所求范围.【详解】(Ⅰ)当时,因为在上为减函数,在上为增函数,∴在上最小值为.当时,由函数恒成立,得,解得.(Ⅱ)若命题为真命题,则,解得,若为真命题且为假命题,则,可得,若为假命题且为真命题,则,此时,由上可知,的取值范围为.【点睛】本题考查命题的真假判断,主要是不等式恒成立问题和双曲线的离心率,考查不等式的解法,属于基础题.19.如图,在四面体中,,,.(Ⅰ)求点到平面的距离;(Ⅱ)求异面直线与所成角的大小.【答案】(Ⅰ)2(Ⅱ)【解析】【分析】(Ⅰ)作平面于,连,证明是的角平分线,由求得,即可得到点到平面的距离;(Ⅱ)取空间基底为,,,用基底表示,代入夹角公式即可得到结果.【详解】(Ⅰ)作平面于,连作于,于,连,∴平面,平面,∴,,所以,∵,四边形为正方形,∴是的角平分线,∴∴,即,∴,∴.(Ⅱ)(方法1)记,,,则,记,∵,又,,,∴,即,所以异面直线与所成角的大小为.(方法2)以,,所在直线分别为,,轴建立如图所示的空间直角坐标,,,,则,设异面直线与所成角为,则,,∴,所以异面直线与所成角的大小为.【点睛】本题考查空间点到平面的距离,异面直线所成角,考查空间问题坐标化,考查计算能力与空间想象能力,属于中档题.20.如图,已知多面体中,,平面,,,,.(Ⅰ)证明:平面;(Ⅱ)求直线与平面所成角的正弦值.【答案】(Ⅰ)见证明;(Ⅱ)【解析】(Ⅰ)由余弦定理得PB,从而PB⊥AB,由AD⊥平面PAB,得AD⊥PB,再由PB⊥AB,能证明PB⊥平面ABCD.(Ⅱ)由余弦定理求出cos∠PDC,从而sin∠PCD,S△ACD=2,设直线PA 与平面PCD所成角为θ,点A到平面PCD的距离为h,由V A﹣PDC=V P﹣ACD,得h,从而sinθ,由此能求出直线PA与平面PCD所成角的正弦值.【详解】(Ⅰ)在中,,,,所以,,所以,,因为,所以,,,四点共面.又平面,平面,所以.又,,所以平面.(Ⅱ)(方法一)在中,,在中,.在直角梯形中,.在中,,.所以,.设直线与平面所成的角为,设点到平面的距离为,因为,所以,即,所以,,故直线与平面所成的角的正弦值为.(方法二)由(Ⅰ)知,平面,.以点为坐标原点,以,,所在直线分别为,,轴建立如图的空间直角坐标系,则,,,,所以,,.设直线与平面所成的角为,设平面的一个法向量为,由得取,则,,所以.所以,故直线与平面所成的角的正弦值为.(方法三)延长,相交于点,连结.因为,,所以为的中位线,点,分别为,的中点.所以为等腰三角形.取中点,连,.所以,,,所以平面,又平面,所以平面平面.作于,连,所以平面.所以就是直线与平面所成的角.因为,,,所以,所以.所以,故直线与平面所成的角的正弦值为.【点睛】本题考查线面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.21.已知点是圆上的动点,定点,线段的垂直平分线交于点.(Ⅰ)求点的轨迹的方程;(Ⅱ)过点作两条斜率之积为的直线,,,分别与轨迹交于,和,,记得到的四边形的面积为,求的最大值.【答案】(Ⅰ)(Ⅱ)【解析】【分析】(Ⅰ)利用椭圆定义即可得到点的轨迹的方程;(Ⅱ)设其中一条直线的方程为,可得可得,故,结合均值不等式可得结果.【详解】(Ⅰ)∵点是线段的垂直平分线上的点,∴,∴,∴点的轨迹是以,为焦点的椭圆,其中,,∴,,.因此,点的轨迹方程是.(Ⅱ)设其中一条直线的方程为,代入椭圆方程可得:,设,,则即,代入椭圆方程可得:,设,到直线的距离分别为和,则,,,,当,即时取“”的最大值.【点睛】本题考查椭圆的定义与标准方程,考查直线与椭圆的位置关系,考查四边形面积的计算,考查基本不等式,属于中档题.22.如图,点在抛物线外,过点作抛物线的两切线,设两切点分别为,,记线段的中点为.(Ⅰ)求切线,的方程;(Ⅱ)证明:线段的中点在抛物线上;(Ⅲ)设点为圆上的点,当取最大值时,求点的纵坐标.【答案】(Ⅰ)切线的方程为,切线的方程为.(Ⅱ)见证明;(Ⅲ)【解析】【分析】(Ⅰ)结合导数的几何意义可得切线,的方程;(Ⅱ)由(1)可得,,故,.再结合M点的坐标即可明确在抛物线上;(Ⅲ)由题意可得. 设,则.结合均值不等式即可得到结果.【详解】(Ⅰ)切线的方程为,即,同理可得,切线的方程为.(另解:设切线的方程为:由消去后可得:∴∴切线的方程为,即,同理可得,切线的方程为.(Ⅱ)因为点既在切线上,也在切线上,由(1)可得,,故,.又点的坐标为.所以点的纵坐标为,即点的坐标为.故在抛物线上.(Ⅲ)由(Ⅰ)知:,,所以.设,则.当时,即当时,取最大值.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.。
浙江省浙南名校联盟2018-2019学年高二数学上学期期末联考试题(含解析)选择题部分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则使成立的的值是()A. -1B. 0C. 1D. -1或1【答案】A【解析】【分析】根据集合A,B,以及B⊆A即可得出,从而求出a=﹣1.【详解】解:∵A={﹣1,0,1},B={a,a2},且B⊆A;∴∴a=﹣1.故选:A.【点睛】本题考查列举法的定义,集合元素的互异性,以及子集的定义.2.已知复数,则()A. B. C. D.【答案】A【解析】【分析】把z=﹣2+i代入,再利用复数代数形式的乘除运算化简得答案.【详解】解:由z=﹣2+i,得.故选:A.【点睛】本题考查了复数代数形式的乘除运算,是基础题.3.若为实数,则“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】【分析】求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.【详解】解:由得0<a<1,则“a<1”是“”的必要不充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键.4.若实数,满足约束条件,则的最大值为()A. B. 0 C. D. 1【答案】C【解析】【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x+2y对应的直线进行平移,可得当x,y时,z取得最大值.【详解】解:作出变量x,y满足约束条件表示的平面区域,得到如图的△ABC及其内部,其中A(,),B(,﹣1),C(2,﹣1)设z=F(x,y)=x+2y,将直线l:z=x+2y进行平移,当l经过点A时,目标函数z达到最大值∴z最大值=F(,).故选:C.【点睛】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.在中,是的中点,,点在上且满足,则等于()A. B. C. D.【答案】B【解析】【分析】由M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足可得:P是三角形ABC的重心,根据重心的性质,即可求解.【详解】解:∵M是BC的中点,知AM是BC边上的中线,又由点P在AM上且满足∴P是三角形ABC的重心∴又∵AM=1∴∴【点睛】判断P点是否是三角形的重心有如下几种办法:①定义:三条中线的交点.②性质:或取得最小值③坐标法:P点坐标是三个顶点坐标的平均数.6.设函数,将的图像向平移个单位后,所得的函数为偶函数,则的值可以是()A. 1B.C. 2D.【答案】D【解析】【分析】利用函数y=A sin(ωx+φ)的图象变换规律,可得平移后函数的解析式,再根据三角函数的奇偶性,求得ω的值.【详解】解:将函数f(x)=2sin(ωx)的图象向右平移个单位后,可得y=2sin(ωx)的图象.∵所得的函数为偶函数,∴kπ,k∈Z.令k=﹣1,可得ω,故选:D.【点睛】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,三角函数的奇偶性,属于基础题.7.函数的图像可能是()A. B.C. D.【答案】A【分析】判断函数的奇偶性和对称性,利用特征值的符号是否一致进行排除即可.【详解】解:f(﹣x)f(x),则函数f(x)是奇函数,图象关于原点对称,排除B,D,函数的定义域为{x|x≠0且x≠±1},由f(x)=0得 sin x=0,得距离原点最近的零点为π,则f()0,排除C,故选:A.【点睛】本题主要考查函数图象的识别和判断,利用对称性以及特殊值进行排除是解决本题的关键.8.设等差数列的前项和为,数列的前项和为,下列说法错误..的是()A. 若有最大值,则也有最大值B. 若有最大值,则也有最大值C. 若数列不单调,则数列也不单调D. 若数列不单调,则数列也不单调【答案】C【解析】【分析】根据等差数列的性质知数列{a2n﹣1}的首项是a1,公差为2d,结合等差数列的前n项和公式以及数列的单调性和最值性与首项公差的关系进行判断即可.【详解】解:数列{a2n﹣1}的首项是a1,公差为2d,A.若S n有最大值,则满足a1>0,d<0,则2d<0,即T n也有最大值,故A正确,B.若T n有最大值,则满足a1>0,2d<0,则d<0,即S n也有最大值,故B正确,C.S n=na1•d n2+(a1)n,对称轴为n,T n=na1•2d=dn2+(a1﹣d)n,对称轴为n•,不妨假设d>0,若数列{S n}不单调,此时对称轴n,即1,此时T n的对称轴n•1,则对称轴•有可能成立,此时数列{T n}有可能单调递增,故C错误,D.不妨假设d>0,若数列{T n}不单调,此时对称轴n•,即2,此时{S n}的对称轴n2,即此时{S n}不单调,故D正确则错误是C,故选:C.【点睛】本题主要考查与等差数列有关的命题的真假关系,涉及等差数列前n项和公式的应用以及数列单调性的判断,综合性较强,难度较大.9.已知椭圆和双曲线有共同的焦点,,点是,的交点,若是锐角三角形,则椭圆离心率的取值范围是()A. B. C. D.【答案】C【解析】【分析】设∠F1PF2=θ,则,得出,利用椭圆和双曲线的焦点三角形的面积公式可得出,结合c=2,可得出,然后将椭圆和双曲线的方程联立,求出交点P的横坐标,利用该点的横坐标位于区间(﹣c,c),得出,可得出,从而得出椭圆C1的离心率e 的取值范围.【详解】解:设∠F1PF2=θ,则,所以,,则,由焦点三角形的面积公式可得,所以,,双曲线的焦距为4,椭圆的半焦距为c=2,则b2=a2﹣c2=a2﹣4>3,得,所以,椭圆C1的离心率.联立椭圆C1和双曲线C2的方程,得,得,由于△PF1F2为锐角三角形,则点P的横坐标,则,所以,.因此,椭圆C1离心率e的取值范围是.故选:C.【点睛】本题考查椭圆和双曲线的性质,解决本题的关键在于焦点三角形面积公式的应用,起到了化简的作用,同时也考查了计算能力,属于中等题.10.如图,在棱长为1正方体中,点,分别为边,的中点,将沿所在的直线进行翻折,将沿所在直线进行翻折,在翻折的过程中,下列说法错误..的是()A. 无论旋转到什么位置,、两点都不可能重合B. 存在某个位置,使得直线与直线所成的角为C. 存在某个位置,使得直线与直线所成的角为D. 存在某个位置,使得直线与直线所成的角为【答案】D【解析】【分析】利用圆锥的几何特征逐一判断即可.【详解】解:过A点作AM⊥BF于M,过C作CN⊥DE于N点在翻折过程中,AF是以F为顶点,AM为底面半径的圆锥的母线,同理,AB,EC,DC也可以看成圆锥的母线;在A中,A点轨迹为圆周,C点轨迹为圆周,显然没有公共点,故A正确;在B中,能否使得直线AF与直线CE所成的角为60°,又AF,EC分别可看成是圆锥的母线,只需看以F为顶点,AM为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B正确;在C中,能否使得直线AF与直线CE所成的角为90°,只需看以F为顶点,AM为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故C正确;在D中,能否使得直线与直线所成的角为,只需看以B为顶点,AM为底面半径的圆锥的轴截面的顶角是否大于等于90°即可,故D不成立;故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查逻辑推理能力,考查数形结合思想,是中档题.非选择题部分二、填空题.11.双曲线的渐近线方程是____;焦点坐标____.【答案】 (1). (2).【解析】【分析】直接根据双曲线的简单性质即可求出.【详解】解:在双曲线1中,a2=2,b2=1,则c2=a2+b2=3,则a,b=1,c,故双曲线1的渐近线方程是y=±x,焦点坐标(,0),故答案为:y=±x,(,0)【点睛】本题考查了双曲线的简单性质,属于基础题.12.在中,内角,,所对的边分别为,,,若,,则___;的面积是___【答案】 (1). 2 (2).【解析】【分析】由余弦定理可求c,利用同角三角函数的基本关系式求出sin C,然后由△ABC的面积公式求解即可.【详解】解:在△ABC中,a=b,cos C,由余弦定理得:c2=a2+b2﹣2ab cos C4,则c=2;在△ABC中,∵cos C,∴sin C,∴S△ABC ab•sin C.故答案为:2;.【点睛】本题考查余弦定理,考查同角三角函数的基本关系式的应用,考查三角形的面积公式,是基础题.13.已知某几何体的三视图如图所示,则该几何体的体积为____;表面积为____.【答案】 (1). 3 (2). 9+【解析】【分析】根据三视图知该几何体是直三棱柱,结合图中数据求出它的体积和表面积.【详解】解:根据三视图知该几何体是直三棱柱,如图所示;则该几何体的体积为V=S△ABC•AA13×1×2=3;表面积为S=2S△ABC=23×1+3×2+22=9+22.故答案为:3,9+22.【点睛】本题考查了根据三视图求几何体体积和表面积的应用问题,是基础题.14.若实数,满足,则的最小值为____.【答案】4【解析】【分析】由已知可知,2(a﹣1)+b﹣2=2,从而有()[2(a﹣1)+b﹣2)],利用基本不等式可求最小值.【详解】解:∵a>1,b>2满足2a+b﹣6=0,∴2(a﹣1)+b﹣2=2,a﹣1>0,b﹣2>0,则()[2(a﹣1)+b﹣2)],(4),当且仅当且2a+b﹣6=0即a,b=3时取得最小值为4.故答案为:4.【点睛】本题主要考查了基本不等式求解最值的应用,解题的关键是配凑基本不等式的应用条件.15.已知直线,曲线,若直线与曲线相交于、两点,则的取值范围是____;的最小值是___.【答案】 (1). (2).【解析】【分析】因为过定点的直线与半圆C的图象有两个交点,结合图象知:k PE≤k≤k PO,求出直线PO和PE 的斜率即可;当PC⊥AB时,|AB|最小.【详解】解:直线l:kx﹣y k=0过定点(1,),曲线C为半圆:(x﹣2)2+y2=4(y≥0)如图:由图可知:k OP,k PE,∴;要使弦长AB最小,只需CP⊥AB,此时|AB|=22,故答案为:[,];.【点睛】本题考查了直线与圆的位置关系,考查了垂径定理,考查了数形结合思想,属于中档题.16.点是边长为2的正方形的内部一点,,若,则的取值范围为___.【答案】(]【解析】【分析】根据题意可知λ,μ>0,根据条件对λμ两边平方,进行数量积的运算化简,利用三角代换以及两角和与差的三角函数,从而便可得出λμ的最大值.【详解】解:如图,依题意知,λ>0,μ>0;根据条件,12=λ22+2λμ•μ22=4λ2+4μ2.令λ,μ=sinθ,.∴λμ=cosθsinθ=sin(θ);θ, sin(θ)(]∴的取值范围为(]故答案为(].【点睛】本题考查向量数量积的运算及计算公式,以及辅助角公式,三角代换的应用,考查转化思想以及计算能力.17.函数,若此函数图像上存在关于原点对称的点,则实数的取值范围是____.【答案】【解析】【分析】根据函数图象上存在关于原点对称的点,转化为f(﹣x)=﹣f(x)有解,利用参数分离法进行转化求解即可.【详解】解:若函数图象上存在关于原点对称的点,即f(﹣x)=﹣f(x)有解,即a﹣2x﹣ma﹣x=﹣(a2x﹣ma x)=﹣a2x+ma x,即a2x+a﹣2x=m(a x+a﹣x),即m(a x+a﹣x),设t=a x+a﹣x,则t≥22,则(a x+a﹣x)t在[2,+∞)为增函数,∴h(t)=t h(2)=2﹣1=1,则要使m=h(t)=t有解,则m≥1,即实数m的取值范围是[1,+∞),故答案为:[1,+∞).【点睛】本题主要考查函数与方程的应用,根据条件转化为f(﹣x)=﹣f(x)有解,利用参数分离法进行转化是解决本题的关键,综合性较强,有一定的难度.三、解答题(解答应写出文字说明、证明过程或演算步骤.)18.已知函数.(Ⅰ)若为锐角,且,求的值;(Ⅱ)若函数,当时,求的单调递减区间.【答案】(Ⅰ) (Ⅱ)【解析】【分析】(Ⅰ)由已知利用同角三角函数基本关系式可求sinα的值,进而根据二倍角的正弦函数公式即可计算得解;(Ⅱ)由已知利用三角函数恒等变换的应用可求g(x)=2sin(2x),根据正弦函数的单调性即可求解.【详解】(Ⅰ)为锐角,,,,,(Ⅱ),,,所以单调递减区间是【点睛】本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式,三角函数恒等变换的应用,正弦函数的单调性的综合应用,考查了数形结合思想和转化思想,属于基础题.19.如图,在四棱锥中,平面,,,,,.(Ⅰ)求证平面;(Ⅱ)求直线与平面所成线面角的正弦值.【答案】(Ⅰ)见证明;(Ⅱ)【解析】【分析】(Ⅰ)推导出AC⊥PC,AC⊥CD,由此能证明AC⊥平面PCD;(Ⅱ)过D作直线DH⊥PC,AC⊥DH,DH⊥平面PAC,从而∠DCH为直线CD与平面PAC所成线面角,由此能求出直线CD与平面PAC所成线面角的正弦值.【详解】(Ⅰ),,,,,,,,有公共点,,(Ⅱ)方法1:过作直线垂直于,为垂足,,,,为所求线面角,,,方法2:如图建立空间直角坐标系,,,,直线与所成线面角的正弦值为.【点睛】本题考查线面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.已知数列满足:,.(Ⅰ)求证:是等比数列,并求数列的通项公式;(Ⅱ)令,设数列的前项和为,若对一切正整数恒成立,求实数的取值范围.【答案】(Ⅰ)见证明;(Ⅱ)【解析】【分析】(Ⅰ)运用等比数列的定义和通项公式,即可得到所求;(Ⅱ)求得b n=log2(a n+1)=2n﹣1,(),由裂项相消求和,可得S n,再由参数分离和基本不等式可得所求范围.【详解】(Ⅰ)由得且是以4为公比的等比数列,,(Ⅱ),,,,且,当且仅当n=2时取等号,,【点睛】本题考查等比数列的定义、通项公式的运用,考查数列的裂项相消求和,考查不等式恒成立问题解法,注意运用基本不等式,考查运算能力,属于中档题.21.已知椭圆过点,且离心率为.过抛物线上一点作的切线交椭圆于,两点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在直线,使得,若存在,求出的方程;若不存在,请说明理由. 【答案】(Ⅰ)椭圆(Ⅱ)见解析【解析】(Ⅰ)根据已知条件列有关a、b、c的方程组,求出a和b的值,即可得出椭圆C1的方程;(Ⅱ)设直线l的方程为y=kx+t,先利用导数写出直线l的方程,于是得到k=2x0,,将直线l的方程与椭圆C1的方程联立,列出韦达定理,由并代入韦达定理,通过计算得出t的值,可得出x0的值,从而可得出直线l的方程.【详解】(Ⅰ)由题知,得,所以椭圆,(Ⅱ)设的方程:,由(1)知,的方程:,故 . 由,得.所以,即(4t2-4)(k2+1)-8k2t(t-1)+(t-1)2(4k2+1)=0,化简有5t2-2t-3=0,所以t=1或t=,,,【点睛】本题考查直线与椭圆的综合问题,考查椭圆的方程以及韦达定理设而不求法的应用,同时也考查了计算能力,属于中等题.22.已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若,求证:.【答案】(Ⅰ)见解析(Ⅱ)见证明【解析】(Ⅰ)利用导数与函数单调性的关系求解;(Ⅱ)af(x)>lnx⇔.令F(x),F′(x)(x>0).①当∈(0,1]时,F′(x)<0,F(x)单调递减,F(x)≥F(1)=ae>0;②当>1时,令G(x),利用导数求得最小值大于0即可.【详解】解.(1)f(x)的定义域为(﹣∞,0)∪(0,+∞),∵,∴x∈(﹣∞,0),(0,1)时,f′(x)<0,x∈(1,+∞)时,f′(x)>0∴函数f(x)的单调增区间为:(1,+∞),减区间为(﹣∞,0),(0,1).(2)af(x)>lnx⇔.令F(x),F′(x).(x>0).①当∈(0,1]时,F′(x)<0,F(x)单调递减,F(x)≥F(1)=ae>0;②当>1时,令G(x),G.∴G(x)在(1,+∞)单调递增,∵x→1时,G(x)→﹣∞,G(2)=e20,∴G(x)存在唯一零点0∈(1,2),F(x)min=F(x0)∵G(x0)=0,.综上所述,当时,af(x)>lnx成立.【点睛】利用导数证明不等式常见类型及解题策略(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.。