注浆法制备陶粒泡沫混凝土的性能研究
- 格式:pdf
- 大小:840.68 KB
- 文档页数:4
聚氨酯泡沫陶粒混凝土材料研发及性能研究摘要:基于隧道二次衬砌开裂及倒塌问题,控制裂缝的数量可以有效的地减少工程质量隐患,因此,研发一种具有一定抗压强度且具有大变形的新型填充材料具有重要的意义。
通过正交试验法,研究聚氨酯泡沫陶粒混凝土的最佳配合比,得到了新型聚氨酯泡沫陶粒混凝土的材料体系。
结果表明:普通型陶粒的抗压强度优于粒径偏大的碎石型陶粒的抗压强度,且普通型陶粒的变形量高于碎石型陶粒的变形量,但两者的力学性能变化规律大致相同。
关键词:陶粒;聚氨酯泡沫;泡沫混凝土;配合比;抗压强度;大变形1试验1.1原材料(1)碎石型陶粒和普通型陶粒:产自四川某公司,基本化学组成为SiO2、AI2O3、Fe2O3、MgO+Na2O、K2O+Na2O。
(2)聚氨酯泡沫:本试验聚氨酯发泡液选自廊坊某公司,其乳白时间为11s,拉丝时间为248s,不粘时间为338s,主要技术指标见表1。
表 1 聚氨酯发泡液材料技术指标Table1Technical indexes of polyurethane foaming fluid materials尺寸稳定性%吸水率%密度kg/m3体积膨胀倍数抗压强度Mpa<0.1%<2.3%2256 2.141.2试验方法力学性能试验按照GB/T50081—2002《普通混凝土力学性能试验方法标准》的要求进行。
3个试件为一组,测试30组不同配比下聚氨酯泡沫陶粒混凝土的抗压强度和变形量。
用于抗压强度测试的立方体试件尺寸为100mm×100mm×100mm,试验加载速度为2KN/min,加载方式为位移控制方式。
1.3试验仪器设备SANS 50KN 型电子万能试验机、小型聚氨酯发泡机。
2试验结果分析本文参照张轩瑜的陶粒夹芯玻璃纤维增强塑料逃生管的设计与性能研究的配比设计思路,同时变化聚氨酯泡沫陶粒混凝土中聚氨酯泡沫和陶粒的掺量,确定压强为2Mpa、变形量大于50%以上的最优配合比。
32行业关注Industry FocusCHINA CONCRETE 2012.05 NO.35泡沫混凝土又称发泡混凝土,是通过化学或物理的方式将空气等气体引入混凝土浆体中,经过成型、养护形成含有大量孔洞并具有一定强度的混凝土制品,具有轻质、保温隔热、隔音、不易燃等性能,是一种节能环保建筑材料。
早在上世纪30年代,瑞士人就率先开发了泡沫混凝土技术。
此后逐渐在世界各国得到进一步研究开发,20世纪50年代开始在前苏联、美国等国家的建筑工程应用,我国直到20世纪90年代才开始引进、应用此项技术。
随着对能源问题、特别是建筑节能的关注,泡沫混凝土在国内的研究开发日益深入,各类泡沫混凝土制品产量快速增长。
有数据表明,仅泡沫混凝土保温板一项的产量,在2011年3月~12月的10个月内就由10万m 3上升到250万m 3,扩大了25倍。
随着泡沫混凝土的不断发展,其生产的关键技术—发泡剂的研制也成为行业的研究重点,下面结合已公布的专利文献和科技论文对国内泡沫混凝土发泡剂的研究进展加以介绍。
1 复合型发泡剂复合发泡剂是继松香树脂、动植物蛋白水解液之后着力开发的第四代发泡剂,一般由起泡剂和稳泡剂两部分组成。
起泡剂通常选用发泡倍数高、生成的泡沫坚韧、泌水性好的表面活性剂;稳泡剂一般为胶类物质,通过增加泡沫的液膜黏度、增强液膜表面强度、延缓液膜破裂时间增加泡沫的稳定性。
研究人员发现,配伍使用常规的表面活性剂和稳泡剂,虽然对起泡剂的稳定性能有所改善,但常常遭遇下述困境:泡沫表面黏度小,发泡倍数高,但接触水泥、粉煤灰浆料时破泡严重,破泡后的表面活性剂吸附在水泥、粉煤灰颗粒表面严重影响水泥凝结;泡沫表面黏度大,接触水泥、粉煤灰浆料时虽然破泡减少,但发泡倍数明显降低,单位质量发泡剂的泡沫混凝土产量降低。
洛阳师范学院研发的LC-01型泡沫混凝土发泡剂在此方面取得了进展。
这种新型泡沫混凝土发泡剂区别于其他复合发泡剂的特点在于:起泡剂由具有两个亲水基团(羧基)、一个长链疏水基团(烃基)的新型表面活性剂和单亲水基团的松香皂及具有磺酸基或硫酸根的常规表面活性剂组成,稳泡剂为具有两个或多个亲水基团(羧基或能与钙、镁等离子反应的羟基)的小分子化合物。
0引言2000年国家经贸委、国家计委联合印发的《关于发展新型建材若干意见》中明确指出对发展新型建材应遵循的原则为:坚持因地制宜的方针,引导和支持各地发展适合当地资源条件、建筑体系和建筑功能要求的新型建材,做到生产和推广应用一体化[1]。
南通属于资源贫乏地区,随着地区建设的不断发展,保温墙材、高性能混凝土用骨料资源极度缺乏。
本着因地制宜的原则,立足南通实际情况,充分利用丰富的淤泥资源制备具有优良性能的陶粒,替代常见的砂石骨料,并以此为依托生产高性能的自保温墙体材料———全淤泥陶粒泡沫混凝土砌块,这不仅能在很大程度上解决新型墙材资源短缺问题,而且还将实现节约土地资源,达到经济效益、社会效益和环境效益的统一。
1外墙保温的现状目前建筑外墙节能措施分为外墙外保温、外墙自保温以及外墙内保温三大类。
外墙外保温指在外墙外侧粘贴保温层或粉刷保温砂浆并在保温层的外侧抹抗裂砂浆,加网格布和做饰面层。
外墙内保温是指在墙内侧增加保温措施,有贴保温板做法、粉刷石膏粉做法和聚苯颗粒胶粉做法等。
墙体自保温是指不通过内、外保温技术措施,墙体自身的热工指标达到现行国家和地方节能建筑墙体标准要求。
墙体节能的三大分类中,由于外墙内保温存在多占使用面积、“热桥”不易解决等问题,人们逐渐将研究重点转移到外墙外保温及墙体自保温体系的研究上来。
外墙外保温体系克服了外墙内保温的一系列缺点,但也有自身的不足,如会产生收缩、蠕变和老化,极易产生裂缝,结构较为复杂,构成材料质量要求较高,施工程序较为繁琐[2]。
另外,目前外墙外保温系统存在的最大问题就是与主体建筑设计不等寿命,由此造成外墙外保温建筑面临二次改造的压力;保温板材暗藏火灾隐患,使得外保温系统的问题愈发显得棘手。
而节能建筑墙体自保温技术与其他墙体保温技术比较,具有良好的物理力学性能、防火性、耐冲击性、耐候性、耐久性,使用年限能与建筑物同步,安全可靠;节能建筑在使用期间内,不需要返修,节省人力、物力和资金,还减少了环境污染和住户负担[3]。
建筑材料学报JOURNAL OF BUILDING MATERIALS第!4卷第1期2021 2Vol. 24,No. 1Feb. .2021文章编号:1007-9629(2021)01-0207-09陶粒泡沫混凝土的力学性能及吸能特性王小娟,刘路,贾昆程,周宏元(北京工业大学城市与工程安全减灾教育部重点实验室,北京100124)摘要:以快硬硫铝酸盐水泥为结合剂,与陶粒、预制泡沫混合制备得到陶粒泡沫混凝土.探讨了泡沫混凝土密度与陶粒粒径匹配关系对陶粒泡沫混凝土在静态单轴压缩下的破坏模式、抗压强度、 压实应变和能量吸收的影响.结果表明:随着泡沫混凝土密度的提高或陶粒粒径的增大,陶粒泡沫 混凝土发生非界面破坏的现象逐渐显著,由此确定出与3种粒径陶粒相匹配的泡沫混凝土的密度范围;随着泡沫混凝土密度的提高,陶粒泡沫混凝土的抗压强度和能量吸收能力均显著提高,压实 应变随之减小;随着陶粒粒径的增大,陶粒泡沫混凝土的抗压强度先增后减,压实应变先减后增, 能量 能 逐渐 .关键词:陶粒泡沫混凝土;强度匹配;破坏模式;抗压强度;压实应变;能量吸收中图分类号:TU528 2文献标志码:A doi :10. 3969/j. issn. 1007-9629. 2021. 01. 027Mechanical Properties and Energy Absorption Characteristics ofCeramsite Foam ConcreteWANG Xiaojuan* LIULu, JIAKuncheng,ZHOU Hongyuan(KeyLaboratoryofUrbanSecurityandDisasterEngineeringofMinistryofEducation,Beijing Universityof Technology, Beijing 100124, China)Abstract : Ceramsite foam concrete was produced by mixing fast-hardening sulphoaluminate cement with precastIoamandceramsite.Thee I ectsoIIoamconcretedensityandceramsiteparticlesizeontheIailure mode, compressive strength(peak stress), densiIication strain and energy absorption oIceramsiteIoamconcretesubjectedtostaticuniaxialcompressionwasinvestigated.Theexperimentresultsindicatethatre- markable non-interIacialIailure is observed with higher density oIIoam concrete and larger particle size oIceramsite , from which the density range of foam concrete with matched strength of the three correspondingceramsite is determined.With increasing density of foam concrete, the compressive strength and energy absorption of ceramsite foam concrete are remarkably improved, while the densification strain decreases.In addition, with increasing ceramsite particle size, the densification strain decreases first then increases, thecompressivestrengthincreasesfirstthendecreases,andtheenergyabsorptioncapacitygradua l yincreases. Key words: ceramsite foam concrete ; strength match ; failure mode ; compressive strength ; densificationstrain ; energy absorption收稿日期:2019-08-14 "修订日期:2019-09-19基金项目:国家自然科学基金资助项目(51808017,51778028);北京市自然科学基金资助项目(8184063);北京市教委科技计划项目 (KM201810005019)第一作者:王小娟(1982-),女,湖南常德人,北京工业大学副教授,硕士生导师,博士.主要从事建筑材料力学性能研究• E-mail :xiaojuan- wang@bjut. edu. cn通讯作者:周宏元(1981-),男,河北香河人,北京工业大学教授,博士生导师,博士.主要从事结构抗爆抗冲击研究• E-mail :hzhou @08建筑材料学报第24卷全球能源消耗日益严重,节能问题逐渐成为 人类关注的焦点.建筑产业是一种高耗能的产业,在建材生产和使用过程中均会大量消耗能源.泡 沫混凝土作为建筑保温材料之一,近年来对它的研究与应用*T 进展迅速,然而其在工程应用中存 在强度较低、易收缩开裂等问题,因此在一定程度限制了使用范围.鉴于普通泡沫混凝土的不足,复 合材料陶粒泡沫混凝土近年来受到广泛关注与研究/陶粒泡沫混凝土是以水泥基胶凝材料、水、泡 沫和陶粒为主要组分,按一定配合比混合,搅拌、 浇筑、养护而成的轻质多孔混凝土,具有轻质高 强、耐火性好、环保性能好和保温隔热等优势.国 内外关于陶粒泡沫混凝土的研究已取得一定成果,主要集中在其配合比「67+、收缩性⑷、力学性 能*9+、热力学性能*10+、导热系数*11+、陶粒预处理机 制[12]和纤维增强对其性能的影响[13].近年来,泡沫混凝土的抗压性能和能量吸收性能已应用于如 飞机拦阻[14]和爆炸防护*15+等工程中.性能更优的陶粒泡沫混凝土相关性能的研究变得愈发迫切, 但未见相关报道.鉴于此,本文采用3种粒径的陶粒与4种密度的泡沫混凝土组合制备陶粒泡沫混凝土,研究了泡 混凝土 度和陶粒粒径 陶粒 混凝土单轴压缩下的破坏模式、抗压强度、压实应变和能量吸收的影响,并就破坏模式进一步对陶粒粒径与泡表3Table3 陶粒泡沫混凝土的配合比Mix proportion of ceramsite foam concrete沫混凝土强度的匹配问题进行了讨论.1试验1. 1原材料水泥为山东泗水产中联牌快硬硫铝酸盐水泥R. SAC 42. 5,其28 d 抗压强度为42. 5 MPa,基本参数见表1;3种陶粒均为安徽恒运节能科技有限 公司提供的页岩陶粒,粒径分别为0〜10、10〜20、20〜30 mm,主要性能指标见表2;发泡液采用动物型蛋白质类泡沫混凝土用发泡剂,与水按体积 比1 : 40稀释后得到.陶粒泡沫混凝土的配合比 见表3.表1水泥的基本参数Table 1 Basic parameters of cementBrand modelSpecificsurface area/(m : • kg 1%MaincomponentFinalse t ingtime /minR.SAC42.5325Sulphoaluminate28表2陶粒的主要性能指标Table2 Mainpropertiesofceramsite SpecificationParticlesize / mmCylindrical compressive strength /MPa Apparentdensity / (kg - m 3Bulk density / (kg - m 310 — 10 1.2700540210-201.2700480320-30 1.2700421Note : The particle size of ceramsite mixed in series I ,series ) and series * is 0-10, 10-20 and 20 - 30 mm respectively.SeriesNo.Sample No.Targetapparent densityoffoam concrete/(kg • m 3)Mix proportion/(kg • m 3)!(foam)/%Cement Water Waterreducer CeramsiteI -1400233.000116.0000.699210.00053.6II -2600327.000163.0000.981210.00045.3I -3800420.000210.000 1.260210.00037.0I -41000513.000257.000 1.539210.00028.8n-1400233.000116.0000.699210.00053.6)2600327.000163.0000.981210.00045.3)3800420.000210.000 1.260210.00037.0n-41000513.000257.000 1.539210.00028.8*-1400233.000116.0000.699210.00053.6**-2600327.000163.0000.981210.00045.3*-3800420.000210.000 1.260210.00037.0*-41000513.000257.0001.539210.00028.8第1期王小娟,等:陶粒泡沫混凝土的力学性能及吸能特性2091.2陶粒泡沫混凝土试件的制备本研究采用预制泡沫的方法进行陶粒泡沫混凝土试件的制备.具体制备工艺如下:(1)先将水泥和减水剂放在刻度桶中干拌1min,再加水搅拌2min;(2)搅拌浆料的同时,先用发泡机将按比例混合的水和发泡剂制成泡沫,再将泡沫通入搅拌均匀的浆料中,继续搅拌,待泡沫混凝土的体积达到通过目标干密度预估的体积时,停止通入泡沫;(3)将已称量、预湿并晾干至饱和面干状态的陶粒倒入泡沫混凝土浆体中搅拌均匀,即可获得陶粒泡沫混凝土;(4)将陶粒泡沫混凝土浇注到试模中,并用抹子刮平表面,在室内静置3h,脱模,再将其置于(20士3)°C,相对湿度大于90%的养护箱中养护3d.1.3测试方法将制备的尺寸为100mm X100mm X100mm 的陶粒泡沫混凝土立方体试件用于单轴压缩试验,每组3个.该单轴压缩试验在北京工业大学结构实验室的MTS Exceed E45万能试验机(300kN)上进行.为提高试件在压缩过程中的受力均匀性,在试件上下两端分别放置2块平整且尺寸稍大于试件尺寸的钢板.压缩过程中,试件下端被下金属压盘限制竖向位移,上端由上压盘施加速率为5mm/min(名义应变率为0.00083s k1)的竖向压缩,直至位移为70mm时停止加载.1.4统计方法由于在相同应变率情况下,重复性测试获得的试件应力-应变曲线具有一定离散性,使用平均曲线不合理[16],因此本研究在每组测量的3个曲线中,选取具有中间抗压强度值的应力-应变曲线来统计试件的抗压强度、压实应变和能量吸收.Mltz等提出用能量吸收效率码来评价泡沫材料的吸能特性.能量吸收效率的表达式为:E f(*a)=丄[a ff(£)ds,.*a.1(1)(a丿0式中是描述泡沫材料在受压状态下的应力-应变函数关系*a为任意应变;(a为与*a相对应的应九材料的最佳吸能工作状态是指能量吸能效率达大值时,吸率大值应应变即为压实应变£d[18].通常各试件能量吸能效率的极大值会有2个或2个以上,需结合其应力-应变曲线的走势来综合判断其无.本文采用比能量吸收3(J/cm3)来评价陶粒泡沫混凝土试件的吸能特性. 3是指单位体积陶粒泡沫混凝土的能量吸收能力,计算公式为:3=[D((s)dg(2)2结果与讨论2.1破坏模式2.1.1模陶粒混凝土单轴压有2模式:界面破坏和非界面破坏.其中,界面破坏模式是陶粒混凝土压过程混凝土压,而被泡沫混凝土包裹的陶粒不发生破坏,裂缝存在于泡沫混凝土内部或者陶粒与泡沫混凝土的交界区域;非界面破坏是指陶粒和泡沫混凝土两者均被压坏,裂缝存在于泡沫混凝土和陶粒两者内部.2.1.2分析与讨论当泡沫混凝土密度较低时,泡沫混凝土与陶粒间的机械啮合力较小,压缩过程中,被泡沫混凝土包裹的陶粒不发生破坏,只有部分泡沫混凝土被压碎,无法充分发挥陶粒的强度效用;当泡沫混凝土密度较高时,泡沫混凝土与陶粒间的机械啮合力足够高,压缩过程中,虽然陶粒和泡沫混凝土均被压碎,但因泡沫混凝土的强度远高于陶粒,陶粒只相当于在泡沫混凝土中引入了初始缺陷.以上2种情况均被认为是陶粒与泡沫混凝土的强度不匹配所造成的.当陶粒混凝土压时,理当混凝土密度提高到某一临界值时,恰好使陶粒泡沫混凝土界,界一模,用2材料压度目,以实现两者间的强度匹配.考虑到泡沫混凝土的密度很难精确控制,通过试验找出这一临界值不现实,本研究将泡沫混凝土密度临界值所处范围作为与陶粒强度匹配的密度范围,以此来保证试验得到的泡沫混凝土密度范围与实际密度临界值在一定误差范围之内.图1为粒径为0〜10mm陶粒与4种密度泡沫混凝土制陶粒混凝土.图1可见:当泡沫混凝土密度为400,600kg/m3时,陶粒混凝土均界;当混凝土度为800kg/m3时,陶粒泡沫混凝土既有界面破坏,又有界;当混凝土度1000kg/m3时,陶粒泡沫混凝土仅发生非界面破坏.由此说明,粒径0〜10mm陶粒度相匹配混凝土密度范围为800〜1000kg/m3.图2为粒径为10〜20mm陶粒与4种密度泡沫混凝土组合而成的陶粒泡沫混凝土的破坏情况.由图2可见:当泡沫混凝土密度为400kg/m3时,陶粒泡沫混凝土仅发生界面破坏;当泡沫混凝土密度600kg/m3时,陶粒混凝土既有界,10建筑材料学报第24卷(a)1-1(b)1-2(c)1-3(d)1-4图1I组陶粒泡沫混凝土的破坏模式Fig.1Failure modes of series I ceramsite foam concrete也有非界面破坏;当泡沫混凝土密度为800)000kg/m3时,陶粒混凝土界•由此说明,与粒径为10〜20mm的陶粒强度相匹配的泡沫混凝土密度范围为600〜800k g/m s.图S为粒径为20〜S0mm陶粒与4种密度泡沫混凝土组合陶粒泡沫混凝土由图S可知:当泡沫混凝土密度为400kg/m s时,陶粒泡沫混凝土既存在界面破坏,又存在非界面破坏;当泡沫混凝土的密度为600,800)000kg/m s时,陶粒混凝土生非界面破坏•由此说明,与粒径20〜S0mm的陶粒强度相匹配的泡沫混凝土密度范围为400〜600k g/m s.2.2密试件抗压强度、压实应变、能量吸收的影响2.2.1泡沫混凝土密度对试件抗压强度的影响图4为陶粒泡沫混凝土抗压强度混凝土密度系•由图4可见,当陶粒粒径范围一定时,陶粒混凝土压度混凝土度加而逐渐增长•当陶粒混凝土的制作工艺和配合比一定时,泡沫混凝土抗压强度度因素,密度越高,泡沫混凝土强度越高「19+・泡沫混凝土作陶粒混凝土组,压载承担者,泡沫混凝土度越大,即混凝土度高,陶粒混凝土压度高.2.2.2泡沫混凝土密度对试件压实应变的影响图5为陶粒泡沫混凝土压实应变混凝土密度系•由图5可见,混凝土密度的提高,种陶粒粒径范围的陶粒泡沫混凝土的压实应变均呈下降趋势.陶粒混凝土被压过程实质内,压破碎、叠合i 实的过程•混凝土度大,陶粒:混凝土内度逐渐减小,孑开始压到完全挤压应变也会减小•第1期王小娟,等:陶粒泡沫混凝土的力学性能及吸能特性11(a)n-1(b)n-2(c)n-3(d)n-4图2)组陶粒泡沫混凝土的破坏模式Fig.2Failure modes of series)ceramsite foam concrete2.2.3泡沫混凝土密度对试件比能量吸收的影响图6为陶粒泡沫混凝土比吸收混凝土密度系•由图6可见,当陶粒的粒径范围一定时,混凝土密度的提高,陶粒混凝土在单轴压缩下吸收之提高•在此载下,陶粒混凝土本质是内裂缝产生、发展和聚集过程,进混凝土内部形个宏观裂缝和缺陷,致使内碎,最终导陶粒混凝土被压溃•加载板传递给试件1依靠陶粒混凝土内裂缝的产生、发展裂来耗散,进吸收能量的果•泡沫混凝土是陶粒混凝土组(,试件吸收的大通过混凝土内部产生并发展微裂缝来耗散•混凝土密度的提高,一,:度,内*0+,内部产生和发展微裂缝散大,且压缩过程中裂缝数目逐渐,导致比吸收逐渐提高;另一,当混凝土度&时,陶粒泡沫混凝土在静态压缩过程中发生界面破$裂缝产生展混凝土内$不透到陶粒内部•混凝土密度的提高,陶粒混凝土压过程逐渐生界裂缝的产生和发展陶粒内比例逐渐提高$内陶粒散逐渐大$陶粒混凝土吸收因之一.2.3陶粒粒径对试件抗压强度、压实应变、能量吸收的2.3.1陶粒粒径对试件抗压强度的影响图7为陶粒混凝土抗压强度与陶粒粒径的关系•由图7可见,当混凝土度一定时,随陶粒粒径大,陶粒混凝土压强度呈后降趋势•泡沫混凝土与陶粒接触区J泡混凝土通常不水化,强度偏低,导混凝土与陶粒触界弱面.当掺入的陶粒一定时,陶粒粒径越小,比大,陶粒与2 12建筑材料学报第24卷(a) m-1 (b) m-2(c) m-3 (d) m-4图3 *组陶粒泡沫混凝土的破坏模式Fig. 3 Failure modes of series * ceramsite foam concrtet8.5o.o.o.o.o.6 4 2 05 5 5 50.489400600 8001 000Density/(kg*m -3)I n ms s s e e e r i .n .n e e e s s s 7 6 5 4 3 2 1E d w m u uCD B sU A F S H d u I O O0400600 800 1 000Density/(kg«m -3)图4陶粒混凝土抗压强度 混凝土密度的关系Fig. 4 Relationship between compressive strength of ceramsitefoamconcreteandfoamconcretedensity泡沫混凝土的接触区域就越大,也就是陶粒泡沫混 凝土内弱 ,会 陶粒泡沫混凝土 压强度•当陶粒粒径较大时,陶粒内〔图5陶粒 混凝土压实应变 混凝土密度的关系Fig. 5 Relationship between densification strain of ceramsitefoamconcreteandfoamconcretedenEity在缺陷的概率也就越大,如陶粒内部的裂缝和有害会 ,受力时容易造成应,从而导 :压强度 •此外,当陶粒粒径较大时,混凝第1期王小娟,等:陶粒泡沫混凝土的力学性能及吸能特性13(§・I )^o g B o s q E昌Q U Q o so Q d s1.41.21.00.80.60.4400I n mss sne ne ne e e es s s 600 800Density/(kg-m _J )1000图6陶粒混凝土比能量吸收 混凝土密度 系Fig.6 Relationshipbetweenspecificenergyabsorptionofceramsitefoamconcreteandfoamconcretedensity400 kg/m 3 600 kg/m 3800 kg/m 3 皿皿 1 000 kg/m 3过程中,裂缝沿薄弱开展,溃散程度较为严重.当陶粒粒径较大时,陶粒上浮或下沉现彖重,在试件上下两端分布极不均匀,因此陶粒 混 凝土试件的一端初始缺陷,在压缩作用下,此端容 应 ,所以试件破圻有初始缺一端开始,然后逐渐扩展 一端,溃散程度也相对比 重.当陶粒粒径较小或较大时, 压实应变都会偏大.0.580.560.540.520.500.480.46图8陶粒泡沫混凝土的压实应变与陶粒粒径的关系Fig.8 Relationshipbetweendensificationstrainofceramsitefoamconcreteandceramsiteparticlesize2. 3. 3陶粒粒径对试件比能量吸收的影响图9为陶粒 混凝土比 吸收与陶粒粒径系.Series I Series U Series HIef•n e s 86 42u o b svAISSaldluooo图7陶粒混凝土抗压强度与陶粒粒径系Fig.7 Relationshipbetweencompressivestrengthofceramsitefoamconcreteandceramsiteparticlesize土制备和搅拌成型的过程中,由于泡沫混凝土和陶粒之间度差 ,通常会 和下沉2,造成陶粒 混凝土内部陶粒颗粒 亍不均匀,恶化 ,也会造成陶粒混凝土 压 度下 .2. 3. 2陶粒粒径对试件压实应变的影响图8给岀了陶粒 混凝土压实应变与陶粒粒 径 系.由图8可以,当泡沫混凝土度一时,随着陶粒粒径 大,陶粒 混凝土的压实应变呈减小后增大的变化趋势• 轴向压缩过程中,陶粒 混凝土试件中间 逐渐被压实,而外围 混凝土向四周溃散.因此,陶粒混凝土的压实应变混凝土密度、压缩过程溃散程度有关.当 混凝土度一定时,陶粒 混凝土 压实应变 压 过程溃散程度有关,溃散程度重,中间压实区 :小,压实应变越大,反之,压实应变越小.当陶粒 : 一定时,粒径越小,陶粒混凝土 触 I 越大,陶粒混凝土内部会 弱面,在压4.2①.8.64111A 1A(UIO・f)/uog&osqEB u s o y p v d ses 图9陶粒 混凝土的比能量吸收与陶粒粒径 系Fig.9 Relationshipbetweenspecificenergyabsorptionofceramsitefoamconcreteandceramsiteparticlesize由图9可见,当泡沫混凝土密度一定时,随着陶粒粒径 大,陶粒混凝土在轴向压缩作用下吸收 逐渐 .陶粒 混凝土进行能散2个:一是通过 混凝土中裂缝的产生和发展进行 散,二是通过 【裹陶粒内部产生和发展的裂缝来耗散 .从陶粒混凝土模 以 ,随着陶粒粒径的增大,陶粒泡沫混凝土发生界面破坏过渡到非界面界混凝土密度逐渐, 混凝土 度一定时,随着陶粒粒径 大,陶粒 混14建筑材料学报第24卷凝土发生非界面破坏的比例上升.在以上4种泡沫混凝土中,掺入较大粒径陶粒的陶粒泡沫混凝土发生非界面破坏的比例要高于陶粒粒径较小的陶粒泡沫混凝土,大粒径陶粒泡沫混凝土中裂缝在陶粒内部产生和发展所耗散的能量要远远高于小粒径陶粒泡沫混凝土.因此,当泡沫混凝土密度一定时,随陶粒粒径的增大,陶粒泡沫混凝土的比能量吸收逐渐提高•当泡沫混凝土密度一定时,与粒径为0〜10)0〜20mm陶粒泡沫混凝土相比,粒径为20〜30mm的陶粒泡沫混凝土抗压强度较低,而且能量吸收能力较强,单轴压缩下的应力-应变曲线形状更接近于泡沫金属,意味着此材料在较低的应力下就可以进入屈服吸能状态,并具有较高的耗散能,更适用于吸能防护领域.另外,与泡沫金属类吸能材料相比,陶粒泡沫混凝土造价很低且可以现浇,因此其在经济性和可模性方面具有突出优势.3结论(1)随着泡沫混凝土密度的提高或陶粒粒径的增大,陶粒泡沫混凝土出现非界面破坏的现象逐渐显著,与粒径为0〜10)0〜20、20〜30mm的陶粒相匹配的泡沫混凝土密度范围分别为800-1000、600〜800)00〜600kg/m3.(2)随着泡沫混凝土密度的提高,陶粒粒径为0〜10)0〜20)0〜30mm的3种陶粒泡沫混凝土的抗压强度和能量吸收均有显著提高,而压实应变随之减小.(3)当泡沫混凝土密度一定时,随着陶粒粒径的增大,陶粒泡沫混凝土的抗压强度先增后减,压实应变先减后增,而能量吸收能力逐渐提高.粒径为20" 30mm陶粒混凝土用吸护.参考文献:m陈兵,刘睫.纤维增强泡沫混凝土性能试验研究口丁建筑材料学报,2010,13(3):286-290.CHEN Bing,LIU Jie.Experimental research on properties offoamed concrete reinforced wth polypropylene fibers[J]・JournaloIBuilding Materials,2010,13(3):286-290.(in Chinese):2:竺万发,张业红,苏英,等.我国泡沫混凝土的研究进展及工程应用[J]・材料导报,2013,27(增刊1):317-320.ZHU Wanfa,ZHANG Yehong,SU Ying,et al Study progressand engineering applications of foamed concrete in China[J]-Mater3alsReports,2013,27(Suppl1):317-320.(3nCh3nese):3:崔玉理,贺鸿珠.温度对泡沫混凝土性能影响[J].建筑材料学,2015,18(5):836-839HCUI Yuli,HE Hongzhu・Influence of temperature on performances of foam concrete[J]-Journal of Building Materials,2015,18(5):836-839.(inChinese)[4]崔玉理,贺鸿珠.发泡剂利用率对泡沫混凝土性能影响研究[J.建筑材料学报,2015,18(1):1216.CUI Yuli,HE Hongzhu・Influence of utilization efficiency offoaming agent on foam concrete performances[J]-Journal ofBuilding Materials,2015,18(1):12-16.(inChinese)[5]刘军,齐玮,刘润清,等.粉煤灰对泡沫混凝土物理力学性能的影响[J]材料导报,2015,29(16):111-114.LIU Jun,QI Wei,LIU Runqing,et al Effect of fly ash onphysic2l2ndmech2nic2lpropertiesoffo2mconcrete[J].M2te-ri2lsReports,2015,29(16):111-114.(inChinese)[6]鹿健良,孙晶晶.陶粒泡沫混凝土配合比试验研究[J]混凝土与水泥制品,012(9):60-62.LU Jianlang,SUN Jingjing.Experimental study on mix pro-portionofceramsitefoam concrete[\].China ConcreteandCementProducts,2012(9):60-62.(inChinese)[7]田雨泽,耿玲,李娜.基于正交设计的陶粒泡沫混凝土配合比试验研究[J]混凝土,017(12):169-172.TIAN Yuze,GENG Ling,LI Na.Experimental study on themixPure raPio of ceramic foam concrePe based on orPhogonaldesign[J].ConcrePe,2017(12):169-172.(inChinese)[8]刘文斌,张雄.陶粒泡沫混凝土收缩性能研究[J].混凝土,2013(11):105-107HLIU Wenbin,ZHANG Xiong・Research on performance ofshrinkageofceramsitefoamconcrete[J]HConcrete,2013(11):105-107(inChinese)[9]孙文博,李家和,张志春.陶粒泡沫混凝土强度及其影响因素研究[J]哈尔滨建筑大学学报,2002,35(3):69-83.SUN Wenbo,LI Jiahe,ZHANG Zhichun.Strength of ceramis-itefoamconcreteandfactorshavinge f ectonit[J].JournalofHarbin University of Civil Engineering and Architecture,2002,35(3):69-83.(inChinese)[10]王康,陈国新.化学发泡陶粒泡沫混凝土力学及热工性能研究[J]广西大学学报(自然科学版),016,1(2):339-345.WANG Kang,CHEN Guoxin・Mechanical and thermal prop-eriesofceramsiPefoamedconcrePe prepared wiPh chemicalfoaming mePhod[J].Journalof Guangxi Universiy(NaPuralScienceEdiPion),2016,41(2):339-345.(inChinese)[11]陆晓燕,陈宇峰,朱爱东,等.全淤泥陶粒泡沫混凝土砌块墙体的热工性能研究[J.混凝土,2012(12):96-99.LU Xiaoyan,CHEN Yufeng,ZHU Aidong,etalHThermalperformancestudyofthe whole sludge ceramsite foam concreteblock wa l[J]HConcrete,2012(12):96-99(inChinese)[12]贾兴文,吴洲,何兵,等.陶粒预处理对陶粒泡沫混凝土物理力学性能的影响[J].材料导报,2013,27(12):13-135.JIA Xingwen,WU Zhou,HE Bing,et al Effect of ceramstepretreatmentonthe me9hani9alpropertiesof9eramsitefoam 9on9rete[J].Materials Reports,2013,27(12):131-135.(inChinese)[13]张丙鹏.耐碱玻璃纤维增强陶粒泡沫混凝土物理力学性能试验及应用研究[D].泰安:山东农业大学,2018.第1期王小娟,等:陶粒泡沫混凝土的力学性能及吸能特性15ZHANG Bingpeng.Experimentalstudyon physicaland me-chanicalpropertiesofalkali-resistantglassfiberreinforcedce-ramfoamedconcreteanditsapplication[D].Taian:ShandongAgriculturalUniversity,2018.(inChinese)[14]ZHANG Z Q,YANG J L,LI Q M.An analytical model offoamed concrete aircratt arresting system[J].InternationalJournal of Impact Engineering,2013,61:1-12.[15]TIAN X B,LI Q M,LU Z Y,et al.Experimental study ofblast mitigation by foamed concrete[J].International JournalofProtectiveStructures,2016,8(1):1-14.[16]LI H N,LIU P F,LI C,et al・Experimental research on dy-namicmechanicalpMopeMtiesofmetaltailingspoMousconcMete[J].ConstMuctionandBuilding MateMials,2019,213:20-31. [17]MILTZ J,GRUENBAUM G.Evaluation of cushioning properties of plastic foams from compressive measurements[J].Polymer Engineering&Science,1981,21(15):1010-1014. 18]TAN P J,HARRIGAN J J,REID S R.Inertia effects in uniaxial dynamic compression of a closed ce l aluminium a l oyfoam[J].Materials Scienceand Technology,2002,18:480-488.19]MASTALI M,KINNUNEN P,ISOMOISIO H,et al.Me-chanicalandacousticpropertiesoffiber-reinforcedalkali-acti-vatedslagfoam concretescontaininglightweightstructuralaggregates[J].Construction and Building Materials,2018,187:371-381.[20]刘海燕,李然.泡沫混凝土吸能机理试验研究[J]成都大学学报(自然科学版),2010,29(2):166-167.LIU Haiyan,LI Ran・Experimental study on energy absorbingmechanismoffoamconcrete[J].JournalofChengduUniversi-ty(NaturalScience),2010,29(2):166-167.(inChinese)。
现代物业Modem Property Management 关于新型高性能泡沫混凝土制备技术分析严嘉豪(湖北第二师范学院,湖北武汉430205)摘要:随着我国经济建设的不断发展壮大,社会各界均开始进行大量的建筑物铸造工作,建筑用地也在这新的社会情态发展之下变得日渐稀少。
同时,随着人们生活质量的不断提升,对于建筑用材方面的要求也变得更为严苛。
较高性能混凝土的运用成为建筑领域工作人员重点研究的问题,新型的混凝土材料拥有更多的使用优势,其生产方式及制备放大也逐渐成为人们研究的重点内容。
关键词:泡沫混凝土;制备技术;高性能建筑材料所谓的泡沫混凝土,主要的制作途径便是将极为细小的气泡注入到砂浆之中,因此其质地是极为轻便的。
其中的气泡主要是由施工人员运用_定的物理技法进行制作的,并将其添加入各种类型的原始混凝土之中,随后再经过充分的搅拌或者是养护等方式形成泡沫混凝土的最终形态”这种新型的混凝土具有诸多的使用优势,能够可以起到很好的隔热以及隔音效果,甚至能够抵御明火的侵害。
正因如此,这种建筑材料才能够被充分运用于劭建筑工程之中。
一、的主点(一)拥有较轻的质量这种新型混凝土的广泛应用能够很好地降低建筑物原本的质量,建筑材料在运输的过程之中也会变得更为轻便。
不仅如此,由于其疏松多孔的结构能够切实增强墙体的承载能力,将建筑物的各个重量进行很好地分散处理。
这样,各个企业在运行的过程中便能够很好地实现利益的最大化。
(二)歸良好的保温性能泡沫混凝土之所以能够拥有很好的保温性能,最主要的原因是由于这种新型的混凝土之中被加入了大量的封闭性气泡,并被积极运用于建筑物的屋顶部位,在进行墙体施工的时候也会积极釆用这种建筑材料。
这种混凝土的密度相较于传统的混凝土具有较大的差距,导热系数也达到了一个较髙的层面,这是传统混凝土所到达不到的优势。
不仅如此泡沫混社是一种具有良好环保性能的建筑材料,在使用的过惑中不会对周边环蜒成任何的污染,切实推动了我国可工作的稳步前行,劭城市均鮒昵种新S®筑材料的下健(三)优秀的抵御噪音、明火功能由于泡沫混凝土特有的结构特征,其中包含众多的孔洞,这些孔洞不仅能够从根本上减轻混凝土的实际质量,还能够帮助墙体具有良好的隔音效果。
第50卷增刊建筑结构Vol.50 S2单粒级多孔陶粒混凝土性能研究及其在装配式预制隔墙中的应用魏金桥1,2,胡魁1,孟旭1,2(1 中建七局第四建筑有限公司,西安710000;2 中建科技河南有限公司,郑州450000)[摘要]为了解决现有陶粒混凝土技术大规模现场施工问题,提出一种单粒级多孔陶粒混凝土材料的设计思路。
探索其原材料要求及配合比设计流程,研究其弹性模量、钢筋握裹强度、导热性能及干缩性能。
试验结果表明,单粒级多孔陶粒混凝土具有轻质、高强、保温、低干缩的特点。
单粒级多孔陶粒混凝土在装配式高层住宅的成功应用,验证了该种新材料适合作为装配式预制隔墙使用。
[关键词]单粒级多孔陶粒混凝土;配合比设计;性能研究;装配式建筑;预制隔墙中图分类号:TU528.2 文献标识码:A 文章编号:1002-848X(2020)S2-0473-05Study on properties of single-grain porous ceramsite concrete and itsapplication in prefabricated partition wallWEI Jinqiao1,2, HU Kui1, MENG Xu1,2(1 China Construction Seventh Engineering Division Co., Ltd., Xi an 710000, China;2 CSCECE Science & Technology Henan Co., Ltd., Zhengzhou 450000, China)Abstract: In order to solve the problem of large-scale on-site construction of existing ceramsite concrete technology, a design idea of single-grain grade ceramsite concrete material was proposed. Its raw material requirements and mix design process were explored, and the elastic modulus, reinforcement grip strength, thermal conductivity, shrinkage of the material were studied. The test results show that the single-grain grade ceramsite concrete has the characteristics of light weight, high strength,heat preservation and low drying shrinkage. The successful application in prefabricated building of single-stage porous ceramsite concrete showed that the new material is suitable for use as prefabricated partition walls.Keywords:single-grain ceramsite concrete; mixture ratio design; performance study; prefabricated building; prefabricated partition wall0引言陶粒混凝土具有质轻、隔音、环保等多方面的优点,目前建筑行业在大量使用多种类型的陶粒混凝土。
混凝土水下浇筑的泡沫混凝土注浆方法混凝土水下浇筑的泡沫混凝土注浆方法1. 简介混凝土在建筑领域中被广泛使用,但在某些情况下,如水下建筑施工或需要填充空洞或不规则形状的区域时,传统的混凝土浇筑方法存在一些限制。
为了解决这些问题,泡沫混凝土注浆方法应运而生。
本文将对泡沫混凝土注浆方法进行深入探讨,并分享对这种方法的观点和理解。
2. 泡沫混凝土注浆方法的原理泡沫混凝土注浆方法是将空气和水泡沫与水泥浆体混合,形成轻质混凝土。
这一方法使得混凝土具备了良好的流动性和稳定性。
在水下浇筑中,通过注浆管将泡沫混凝土注入需要填充的区域,并在固化后形成坚固的结构。
3. 泡沫混凝土注浆方法的优势相比传统的水下混凝土浇筑方法,泡沫混凝土注浆方法具有一些明显的优势:3.1 较低的密度:泡沫混凝土由于注入了大量的空气泡沫,具有较低的密度,使得混凝土极为轻盈,适用于填充空洞或不规则形状的区域;3.2 减少浮力:由于轻质的特性,泡沫混凝土可以减少在水中的浮力,使得填充的结构在浸泡或水压下更加稳定;3.3 防水性能:泡沫混凝土注浆后具有较好的密封性,可以有效防止水的渗透和侵蚀;3.4 施工便利性:相比传统的混凝土浇筑方法,泡沫混凝土注浆不需要使用大型施工设备,施工过程更加简便快捷。
4. 泡沫混凝土注浆方法的步骤4.1 准备工作:注浆前,需要将注浆设备准备好,并将所需的材料按照一定比例混合,包括水泥、骨料和发泡剂;4.2 调配混合泥浆:根据需要填充的区域大小和深度,将混合好的材料与一定比例的空气泡沫混合,形成泡沫混凝土浆体;4.3 注浆:将混合好的泡沫混凝土浆体注入注浆管,通过管道将浆体输送到需要填充的区域;4.4 固化和修整:泡沫混凝土浆体在注入区域后,需要进行一段时间的固化,以保证其结构稳定。
固化后,可以根据需要进行修整和整齐切割。
5. 对泡沫混凝土注浆方法的观点和理解泡沫混凝土注浆方法是一种创新的水下施工技术,为解决传统混凝土浇筑方法的局限性提供了一种有效的解决方案。
引言泡沫混凝土,是用物理方法将发泡剂水溶液制备成泡沫,再将泡沫加入到由胶凝材料、外加剂、水等制备的料浆中,混合搅拌而成的多孔轻质材料。
泡沫混凝土具有质量轻、保温隔热、隔音耐火、低弹减震等优点[1,2]。
泡沫混凝土在应用方面,可以用于制备砌块、板材、保温隔热材料、填充和回填、轻质垫层等。
泡沫混凝土干密度等级从A03至A16,每100kg/m3分为1个等级,而中高密度等级的泡沫混凝土应用相对更为广泛。
作为框架结构填充材料的泡沫混凝土密度一般选用900~1200kg/m3,作为屋面隔热层的泡沫混凝土密度通常选用800~1200kg/m3,国外通常采用密度等级为600~1100kg/m3的泡沫混凝土作管线填充,一般采用密度800~1200kg/m3的泡沫混凝土用于屋面边坡,修建运动场和田径跑道时也使用密度为800~900kg/m3的泡沫混凝土作为轻质基础[3]。
泡沫混凝土的显著特点是具有大量微小气孔,这赋予了其轻质、保温、隔音的性能,但也导致了泡沫混凝土强度的大幅度降低。
而由于强度的限制,使得泡沫混凝土的应用受到限制,泡沫混凝土的抗压强度过低已成为了其发展应用的瓶颈,阻碍了其在工程中的应用[4~6]。
干表观密度为 800~850kg/m3的泡沫混凝土抗压强度一般低于2.0MPa,有的甚至达不到1.0Ma,抗折强度则更低[7]。
综合来看,密度为1000kg/m3左右的泡沫混凝土工程应用较为广泛,但是目前其强度普遍偏低。
因此,制备高强度A10级泡沫混凝土是研究的主要方向。
本文设计正交试验进行A10级泡沫混凝土的制备研究,探究各因素对A10级泡沫混凝土强度性能的影响,为制备A10级高强度泡沫混凝土提供指导。
1 原材料试验所用原材料为:P·O 42.5R水泥;I 级粉煤灰;S95级矿粉;半加密硅灰;混凝土用短聚丙烯纤维;聚羧酸系高效减水剂;华泰复合型发泡剂,稀释比例为1∶30。
基于正交试验的A10级泡沫混凝土制备研究向 鹏 张荣华 邱培明 吴 鑫 刘登贤四川华西绿舍建材有限公司 四川 成都 610081摘 要:针对A10级泡沫混凝土,设计正交试验探究水胶比、矿粉、粉煤灰、硅灰、PP纤维等因素对A10级泡沫混凝土强度性能的影响。