人教版第二十一章二次根式教案新部编本
- 格式:docx
- 大小:147.05 KB
- 文档页数:19
新人教版九年级上21.1二次根式教案篇一:数学:人教版九年级上21.1二次根式(教案)数学:人教版九年级上21.1二次根式(教案)一、教学目标1.复习平方根的概念.2.经历从实际问题列二次根式的过程知道什么是二次根式会求二次根式有意义的条件.二、教学重点和难点1.重点:二次根式的概念.2..三、教学过程(一)复习旧知导入新课师:从本节课开始我们要学习新的一章——第二十一章二次根式(板书:第二十一章二次根式).师:什么是二次根式这得从平方根说起.师:初二的时候我们学过平方根那么什么是平方根(稍停)师:(板书:x=5并指准)x=55是x的什么(稍停)5是x的平方;反过来x是5的什么(稍停)x是5的平方根.师:(指准x=5)x=55是x的平方x是5的平方根.大家按照老师的说法自己说几遍.(生自己说)师:位同学来说一说2222生:??(让一两名同学说)师:(指准x=5)x=5x是5的平方根那么5的平方根x等于什么呢(板书:5的平方根x=)生:??(让一两名学生回答)师:x=师:(指准55的算术平方根.师:(指准板书)5的平方根是12的平方根生:(齐答).2212的什么12的算术平方根.师:上面我们复习的是正数的平方根下面我们来看0的平方根.师:(板书:x=0并指准)x=0x等于什么生:(齐答)x=0.(师板书:x=0)师:(指准板书)从x=0得出x=0这说明什么(稍停)这说明0的平方根为0(板书:0的平方根为0).师:我们还规定0的算术平方根为0.师:下面我们再来看负数有没有平方根.师:(板书:x=5并指准)一个数的平方等于5这样的数有没有(稍停)任何一个数的平方或者大于0或者等于0不可能小于0所以这样的数没有(板书:不存在).这说明什么(稍停)这说明5没有平方根(板书:5没有平方根).师:(指板书)从上面的讨论我们可以得出一个结论什么结论(稍停)正数有两个平方根它们互为相反数;0的平方根是0;负数没有平方根.(二)试探练习回授调节1.填空:(1)9的平方根是9的算术平方根是;(2)6的平方根是6的算术平方根是;(3)0的平方根是0的算术平方根是.2.用带根号的式子填空:(1)一个直角三角形的两条直角边的长分别是2和3则斜边的长为;(2)面积为S的正方形的边长为;(3)跳水运动员从跳台跳下他在空中的时间t(单位:秒)与跳台高度h(单位:米)满足关系h=5t.如果用含有h的式子表示t则t=.(三)尝试指导讲授新课(生报第222222师:式子有什么共同的特点生:??(问题的答案不是唯一的鼓励学生发表自己的看法)师:(指准式子)是13S的算术平方h的算术平方根.另一方面从式子5子).师:a等于13a等于Sa等于什么生:(齐答)等于h.S式(板书:叫做二次根式).师:大家把二次根式的概念读两遍.(生读)师:下面我们来看一道例题.(师出示例题)例当x师:大家看一看这个题目想一想做这个题目.(生读题思考)师:x2必须大于等于0.为什么被开方数x2必须大于等于0x2的算术平方根而负数没有平方根所以被开方数x2必须大于等于0.(以下师边讲解边板书解题过程如下)解:由x2≥0得x≥2.当x ≥2.(四)试探练习回授调节3.填空:(1)当a有意义;(2)当x.4.选做题:当x;当x有意义.(五)归纳小结布置作业2师:本节课我们首先复习了平方根的概念然后学习了什么是二次根式.(指准板a必须大于等于0(板书:其中a≥0).(作业:P5习题1P3练习2)四、板书设计课题:21.1二次根式(第2课时)一、教学目标1.经历探究过程知道并会简单运用二次根式的基本性质.2.培养探究能力和归纳表达能力.二、教学重点和难点1.重点:二次根式的基本性质.2.难点:二次根式基本性质的探究.三、教学过程(一)创设情境导入新课师:上节课我们学习了二次根式的概念什么样的式子是二次根式(师出示下面的板书)a≥0)的式子叫做二次根式.师:a必须大于等于0.譬如.师:明确了二次根式的概念本节课我们要学习什么本节课我们要学习二次根式的性质(板书:二次根式的性质).(二)尝试指导讲授新课师:二次根式有什么性质二次根式有三个性质我们先来看第一个性质.(师出示下面的板书)性质1a≥0)是一个非负数.师:(指准板书)性质1.0所.a的算术平方根而a的算术平方根总是大于等于0.师:下面我们来看二次根式的第二个性质.师:于什么生:等于3.(直到有学生猜出这个答案师板书:=3)师:(指式子)等2=3为什么(稍停)2(师出示下图)面积=3师:(指准图)这是一个正方形这个正方形的面积为3那么它的边长等于什么(多让几名同学回答然后师在图上板书:边长师:3.么生:??(多让几名同学回答)=3.师:(板书:=)利用同样的办法我们可以得到等于什么师:3可见222生:(齐答)等于8.(生答师板书:8)篇二:人教版九年级上册教案21.1二次根式121.1二次根式第一课时教学内容二次根式的概念及其运用教学目标a≥0)的意义解答具体题目.提出问题根据问题给出概念应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3那么它的图象在第一象限横、?纵坐标相等的点的坐标x问题2:如图在直角三角形ABC中AC=3BC=1∠C=90°那么AB边的长是.A问题3:甲射击6次各次击中的环数如下:8、7、9、9、7、8那么甲这次射击的方差是S2那么S=.老师点评:问题1:横、纵坐标相等即x=y所以x2=3.因为点在第一象限所以.问题2:由勾股定理得C问题3:由方差的概念得S=二、探索新知a≥0)?的式子叫做二次根式(学生活动)议一议:1.1有算术平方根2.0的算术平方根是多少3.当a<0老师点评:(略)例1、x1x≥0y?≥0).x?y;第二被开方数是正数分析或0.x>0)x≥0y≥0);不是二次11.xx?y例2.当x分析:由二次根式的定义可知被开方数一定要大于或等于0所以3x1≥0?才能有意义.解:由3x1≥0得:x≥当x≥131在实数范围内有意义.3三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x分析+1在实数范围内有意义x?11在实数范围内有意义必须同时满足中的≥0和x?11中的x+1≠0.x?1解:依题意得??2x?3?0?x?1?0由①得:x≥32由②得:x≠1当x≥32且x≠11x?1在实数范围内有意义.例4(1)已知求xy的值.(答案:2)(2)求axx+bxx的值.(答案:25)五、归纳小结(学生活动老师点评)本节课要掌握:1a≥0)的式子叫做二次根式2.要使二次根式在实数范围内有意义必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.第一课时作业设计一、选择题1.下列式子中是二次根式的是()A.BCD.x2.下列式子中不是二次根式的是()ABCD.1x3.已知一个正方形的面积是5那么它的边长是()A.5BC.15D.以上皆不对二、填空题1.形如的式子叫做二次根式.2.面积为a的正方形的边长为.3.负数平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒其高为0.2m按设计需要做成正方形试问底面边长应是多少2.当x2在实数范围内有意义3.4.x有()个.底面应?A.0B.1C.2D.无数5.已知a、b=b+4求a、b的值.第一课时作业设计答案:一、1.A2.D3.B二、1a≥0)23.没有三、1.设底面边长为x则0.2x2=1解答:3??2x?3?0?x??2.依题意得:??2x?0???x?0∴当x>3且x≠0x2在实数范围内没有意义.23.134.B5.a=5b=4篇三:人教版数学九年级(上)21.1《二次根式》教案21.1《二次根式》教案一、知识回顾1.9的平方根是9的算术平方根是.2.3的算术平方根表示为;3的平方根表示为3.在实数范围内正数有0的(算术)平方根是;负数(算术)平方根.二、知识点拨知识点1:一般地我们把形如(a≥0)的式子叫做二次根式“”称为二次根号.6.下列是二次根式的是:.(1)x2=25(2)2x?1(3)x2-x-9=0(4)2x?6(5)xy≥0(6)2(7)12(8)x7.当a是怎样的实数时下列各2a式在实数范围内有意义a(1)a?2(2)?1(3)2a?3(4)?2(5)3?a(6)a(7)?a(8)a2(9)a32知识点2:一般地=a(a≥0).a)8.计算:222(1)(2)(3).5)(2)3)222(4)(5)(6)(32))(?0.2)知识点3:一般地a2=a (a≥0).9.化简:2(1)(2)?5(3)0.32)22(5)(4)?1(6)?2???)722(7)0.62(8)?3知识点4:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数和字母连接起来的式子我们称这样的式子为代数式.三、课后思考10.已知直角三角形两直角边为a和b斜边为c.(提示:勾股定理公式:a2+b2=c2)(1)如果a=12b=5求c;(2)如果a=3c=4求b;(3)如果c=10b=9求a.11.已知半径为rcm的圆的面积是半径为2cm和3cm的两个圆的面积的和求r的值.12.(1)?n是整数求自然数n的值.(2)24n是整数求正整数n的最小值.13.当x是怎样的实数时下列各式在实数范围内有意义1(1)3?x(2)2x?114.已知n是正整数n是整数求n的最小值.四、中考链接15.(XX·株洲)若使二次根式x?2在实数范围内有意义则x的取值范围是()A.x>2B.x≥2C.x<2D.x≤2XX16.(XX·天津)若x、y为实数且x?2?y?2?0则的值为.xy17.(XX·哈尔滨)36的算术平方根是()A.6B.±6C.D.±618.(XX·荆门)?9的平方根是()A.81B.±3C.3D.-319.(XX·宜宾)9的平方根是()A.3B.-3C.±3D.±3220.(XX·怀化)若a?2?b?3?(c?4)?0则a-b+c=.21.(XX·福州)请写出一个比5小的整数:022.(XX·江苏)计算:?2?(1?2)?4223.(XX·江西)计算:(?2)?(3?5)??2?(?3)024.(XX·南充)计算:(??XX)??3?2。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第21章二次根式小结与复习教学内容本节课主要是对二次根式进行系统复习,巩固所学知识,提升应用方法.教学目标知识技能会理解二次根式的意义,会化简二次根式,会进行二次根式的乘除、加减混合运算..数学思考经历探究二次根式概念及运算的过程,体会二次根式的解题方法.解决问题在多解中进行比较,寻求有效快捷的计算方法.情感态度培养学生良好的运算习惯和不懈的探索精神.重难点、关键重点:二次根式的化简以及运算难点:二次根式性质、法则的正确使用.关键:充分理解二次根式的概念,运用知识迁移的手法,•体会二次根式的混合运算的算法.教学准备教师准备:制作课件,精选习题学生准备:写一份本单元知识结构图.教学过程一、回顾交流【教学方略】将学生分成四人小组,•交流各自书写的“单元知识结构图”进行概括总结.•知识网络图表•【师生共识】 (1)二次根式有关概念:(a ≥0)的式子 最简二次根式:(a )被开方数不含分母; (b )被开方数中不含能开尽方的因数或因式。
(2)二次根式性质:2(0)(0,0)0,0)a a a a a b a b =≥==≥≥=≥>为实数) (3)二次根式运算法则:加减法:先化成最简二次根式,再把同类二次根式合并.(a ≥0,b ≥0)a ≥0,b>0) 二、 范例点击例1:下列各式中,正确的是( )A ±4B =-5C 3D =- 答案:C【教师评析】A 错,等号左边表示的是算术平方根,右边却是正负两个值;B 错,•等号左边表示的是算术平方根,右边应是5;C 对,-27的立方根只有一个实数-3;D 错,•任何一个非负数-27)2的算术平方根,结果应是27,此类利用平方根、算术平方根、立方根的定义及符号含义来判断题目,常常用到.例2-)2.解:原式=()(- 2=12×-8×3-()-5【教师评析】进行根式运算时,要正确运用运算法则和乘法公式,分析题目特点,掌握方法与技巧,= ,•但这样计)2=)2-)2,此类常犯的错误.另外,根式的分数必须写成假分数或真分数,不能写成带分数.例如172不能写成812.三、 随堂巩固课本P26 复习题21 第1、2、3、8、10、11题【活动方略】学生独立思考、独立解题.教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)【设计意图】为学生提供实际演练的机会,加强对已学知识的复习并检查对新知识的掌握情况.四、小结作业1.问题:谈一谈本节课自己的收获和感受?2.作业:课本P26 复习题21 第4、5、6、7、9、题【活动方略】教师引导学生归纳小结,学生反思学习和解决问题的过程.学生独立完成作业,教师批改、总结.【设计意图】通过归纳总结,课外作业,使学生优化概念,内化知识。
21.1.1二次根式的基本性质(1)教学目标:(1a ≥0)的意义求字母的取值范围. (2)二次根式的基本性质:(1)()()02≥=a a a ;(2)()()02≥=a a a .教学重点:二次根式的概念;教学难点:a ≥0)”解决具体问题. 教学过程:一.复习:1.如果 x ² = a 那么 x 叫做a 的平方根,表示为x=±a ≥0)a 的算术平方根,-a 的算术平方根的相反数例如(114412;(2)0.810.9--2.练习:(1)求下列各数的平方根和算术平方根:0,10,64.0,92-(2)什么叫一个数a 的平方根?算术平方根?怎样表示?0的平方根是什么?负数有没有平方根?二.二次根式的意义: 前面已经学过,符号“”叫做二次根号,二次根号下面的数叫被开方数。
因为在实数范围内,负数无平方根,所以被开方数中只能是非负数。
一般地,我们用a 表示被开方数,把式子a ()0≥a 叫做二次根式。
二次根式有两上要点:(1)要含有;(2)被开方数是非负数例1 .x 是怎样的实数时,下列各数在实数范围内有意义?(1)1-x (2)x 5- (3)1+x (4)21--x x分析:当各式的被开方数为非负数时,这些式子在实数范围内才意义。
如(1),就是求当x 是一个怎样的实数时,1-x 非负,因此可以解关于x 的一元二次不等式,分别得出x 的取值范围。
解:(1)由01≥-x 得1≥x 。
当1≥x 时,式子1-x 有意义。
(2)x ≥0(3)x 为一切实数(4)x ≥1且x ≠2 小结:要使一个式了有意义要从两方面来思考(1)分式的分母不为零; (2)偶次根号里的被开方数要是非负数 练习1:x 是怎样的实数时,下列各数在实数范围内有意义?(1)x 34- (2)2-x (3)12+x (4)31+-x三.二次根式的性质求下列各数的算术平方根的平方值,并说出这些值与原来的各数有什么关系?94,0,2,4解:42)4(22==,2)2(2=,0)0(2=,94)32()94(22==问:如果用字母a 表示数,上述结论是否成立?成立的条件是什么? 答:如果,0≥a 那么()a a =2,我们得到二次根式的基本性质()()02≥=a a a问题:请判断下列各式是否成立?(1)()552= (2)()552=- (3)()552-=- (4)()()0222≥=m m m解:(1)正确(2)正确 (3)错误 ,应该=5(4)正确例2计算(1)253⎪⎪⎭⎫ ⎝⎛ (2)()232 (3)()272- (4)()2n m答:(1)53(2)1234)3(222=⨯=⨯= (3)28)7()2(22=⨯-= (4)n m n m 222)(=⨯= 练习2:计算(1)()23.0 (2)2531⎪⎭⎫ ⎝⎛ (3)2321⎪⎭⎫ ⎝⎛- (4)()2b a (5)24332⎪⎪⎭⎫ ⎝⎛例3 化简:()xy yx ---22解:∵0≥-y x 即y x ≥ ∴yx x y -=-∴()x y yx ---22=()xy y x y x -=---2练习3:若521=--+-+b a b a ,求a 与b 的值。
21.3 二次根式的加减(2)教学目标:(1)运用二次根式、化简解应用题.(2)通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.教学重点:应用题的思路教学难点:二次根式的化简教学过程:一、复习引入上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固.二、探索新知例1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)ACQP分析:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,•根据三角形面积公式就可以求出x的值.解:设x 后△PBQ的面积为35平方厘米.则有PB=x,BQ=2x依题意,得:12x·2x=35x2=35PBQ的面积为35平方厘米.===PBQ的面积为35平方厘米,PQ的距离为例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,•只需知道这四段的长度.BC 2m1m 4mD 解:由勾股定理,得===所需钢材长度为AB+BC+AC+BD5 ≈3×2.24+7≈13.7(m )答:要焊接一个如图所示的钢架,大约需要13.7m 的钢材.三、巩固练习教材P19 练习3四、应用拓展例3.若最简根式343a b a b -+23226ab b b -+a 、b 的值.(•同类二次根式就是被开方数相同的最简二次根式)分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式|b|二次根式的定义得3a-•b=•2,2a-b+6=4a+3b .由题意得432632a b a b a b +=-+⎧⎨-=⎩∴24632a b a b +=⎧⎨-=⎩∴a=1,b=1五、归纳小结本节课应掌握运用最简二次根式的合并原理解决实际问题.六、布置作业1.教材P21 习题21.3 7.补充作业:一、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).(•结果用最简二次根式)A ...以上都不对2.小明想自己钉一个长与宽分别为30cm 和20cm 的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米.(结果同最简二次根式表示)A ...二、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m .(结果用最简二次根式)2.2•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)三、综合提高题 22323m -12410n m --m 、n 的值. 答案:一、1.A 2.C二、1.2.2三、依题意,得2223241012m m n ⎧-=-⎪⎨-=⎪⎩ ,2283m n ⎧=⎪⎨=⎪⎩,22m n ⎧=±⎪⎨=⎪⎩所以m n ⎧=⎪⎨=⎪⎩或m n ⎧=-⎪⎨=⎪⎩或m n ⎧=⎪⎨=⎪⎩或m n ⎧=-⎪⎨=⎪⎩ 所以a m n b mn =+⎧⎨=⎩。
新人教版九年级上21.1二次根式教案篇一:数学:人教版九年级上 21.1 二次根式()数学:人教版九年级上 21.1 二次根式(教案)一、教学目标1.复习平方根的概念.2.经历从实际问题列二次根式的过程,知道什么是二次根式,会求二次根式有意义的条件.二、教学重点和难点1.重点:二次根式的概念.2.. 三、教学过程(一)复习旧知,导入新课师:从本节课开始,我们要学习新的一章——第二十一章二次根式(板书:第二十一章二次根式).师:什么是二次根式?这得从平方根说起.师:初二的时候我们学过平方根,那么什么是平方根?(稍停)师:(板书:x=5,并指准)x=5,5是x的什么?(稍停)5是x的平方;反过来,x是5的什么?(稍停)x是5的平方根.师:(指准x=5)x=5,5是x的平方,x是5的平方根.大家按照老师的说法,自己说几遍.(生自己说)师:哪位同学来说一说?2222生:??(让一两名同学说)师:(指准x=5)x=5,x是5的平方根,那么5的平方根x等于什么呢?(板书:5的平方根x=)生:??(让一两名学生回答)师:x=师:(指准55的算术平方根.师:(指准板书)5的平方根是12的平方根是什么?生:(齐答).2212的什么?12的算术平方根.师:上面我们复习的是正数的平方根,下面我们来看0的平方根. 师:(板书:x=0,并指准)x=0,x等于什么?生:(齐答)x=0.(师板书:x=0)师:(指准板书)从x=0得出x=0,这说明什么?(稍停)这说明0的平方根为0(板书:0的平方根为0).师:我们还规定0的算术平方根为0. 师:下面我们再来看负数有没有平方根.师:(板书:x=-5,并指准)一个数的平方等于-5,这样的数有没有?(稍停)任何一个数的平方,或者大于0,或者等于0,不可能小于0,所以这样的数没有(板书:不存在).这说明什么?(稍停)这说明-5没有平方根(板书:-5没有平方根).师:(指板书)从上面的讨论,我们可以得出一个结论,什么结论?(稍停)正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(二)试探练习,回授调节 1.填空:(1)9的平方根是,9的算术平方根是;(2)6的平方根是,6的算术平方根是;(3)0的平方根是,0的算术平方根是. 2.用带根号的式子填空: (1)一个直角三角形的两条直角边的长分别是2和3,则斜边的长为;(2)面积为S的正方形的边长为;(3)跳水运动员从跳台跳下,他在空中的时间t(单位:秒)与跳台高度h(单位:米)满足关系h=5t.如果用含有h的式子表示t,则t=. (三)尝试指导,讲授新课(生报第222222师:式子有什么共同的特点?生:??(问题的答案不是唯一的,鼓励学生发表自己的看法)师:(指准式子)是13S的算术平方h的算术平方根.另一方面,从式子5子).师:a等于13a等于Sa等于什么?生:(齐答)等于h.S式(板书:叫做二次根式).师:大家把二次根式的概念读两遍.(生读)师:下面我们来看一道例题.(师出示例题)例当x师:大家看一看这个题目,想一想怎么做这个题目.(生读题思考)师:x-2必须大于等于0.为什么被开方数x-2必须大于等于0?x-2的算术平方根,而负数没有平方根,所以被开方数x-2必须大于等于0.(以下师边讲解边板书,解题过程如下)解:由x-2≥0,得x≥2. 当x≥2. (四)试探练习,回授调节 3.填空:(1)当a有意义;(2)当x.4.选做题:当x;当x有意义.(五)归纳小结,布置作业2师:本节课我们首先复习了平方根的概念,然后学习了什么是二次根式.(指准板a必须大于等于0(板书:其中a≥0).(作业:P5习题1,P3练习2)四、板书课题:21.1二次根式(第2课时)一、教学目标1.经历探究过程,知道并会简单运用二次根式的基本性质.2.培养探究能力和归纳表达能力. 二、教学重点和难点1.重点:二次根式的基本性质.2.难点:二次根式基本性质的探究.三、教学过程(一)创设情境,导入新课师:上节课我们学习了二次根式的概念,什么样的式子是二次根式?(师出示下面的板书)a≥0)的式子叫做二次根式.师:a必须大于等于0.譬如,.师:明确了二次根式的概念,本节课我们要学习什么?本节课我们要学习二次根式的性质(板书:二次根式的性质).(二)尝试指导,讲授新课师:二次根式有什么性质?二次根式有三个性质,我们先来看第一个性质.(师出示下面的板书)性质1a≥0)是一个非负数.师:(指准板书)性质1.0,所.a的算术平方根,而a的算术平方根总是大于等于0.师:下面我们来看二次根式的第二个性质.师:,于什么?生:等于3.(直到有学生猜出这个,师板书:=3)师:(指式子)等2=3,为什么?(稍停)2(师出示下图)面积=3师:(指准图)这是一个正方形,这个正方形的面积为3,那么它的边长等于什么?(多让几名同学回答,然后师在图上板书:边长师:3.么?生:??(多让几名同学回答)=3. 师:(板书:=)利用同样的办法,我们可以得到等于什么?师:3,可见,222生:(齐答)等于8.(生答师板书:8)篇二:人教版九年级上册教案 21.1 二次根式121.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1a≥0)的式子叫做二次根式的概念;2.难点与关键:利用“a≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3,那么它的图象在第一象限横、?纵坐标相等的点的坐标x是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB 边的长是__________.A问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以.问题2:由勾股定理得C问题3:由方差的概念得S=二、探索新知a≥0)?的式子叫做二次根式,(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a0)、x1x≥0,y?≥0). x?y;第二,被开方数是正数分析或0.x>0)x≥0,y≥0);不是二次11. xx?y例2.当x分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,?才能有意义.解:由3x-1≥0,得:x≥当x≥1 31在实数范围内有意义. 3三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x分析+1在实数范围内有意义? x?11在实数范围内有意义,必须同时满足中的≥0和x?11中的x+1≠0. x?1解:依题意,得??2x?3?0 ?x?1?0由①得:x≥-32由②得:x≠-1当x≥-32且x≠-11x?1在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)(2),求a2004+b2004的值.(答案:25)五、归纳小结(学生活动,老师点评)本节课要掌握:1a≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.第一课时作业设计一、选择题1.下列式子中,是二次根式的是()A.BCD.x2.下列式子中,不是二次根式的是()ABCD.1x3.已知一个正方形的面积是5,那么它的边长是() A.5 BC.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,做成正方形,试问底面边长应是多少?2.当x2在实数范围内有意义?3.4.x有()个.底面应?A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.第一课时作业设计答案:一、1.A 2.D 3.B二、1a≥0) 23.没有三、1.设底面边长为x,则0.2x2=1,解答:3??2x?3?0?x?? 2.依题意得:?,?2 x?0???x?0∴当x>-3且x≠0x2在实数范围内没有意义. 23.1 34.B5.a=5,b=-4篇三:人教版数学九年级(上)21.1《二次根式》教案21.1 《二次根式》教案一、知识回顾1. 9的平方根是9的算术平方根是.2. 3的算术平方根表示为;3的平方根表示为3. 在实数范围内,正数有0的(算术)平方根是 ;负数(算术)平方根.二、知识点拨知识点1:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.6. 下列是二次根式的是:.(1)x2=25 (2)2x?1 (3)x2-x-9=0(4)2x?6 (5)xy≥0 (6)2(7)12 (8) x7. 当a是怎样的实数时,下列各2a式在实数范围内有意义? a (1)a?2(2)?1 (3)2a?3(4)?2(5)3?a (6)a(7)?a (8)a2 (9)a32知识点2:一般地,=a(a≥0). a)8. 计算:222 (1)(2)(3) .5)(2)3)222 (4)(5)(6)(32))(?0.2)知识点3:一般地,a2=a (a≥0).9. 化简:2 (1)(2)?5 (3)0.32 )22 (5)(4)?1 (6)?2 ???)722 (7)0.62 (8)? 3知识点4:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数和字母连接起来的式子,我们称这样的式子为代数式.三、课后思考10. 已知直角三角形两直角边为a和b,斜边为c.(提示:勾股定理公式:a2+b2=c2)(1)如果a=12,b=5,求c;(2)如果a=3,c=4,求b; (3)如果c=10,b=9,求a.11. 已知半径为r cm的圆的面积是半径为2 cm和3 cm的两个圆的面积的和,求r的值.12.(1)?n是整数,求自然数n的值.(2)24n是整数,求正整数n的最小值.13. 当x是怎样的实数时,下列各式在实数范围内有意义?1(1)3?x (2) 2x?114. 已知n是正整数,n是整数,求n的最小值.四、链接15.(2009·株洲)若使二次根式x?2在实数范围内有意义,则x的取值范围是()A. x>2B. x≥2C. x<2D. x≤2200916.(2009·天津)若x、y为实数,且x?2?y?2?0,则的值为 . x y17.(2009·哈尔滨)36的算术平方根是()A. 6B. ±6C.D. ±618.(2009·荆门)?9的平方根是()A. 81B. ±3C. 3D. -319.(2009·宜宾)9的平方根是()A. 3B. -3C. ±3D.±3220.(2009·怀化)若a?2?b?3?(c?4)?0,则a-b+c=.21.(2009·福州)请写出一个比5小的整数:022.(2009·江苏)计算:?2?(1?2)?4223.(2009·江西)计算:(?2)?(3?5)??2?(?3)024.(2009·南充)计算:(??2009)??3?2《》。
课题:21.1二次根式一、教学目标1.复习平方根的概念.2.经历从实际问题列二次根式的过程,知道什么是二次根式,会求二次根式有意义的条件.二、教学重点和难点1.重点:二次根式的概念.2..三、教学过程(一)复习旧知,导入新课师:从本节课开始,我们要学习新的一章——第二十一章二次根式(板书:第二十一章二次根式).师:什么是二次根式?这得从平方根说起.师:初二的时候我们学过平方根,那么什么是平方根?(稍停)师:(板书:x2=5,并指准)x2=5,5是x的什么?(稍停)5是x的平方;反过来,x是5的什么?(稍停)x是5的平方根.师:(指准x2=5)x2=5,5是x的平方,x是5的平方根.大家按照老师的说法,自己说几遍.(生自己说)师:哪位同学来说一说?生:……(让一两名同学说)师:(指准x2=5)x2=5,x是5的平方根,那么5的平方根x等于什么呢?(板书:5的平方根x=)生:……(让一两名学生回答)师:x=师:(指准5,另一个是5的算术平方根.师:(指准板书)5的平方根是12的平方根是什么?生:(齐答)12的什么?12的算术平方根.师:上面我们复习的是正数的平方根,下面我们来看0的平方根.师:(板书:x2=0,并指准)x2=0,x等于什么?生:(齐答)x=0.(师板书:x=0)师:(指准板书)从x2=0得出x=0,这说明什么?(稍停)这说明0的平方根为0(板书:0的平方根为0).师:我们还规定0的算术平方根为0.师:下面我们再来看负数有没有平方根.师:(板书:x2=-5,并指准)一个数的平方等于-5,这样的数有没有?(稍停)任何一个数的平方,或者大于0,或者等于0,不可能小于0,所以这样的数没有(板书:不存在).这说明什么?(稍停)这说明-5没有平方根(板书:-5没有平方根).师:(指板书)从上面的讨论,我们可以得出一个结论,什么结论?(稍停)正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(二)试探练习,回授调节1.填空:(1)9的平方根是,9的算术平方根是;(2)6的平方根是,6的算术平方根是;(3)0的平方根是,0的算术平方根是 .2.用带根号的式子填空:(1)一个直角三角形的两条直角边的长分别是2和3,则斜边的长为;(2)面积为S的正方形的边长为;(3)跳水运动员从跳台跳下,他在空中的时间t(单位:秒)与跳台高度h(单位:米)满足关系h=5t2.如果用含有h的式子表示t,则t= .(三)尝试指导,讲授新课(生报第2师:式子有什么共同的特点?生:……(问题的答案不是唯一的,鼓励学生发表自己的看法)师:(指准式子)是13S的算术平方根,h5的算术平方根.另一方面,从式子的式子).师:a等于13a等于S a等于什么?生:(齐答)等于hS.的式子叫做二次根式(板书:叫做二次根式).师:大家把二次根式的概念读两遍.(生读)师:下面我们来看一道例题.(师出示例题)例当x师:大家看一看这个题目,想一想怎么做这个题目.(生读题思考)师:x-2必须大于等于0.为什么被开方数x-2必须大于等于0?x-2的算术平方根,而负数没有平方根,所以被开方数x-2必须大于等于0.(以下师边讲解边板书,解题过程如下)解:由x-2≥0,得x≥2.当x≥2.(四)试探练习,回授调节3.填空:(1)当a 时,有意义;(2)当x 时,.24.选做题:当x 时,有意义;当x 时,有意义.(五)归纳小结,布置作业师:本节课我们首先复习了平方根的概念,然后学习了什么是二次根式.(指准板的式子叫做二次根式,这里的a必须大于等于0(板书:其中a≥0).(作业:P5习题1,P3练习2)四、板书设计课题:21.1二次根式(第2课时)一、教学目标1.经历探究过程,知道并会简单运用二次根式的基本性质.2.培养探究能力和归纳表达能力.二、教学重点和难点1.重点:二次根式的基本性质.2.难点:二次根式基本性质的探究.三、教学过程(一)创设情境,导入新课师:上节课我们学习了二次根式的概念,什么样的式子是二次根式?(师出示下面的板书)(a≥0)的式子叫做二次根式.师:的式子叫做二次根式,这里的被开方数a必须大于等于0.譬如,是二次根式,.师:明确了二次根式的概念,本节课我们要学习什么?本节课我们要学习二次根式的性质(板书:二次根式的性质).(二)尝试指导,讲授新课师:二次根式有什么性质?二次根式有三个性质,我们先来看第一个性质.(师出示下面的板书)性质1(a≥0)是一个非负数.师:(指准板书)性质1.>0,所数;.表示a的算术平方根,而a的算术平方根总是大于等于0是一个非负数.师:下面我们来看二次根式的第二个性质.师:,2等于什么?生:等于3.(直到有学生猜出这个答案,师板书:=3)师:(指式子)2=3,为什么?(稍停)(师出示下图)面积=3师:(指准图)这是一个正方形,这个正方形的面积为3,那么它的边长等于什么?.(多让几名同学回答,然后师在图上板书:边长)师: 3.的平方等于什么?生:……(多让几名同学回答)师:3,可见,2=3.师:(板书:2=)利用同样的办法,我们可以得到2等于什么?生:(齐答)等于8.(生答师板书:8)师:(板书:2=)利用同样的办法,我们可以得到2等于什么?生:(齐答)等于a.(生答师板书:a )师:(指式子)2=a ,这就是二次根式的第二个性质(板书:性质2).师:(指准式子)这里的a 是被开方数,所以a 必须大于等于0(板书:(a ≥0)). 师:下面我们利用性质2来做几个题目. (师出示例1) 例1 计算:(1)2; (2)(2.(师边讲边解板书,解题过程如课本第4页所示) (三)试探练习,回授调节 1.计算:(1)2= (2)2=(3)2= (4)(2=(5)(2=(四)尝试指导,讲授新课师:前面我们学习了二次根式的性质1和性质2,下面我们学习性质3.师:)生:等于2.1.(直到有学生猜出这个答案,师板书:2.1)师:=2.1,为什么?(稍停)(师出示下图)面积=2.12师:(指准图)这是一个正方形,这个正方形的面积为2.12,那么它的边长等于什么?生:边长等于2.1.(多让几名同学回答,然后师在图上板书:边长=2.1)师:(指准图)我们知道,正方形面积的算术平方根等于边长,师:生:(齐答)等于6.(生答师板书:6)师:生:(齐答)等于a.(生答师板书:a )师:,这就是二次根式的第三个性质(板书:性质3)师:(指准右边的a )这里的a 是a 2的算术平方根,所以a ≥0(边讲边板书:(a ≥0)).师:学习了二次根式的性质2和性质3,有的同学觉得性质2和性质3好像是一样的.性质2和性质3是一样的吗?(稍停)师:(指准板书)性质2和性质3这两个等式的右边是一样的,而且a 都必须大于等于0,但性质2和性质3的左边是不一样的,大家仔细看一看,性质2的左边是什么,性质3的左边又是什么.(让生观察一会儿)师:(指准式子)谁来说说这两个等式的左边有什么不同? 生:……(多让几名同学说,要鼓励学生用自己的语言来表述)师:(指准2)这个式子表示什么?表示a 的算术平方根的平方,这个式子表示什么?表示a 2的算术平方根.a 的算术平方根的平方和a 2的算术平方根的意思是不一样的.师:下面我们利用性质来做几个题目. (师出示例2) 例2 化简:; (师边讲解边板书,解题过程如课本第5页所示) (五)试探练习,回授调节 2.化简:=3.直接写出结果:(1)2=(2=(六)归纳小结,布置作业师:本节课我们学习了什么?(稍停)我们学习了二次根式的三个性质.大家把这三个性质再看一遍.(生默读)(作业:P 5习题2.4.) 四、板书设计. ).课题:21.1二次根式(第3课时)一、教学目标1.通过基本训练,复习巩固二次根式的概念和性质.2.了解代数式的概念,会用代数式表示实际问题中的某一个量.二、教学重点和难点1.重点:用代数式表示实际问题中的某一个量.2.难点:用代数式表示实际问题中的某一个量.三、教学过程(一)基本训练,巩固旧知1.填空:(1)形如 (a≥0)的式子叫做二次根式.(2)二次根式的三个性质是:性质1(a≥0)是一个数;性质2:2= (a≥0);性质3= (a≥0).2.直接写出结果:2=(3)(23.判断正误:对的画“√”,错的画“×”.(1)2=7;();()(3)2=-7;()(4)(2=7;()(5)2-=7;();();(). ( )(二)尝试指导,讲授新课师:到现在我们已经学习了好几种式子,我们学习了整式(板书:整式)、分式(板书:分式)、二次根式(板书:二次根式).师:什么样的式子是整式?(边讲边板书:3,2a ,3+2a )3是一个整式,2a 是一个整式,3+2a 也是一个整式.师:什么样的式子是分式?(边讲边板书:32a ,2a 3+2a )32a 是一个分式,2a3+2a也是一个分式.师:什么样的式子是二次根式?(边讲边板书:是一个二次根也是一个二次根式. 师:整式、分式、二次根式都可以叫做代数式(连线并板书:代数式,如板书设计所示).师:除了整式、分式、二次根式是代数式,由整式、分式、二次根式混合组成的式子也是代数式(连线并板书:混合式,如板书设计所示).师:(板书:,并指准)譬如,2a式,把这两个式子加起来,得到2a+,.师:(板书:32a32a32a是一个二次根式,把这两个式子乘起来,得到32a32a.师:(指准板书)到现在为止,我们学过的代数式包括整式、分式、二次根式,以及由这三种式子混合组成的式子.师:下面我们来看一个列代数式的例子. (师出示例题)例 一个矩形的面积为S ,长宽之比为3:2,用代数式表示这个矩形的长和宽. (先让生读题,然后师边讲解边板书,解题过程如下)解:设这个矩形的长为3x,宽为2x.根据题意列方程得 3x·2x=S,整理得 x2=S6,∴∴这个矩形的长为(三)试探练习,回授调节4.用代数式表示:面积为S的圆的半径为 .5.一个矩形的面积为60,长宽之比为5:2,求这个矩形的长和宽.(四)归纳小结,布置作业师:本节课我们学习了代数式的概念.(指准板书)到目前为止,我们学过的代数式包括整式、分式、二次根式,以及由这三种式子混合组成的式子.(作业:P6习题5.6.)四、板书设计。
21.1 二次根式第一课时教学内容1.二次根式的概念2.二次根式的运用教学目标1.理解二次根式的概念,并利用a (a ≥0)的意义解题.2.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键1.重点:形如a (a ≥0)的式子叫做二次根式的概念;2.难点与关键:利用“a (a ≥0)”的意义解题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:如图,在直角三角形ABC 中,AC=5,BC=3,∠C=90°,那么AB 边的长是__________.B AC问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.问题3:已知反比例函数y=x5,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.老师点评:问题1:由勾股定理得AB=34 问题2:由方差的概念得S= 46. 问题3:横、纵坐标相等,即x=y ,所以x 2=5.因为点在第一象限,所以x=5,所以所求点的坐标(5,5).二、探索新知很明显34、46、5,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如a (a ≥0)•的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-2有算术平方根吗?2.0的算术平方根是多少?3.当x<0,x 有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:3、33、1x 、x (x>0)、0、42、-2、1x y+、x y +(x ≥0,y •≥0). 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:3、x (x>0)、0、-2、x y +(x ≥0,y ≥0);不是二次根式的有:33、1x、42、1x y +. 例2.当x 是多少时,32-x 在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以2x-3≥0,•32-x 才能有意义.解:由2x-3≥0,得:x ≥23 当x ≥23时,32-x 在实数范围内有意义. 三、巩固练习教材P 练习1、2、3.四、应用拓展例3.当x 是多少时,23x ++13-x 在实数范围内有意义? 分析:要使23x ++13-x 在实数范围内有意义,必须同时满足23x +中的≥0和13-x 中的x-1≠0. 解:依题意,得⎩⎨⎧≠-≥+01032x x 由①得:x ≥-32由②得:x ≠1当x ≥-32且x ≠1时,23x ++13-x 在实数范围内有意义. 例4(1)已知y=x -3+3-x +1,求x y 的值.(答案:3) (2)若1a ++1b -=0,求a 2012+b 2012的值.(答案:2)五、归纳小结本节课要掌握:1.形如a (a ≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P 8复习巩固1、综合应用5.2..课后作业:《同步训练》21.1 二次根式(2)第二课时教学内容1.a (a ≥0)是一个非负数;2.(a )2=a (a ≥0).教学目标理解a (a ≥0)是一个非负数和(a )2=a (a ≥0),并利用它们进行计算和化简. 根据二次根式的概念,推出a (a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a )2=a (a ≥0);最后运用结论解题.教学重难点关键1.重点:a (a ≥0)是一个非负数;(a )2=a (a ≥0)及其运用.2.难点、关键:用分类思想的方法导出a (a ≥0)是一个非负数;•推导出(a )2=a(a ≥0).教学过程一、复习引入(学生活动)口答1.什么叫二次根式?2.当a ≥0时,a 叫什么?当a<0时,a 有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)a (a ≥0)是一个什么数呢?根据学生讨论和上面的练习,我们可以得出 a (a ≥0)是一个非负数.做一做:根据算术平方根的意义填空:(4)2=_______;(2)2=_______;(9)2=______;(3)2=_______; (23)2=_______;(-13)2=______;(0)2=_______. 老师点评:4是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此有(4)2=4.同理可得:(2)2=2,(9)2=9,(3)2=3,(23)2=23,(-13)2=13,(0)2=0,所以 (a )2=a (a ≥0)例1 计算1.(32)2 2.(25)2 3.(56)2 4.(72)2 分析:我们可以直接利用(a )2=a (a ≥0)的结论解题.解:(32)2 =32,(25)2 =22·(5)2=22·5=20, (56)2=56,(72)2=22(7)724 .三、巩固练习计算下列各式的值:(18)2 (-23)2 -(-94)2 (0)2 -(278)2 22(35)(53)-四、应用拓展例2 计算1.(1-x )2(x ≥2) 2.(2a )23.(221a a ++)2 4.(24129x x -+)2分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0;(4)4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2≥0.所以上面的4题都可以运用(a )2=a (a ≥0)的重要结论解题.解:(1)因为x ≥2,所以x-1>0(1-x )2=x-1(2)∵a 2≥0,∴(2a )2=a 2(3)∵a 2+2a+1=(a+1)2又∵(a+1)2≥0,∴a 2+2a+1≥0 ,∴221a a ++=a 2+2a+1(4)∵4x 2-12x+9=(2x )2-2·2x ·3+32=(2x-3)2又∵(2x-3)2≥0∴4x 2-12x+9≥0,∴(24129x x -+)2=4x 2-12x+9例3在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3分析:(略)五、归纳小结本节课应掌握:1.a (a ≥0)是一个非负数;2.(a )2=a (a ≥0);反之:a=(a )2(a ≥0). 六、布置作业1.教材P 8 复习巩固2.(1)、(2) P 9 7.2.课后作业:《同步训练》。
21.3二次根式的加减(3)教学目标:(1)含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.(2)复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.教学重点:二次根式的乘除、乘方等运算规律;教学难点:由整式运算知识迁移到含二次根式的运算.教学过程:一、复习在整式乘法中,单项式与多项式相乘的法则是什么?多项式与多项式的乘法法则是什么?什么是完全平方公式?分别用式子表示出来。
答:();mcmbmacbam++=++()()bnbmanamnmba+++=++完全平方公式是:()2222bababa+±=±在实数范围内,整式中的乘法法则及乘法公式仍然适用,运用乘法法则及乘法公式可以进行二次根式的混合运算。
二、新课1、运用乘法分配律进行二次根式的加减与乘除的混合例1 计算(1)635278⨯⎪⎪⎭⎫⎝⎛-;(2)ababab83÷⎪⎪⎭⎫⎝⎛+。
分析:第(1)题可以直接运用乘法分配律进行计算;第(2)是把除法转化为乘法。
再运用乘法分配律进行计算,把进行乘法运算的结果化为二次根式后,再进行加减运算。
解:(1)原式=2153463562786356278-=⨯-⨯=⨯-⨯(2)原式=baabbaabbaabaaabbaabab88888333⋅+⋅=⋅+⋅=⋅⎪⎪⎭⎫⎝⎛+=() 22b a+练习1:①6)283(⨯+②6)54718(÷-③yxxyyx÷+)(2④()1861523÷-例2 计算 (1)()()322565-+; (2)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫⎝⎛+yxxyxy13323分析:与多项式乘以多项式的运算法则类似,先运用乘法分配律进行乘法运算,并把所得的积化为最简二次根式,最后进行加减运算。
解:(1)原式=326256325255⨯-⨯+⨯-⨯ =182125310225-+- =21926310310225=-+-(2)原式=y x y x y y x x y x x y1323321333⋅-⋅+⋅-⋅ =y y xy xy xy x xy 132332333⋅-+-⋅ =xy x y x xy xy y 33123332332333-⎪⎭⎫ ⎝⎛-=-+-练习2:(1))32)(232(+- (2))26)(3223(-+2、运用乘法公式进行二次根式的和与差的乘法运算例3 计算 (1)()2534+; (2)()2336-。
教学目的1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点最简二次根式的定义。
教学难点一个二次根式化成最简二次根式的方法。
教学过程一、复习引入1.把下列各根式化简,并说出化简的根据:2.引导学生观察考虑:化简前后的根式,被开方数有什么不同?化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。
3.启发学生回答:二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?二、讲解新课1.总结学生回答的内容后,给出最简二次根式定义:满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽的因数或因式。
最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。
第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。
2.练习:下列各根式是否为最简二次根式,不是最简二次根式的说明原因:3.例题:例1 把下列各式化成最简二次根式:例2 把下列各式化成最简二次根式:4.总结把二次根式化成最简二次根式的根据是什么?应用了什么方法?当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。
当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。
此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。
三、巩固练习1.把下列各式化成最简二次根式:2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。
四、小结本节课学习了最简二次根式的定义及化简二次根式的方法。
同学们掌握用最简二次根式的定义判断一个根式是否为最简二次根式,要根据积的算术平方根和商的算术平方根的性质把一个根式化成最简二次根式,特别注意当被开方数为多项式时要进行因式分解,被开方数为两个分数的和则要先通分,再化简。
精品教学教案设计| Excellent teaching plan教师学科教案[20 -20学年度第—学期]任教学科:________________ 任教年级:________________ 任教老师:________________xx市实验学校r \・第二十一章二次根式教学时间:课题:21.1二次根式课型:新授课教学目标:1、理解二次根式的定义,会用算术平方根的概念解释二次根式的意义2、会确定二次根式有意义的条件,知道..a(a > (是非负数,并会运用会进行二次根式的平方运算,3、会对被开方数为平方数的二次根式进行化简通过探究■. a彳和..a2所含运算、运算顺序、运算结果分析,归纳并掌握性质教学重点:1. ..a有意义的条件.2.a寸< a的应用.3. ..a2•和a2的运算、化简教学难点:当a<0时,a2的化简教学过程:一、复习引入在勾股定理和四边形两章中,已经用到过简单的二次根式运算,在本章中将系统地学习二次根式的运算。
本课只学习二次根式的概念及其三个运算性质、探究新知(一)定义及非负性活动1、填空,完成课本思考1:.65 , S , 2 , h\ 5活动2、观察其形式上的共同点,被开方数的共同点,说明各式所表示的共同意义活动3、给出二次根式的定义,介绍二次根式的读法活动4、思考下列问题:①9的运算结果是3, 9是不是二次根式?3是不是?②定义中为什么要加a >C?若a<0, ./a表示什么?有无意义?③当a=0时,、、a表示什么?结果是什么?当a>0时,、• a表示什么?可不可能为负数?a (a > (是什么样的数呢?例1、当x是怎样的实数时,下列二次根式有意义?在下列二次根式有意义的情况下, 其运算结果是怎样的实数?, __ 1 ;_________________E x 2 , ------- , x 3v'x 1练习:1、课本思考2 :当x是怎样的实数时,.X2, , X3有意义?1、若J x 2 m,则x和m的取值范围是x ______________ ;m _____ .2、已知x 3 ... y 5 0,求x,y的值各是多少?(二)两个运算性质活动5、完成课本探究1—2活动6、对,a中的运算顺序、运算结果进行分析,归纳出:一个非负数先开方再平方,结果不变•练习:课本例2活动7、完成课本探究2活动8对,a2中的运算顺序、运算结果进行分析,归纳出:一个非负数先平方再开方,结果不变;一个负数先平方再开方结果为相反数练习:课本例3补充练习:1、化简:、、(4)2,. (2 ,3)2;2、直角三角形的三边分别为a,b,c,其中c为斜边,则式子.a - c与式子.(a c)2有什么关系?三、课堂训练完成课本中两个练习.1、dm 1 m成立的条件是_____________ .2、& m 1 m成立的条件是 ___________ .四、小结归纳1、二次根式的概念及被开方数非负”的条件和运算结果非负”的性质.2、二次根式的两个运算性质,平方为父对象”开方为子对象”.3、简单介绍代数式的概念.4、重复演示课件呈现练习题,供学生记录.五、作业设计必做:P5:1、2、3、4、5、6选做:P6:7、8教学反思教学时间:教学课题:21.2二次根式的乘除(第1课时)教学课型: 新授课教学目标:1•会运用二次根式乘法法则进行二次根式的乘法运算2•会利用积的算术平方根性质化简二次根式经历观察、比较、概括二次根式乘法公式,通过公式的双向性得到积的算术平方根性质•3•通过例题分析和学生练习,达成目标1, 2,认识到乘法法则只是进行乘法运算的第一步,之后如果需要化简,进行化简,并逐步领悟被开方数的最优分解因数或因式的方法教学重点:双向运用品T ab (a >0, b>0进行二次根式乘法运算教学难点:被开方数的最优分解因数或因式的方法教学过程一、复习引入:上节课学习了二次根式的定义和三个性质,这节课开始学习二次根式的运算,先来学习乘法运算二、探究新知(一)二次根式乘法法则活动1、1填空,完成课本探究12•用1中所发现的规律比较大小36X 4 _____ , 36 4 ;- 2 X- 3 _______ . 6活动2、给出二次根式的乘法法则活动3、思考下列问题:①公式中为什么要加 a >0, b >0②两个二次根式相乘其实就是___________ 不变, ____________ 相乘③<b 丘(a > 0, b >0c>0 = __________________练习:课本例1,在(1)(2)之后补充(3)• a、4a归纳:运算的第一步是应用二次根式乘法法则,最终结果尽量简化(二)积的算术平方根性质活动4•将二次根式乘法公式逆用得到积的算术平方根性质完成课本例2,在(1)(2)之间补充..48归纳:化简二次根式实质就是先将被开方数因数分解或因式分解,然后再将能开的尽方的因数或因式开方后移到根号外例3•计算:(1) .14 . 7 (2) 3、、5 2 .、10 ; ( 3) , 3x3xy分析:(1)第一步被开方数相乘,不必急于得出结果,而是先观察因式或因数的特点,再确定是否需要利用乘法交换律和结合律以及乘方知识将被开方数的积变形为最大平方数或式与剩余部分的积,最后将最大平方数或式开方后移到根号外(2)运用乘法交换律和结合律将不含根号的数或式与含根号的数或式分别相乘,再把这两个积相乘•,之后同(1)三、课堂训练完成课本练习•补充:1. x 1 x 1 x2 1成立,求x的取值范围•2•化简:x3y x 0四、小结归纳1•二次根式乘法公式的双向运用;2•进行二次根式乘法运算的一般步骤,观察式子特点灵活选取最优解法五、作业设计必做:P12:1、3(1)(2)、4补充作业:1 •计算:3•等边三角形的边长是3,求这个等边三角形的面积教学时间:教学课题:21.2二次根式的乘除(第2课时)教学课型:新授教学目标:1•会运用二次根式除法法则进行二次根式的除法运算2•会利用商的算术平方根性质化简二次根式3•理解最简二次根式概念,知道二次根式的运算中,一般要把最后结果化为最简二次根式•4通过例题分析和学生练习分母有理化方法进行二次根式除法教学重点: 双向运用(a 0 b 0) 进行二次根式除法运算教学难点:能使用分母有理化方法进行二次根式的除法运算教学过程:一、复习引入导语设计:上节课学习了二次根式的乘法,这节课学习二次根式的除法运算二、探究新知(一)二次根式除法法则活动1、1填空,完成课本探究12•用1中所发现的规律比较大小2 2 ; 2 ___________ 28 .8 .5 5活动2、给出二次根式的除法法则活动3、思考下列问题:①公式中为什么要加 a >0, b>0②两个二次根式相除其实就是 ___________ 不变,____________ 相除练习:课本例4,在(1)(2)之后补充(3)..4a3 ,a归纳:运算的第一步是应用二次根式除法法则,最终结果尽量简化(二)商的算术平方根性质活动4•将二次根式除法公式逆用得到商的算术平方根性质完成课本例5归纳:化简被开方式含有分数线的二次根式,就是将分子的算术平方根做分子,分母的算术平方根做分母,再利用积的算术平方根分别化简例6•计算: (1)- 3 (2) 3 - 2 ; ( 3) - 8诙J27 v'2a分析:第一步可以把被开方数相除,然后告诉学生被开方数中不能含有分母,数必须是整数,利用分数的基本性质将分母变成完全平方数,开方后移到根号外;也可以直接模仿分数 的基本性质和公式(、.a)2 a , a v b ... ab(a 0,b 0),以去掉分母中的根号(三) 最简二次根式概念活动5、让学生观察所做习题结果,总结归纳结果的特点,得到最简二次根式的概念 .分析概念:1•被开方数不含分母的含义指-----因数是整数,因式是整式;2•被开方数中不能含开得尽方的因数是指----被开方数不能分解出完全平方数; 被开方数中不含开得尽方的因式是指----被开方数的每一个因式的指数都小于根指数 2,因此,每一个因式的指数都是1. 完成课本例7 补充:化简x 2y 4 x 4y 2注意:被开方数是和式时,结果不等于各加数的算术平方根的和 三、课堂训练 完成课本练习• 补充:2.找出下列根式中的最简二次根式3•判断下列等式是否成立.16 94 33 3'■.2 、2四、小结归纳1.二次根式除法公式的双向运用;2.进行二次根式除法运算的一般步骤,观察式子特点灵活选取最优解法3. 最简二次根式概念五、作业设计X 1成立,求X 的取值范围 X 11. .X 1必做:P12:2、3(3)(4)、5、6、7选做:P12:8、9、10教学时间:教学课题:21.2二次根式的加减(第1课时) 教学课型:新授课教学目标:1. 知道在有理数范围内成立的运算律在实数范围内仍然成立2. 能熟练将二次根式化简成最简二次根式3•会运用二次根式加减法法则进行二次根式的加减运算教学重点:二次根式加减法运算方法教学难点:二次根式的化简,合并被开方数相同的最简二次根式教学过程一、复习引入上节课学习了二次根式的乘除法,这节课学习二次根式的加减法运算二、探究新知(一)二次根式加减法法则活动1、类比计算,说明理由① 2 a +3 a ; 2 2 3.、2.②2a -3 a ; 2 2 3、2.③、.3 . 12 ;.. 12 , 18思考:(1)在有理数范围内成立的运算律,在实数范围内能否继续使用?(2)二次根式的加减运算与整式的加减运算相同之处是什么?(3)什么样的二次根式能够合并?(4)模仿整式的加减运算怎样进行二次根式的加减运算?活动2、给出二次根式的加减法法则分析法则:二次根式加减时,先将非最简二次根式化为最简二次根式,再逆用乘法分配律将被开方数相同的二次根式进行合并.被开方数不同的最简二次根式不能合并,作为最后结果中的部分.练习:①课本例1,补充(3) 2 ,18 (4) ” 1.8\ 2②课本例2,补充..24 1、1.. 6\2 \8分析说明:①中补充(3)结果为负,(4)含分数线,作为例1,例2的过渡。
②中补充括号前是负号的•(二)二次根式加减的应用1•课本引例分析:这个实际问题的解决方法可能不同,还可以先估算两个正方形的边长,,再把它们的和与木板的长比较•2•课本例3分析:利用勾股定理解决实际问题,运用二次根式的加减进行计算,计算的最后一步取近似值,使结果更精确三、课堂训练完成课本练习补充:2•二次根式的计算为什么先学乘除,后学加减?还有哪块知识也是如此?四、小结归纳1•进行二次根式加减运算的一般步骤2•二次根式的熟练化简•3•二次根式加减的实际应用•五、作业设计必做:P17: 1、2、3选做:5补充作业:计算:(1)3、..22 (2)2.12 27 ;1•下列各组二次根式中,化简后被开方式相同的是()C. 、mn 与(3)「18胃;(4)4x 2 2 2x ;(5) x 2xx 2 a 2 x 3 ;(6)、、18 、、32、.2(7) 、7554 、一 96,108 ;13⑻ 2(、2、3)4(、2、27)教学时间: 教学课题:21.2二次根式的加减(第 2课时) 教学课型:新授课 教学目标:1•在有理数的混合运算及整式的混合运算的基础上,使学生了解二次根式的混合运算与以前所学知识的关系,在比较中求得方法,并能熟练地进行二次根式的混合运算2•对二次根式的混合运算与整式的混合运算及有理数的混合运算作比较,注意运算的顺 序及运算律在计算过程中的作用•并感受数的扩充过程中运算性质和运算律的一致性 以及数式通性•3•在运算中运用多项式的乘法法则和整式的乘法公式,体会二次根式的运算与整式的运混合运算的法则,运算律的合理使用灵活运用运算律、乘法公式等技巧,使计算简便我们已经学习了二次根式的乘除、加减运算, 这节课来学习二次根(2、2 3 J3 八 6X 2 、6 、2 x 3、6 "2 x 3算的联系• 教学重点: 教学难点: 教学过程 一、 复习引入导语设计:到目前为止, 式的混合运算• 二、 探究新知(一)二次根式混合运算法则活动1、类比计算,说明理由① (2 a +3b) a ; ② (2 a +3b)( a -b); ③ (3 a b-4a 2 )它思考:(1)在有理数范围内成立的运算律,在实数范围内能否继续使用?(2)二次根式的混合运算与整式的混合运算相同之处是什么?(3)左边式子中的字母a、b可以表示二次根式吗?(4)模仿整式的混合运算怎样进行二次根式的混合运算?活动2、给出二次根式的混合运算的一般步骤•分析法则:(1)进行二次根式混合运算时,运算顺序与实数运算类似,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的(或先去掉括号)(2)对于二次根式混合运算,原来学过的所有运算律、运算法则仍然适用,整式、分式的运算法则仍然适用。