01级大学物理(下)B及答案
- 格式:doc
- 大小:192.00 KB
- 文档页数:6
大学物理2期末复习题第八章静电场一、选择题1、已知一高斯面所包围的体积内电量代数和∑Q i=0,则可肯定: C(A)高斯面上各点场强均为零。
(B)穿过高斯面上每一面元的电通量均为零。
(C)穿过整个高斯面的电通量为零。
(D)以上说法都不对。
2、关于高斯定理的理解有下面几种说法,其中正确的是: D(A)如果高斯面上 E 处处为零,则该面内必无电荷。
(B)如果高斯面内无电荷,则高斯面上 E 处处为零。
(C)如果高斯面上 E 处处不为零,则高斯面内必有电荷。
(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零。
(E)高斯定理仅适用于具有高度对称性的电场。
3、关于静电场中某点电势值的正负,下列说法中正确的是: C(A)电势值的正负取决于置于该点的试验电荷的正负。
(B)电势值正负取决于电场力对试验电荷作功的正负。
(C)电势值的正负取决于电势零点的选取。
(D)电势值的正负取决于产生电场的电荷的正负。
4、在已知静电场分布的条件下,任意两点P1和P2之间的电势差决定于 A(A)P1和P2两点的位置。
(B) P1和P2两点处的电场强度的大小和方向。
(C)试验电荷所带电荷的正负。
(D)试验电荷的电荷量。
二、填空题1、真空中电量分别为q1和q2的两个点电荷,当它们相距为r时,该电荷系统的相互作用电势能 W= ,(设当两个点电荷相距无穷远时电势能为零)。
q1q2/4πε0r2、一电子和一质子相距2×10-10 m(两者静止),将此两粒子分开到无穷远距离时(两者仍静止)需要的最小能量是 eV 。
7.2(1/4πε0=9×109 N m2 /C2, 1eV=1.6 ×10-19J)3 电偶极矩大小p=4 2p /4πx3ε0是电偶极子在延长线上的电场5 取无限远为电势零点只能在电荷分布在有限区域时三、计算题:1、(5分) 一“无限长”均匀带电的空心圆柱体,内半径为a,外半径为b,电荷体密度为ρ,一半径为r(a <r <b)、长度为L 的同轴圆柱形高斯柱面,请计算其中包含的电量 解 :q= V ρ (1) (2分)V=πl(r 2-a 2) (2) (2分)q=ρπl(r 2-a 2) (3) (1分)2 (5分)电量q 均匀分布在长为 2l 的细杆上,求在杆外延长线上与杆端距离为a 的p 点的电势( 设无穷远处为电势零点)。
课后习题答案第一章 质点运动学1-1.解:设质点的初速度为0v ,初始位移为0s 。
则: dva dt=tvv adt dv =⎰⎰可得 0v v at =+而dsv dt=000()s t s ds v at dt =+⎰⎰即 20012s s v t at =++1-2. 解:(1)质点在t 时刻的速度2dr v ti j dt==+质点在t 时刻的加速度2dv a i dt==(2)质点的切向速度v v τ==质点的总加速度 2a = 质点的切向加速度dv a e dt ττττ==质点的法向加速度n n n a ==1-3 解:(1)令cos ,sin x R t y R t ωω==消去时间t ,可得:222x y R += 此即为质点的轨迹方程 (2)质点在=0t 时刻所处的位置1cos0sin0r R i R j Ri =+=质点在=t πω时刻所处的位置 2cos sin r R i R j Ri ππ=+=-则:质点在0πω之间的位移为 122r r r Ri ∆=-=(3) 质点的速度sin cos dr v R ti R t j dtωωωω==-+质点的加速度22cos sin dv a R ti R t j dtωωωω==--质点的切向速度 v R v τω== 质点的切向加速度0dv a e dtτττ==质点的法向加速度22=n n n v a e R e Rω= 1-4解:质点的速度 2385dsv t t dt ==-+ 质点的加速度 68dva t dt==- (1) 当质点经过O 点时 0s =,可得:212)0t t --=()(即 12t s t s ==或1t s =时,它的速度为0v =,加速度为22/a m s =-; 2t s =时,它的速度为1/v m s =,加速度为24/a m s =(2)当质点的速度为零时 0v =, 可得:23850t t -+=即 513t st s ==或 1t s =时,0s =,它离开O 点的距离为0s =;53t s =时,427s m =-,它离开O 点的距离为427s m =(3)当质点的加速度为零时 0a =,可得:68=0t -即 43t s = ,此时227s m =-它离开O 点的距离为 227s m =(4)当质点的速度为12m/s 时 2385=12t t -+,可得:t t ==,舍去)它的加速度为2/a s =1-5解:如图建立直角坐标系t 时刻小球绕其端点O 旋转的半径为=R ut则小球的速度为 v ui wut j =+小球的加速度为dv a wu j dt==(注:切向加速度dv d a e e dt dt τττττ=== )1-6解:由题意可知:cos sin x R y R θθ=⎧⎨=⎩已知 d ct dt θω== , 则00t d ctdt θθ=⎰⎰ , 可得: 212ct θ=直角坐标系中质点的位置矢量 2211cos +sin 22r R ct i R ct j =质点的速度 2211sin +cos 22dr v Rct ct i Rct ct j dt ==-质点的加速度 22222211t cos t sin 22dv a Rc ct i Rc ct j dt ==-- 平面极坐标系中质点的位置矢量 r e Re ρρρ==质点的速度 d d v e e Rcte dt dtρθθρθρ=+=质点的加速度 22222222d d d d d ae e dt dt dt dt dt Rc t e Rce ρθρθρθρθθρρ⎡⎤⎡⎤⎛⎫=-++⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦⎣⎦=-+1-7解:质点的径向速度0=td ve e e dtαρρρρρα= 质点的径向速度2222002=()t td d ae e e e dt dt ααρρρθρραρω⎡⎤⎛⎫=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦质点的横向速度0td ve e e dtαθθθθρρω== 质点的横向加速度2022=2td d d ae e e dt dt dt αθθθρθθρραω⎡⎤=+⎢⎥⎣⎦1-8 解:质点的速度 dsv b ct v dtτ==-= 质点的切向加速度 dv a e ce dtττττ==-质点的法向加速度 ()22n n n b ct v a e e R R-==当切向加速度与法向加速度大小相等时()2c=b ct R-可得:t =1-9 解:(1)质点在某一时刻的速率 dsv bt dt== (2)质点的法向加速度大小222n v b t a r r== 质点的切向加速度大小 dv dva b dt dtττ=== (3) 质点的总加速度a ===( 2tan n a bt a rτθ==) 1-10 解:由题意可知: 222l h x =+上式中除h 是常量外,l x 和都是随时间变化的变量,方程两边同时对时间求导可得:22dl dx lx dt dt= 式中0dlv dt=-,dx v dt =为船的速度所以船的速度为00l v v x =-=,方向沿x 轴负方向。
大学物理B 作业解答第二章2-2 (B ); 2-4 (B ); 2-5 (A ),; 2-6 22y x =-;2-7 1212m s t -=-+⋅v i j (),11s v -=⋅; 2-9 224m s n a t -=⋅,2-2m s a τ-=⋅,2s a -=⋅2-14 解:(1)由运动方程 221x t y t ⎧=⎨=-⎩得质点的轨迹方程为: 22(1)x y =-(2)1s 和3s 时的位置矢量分别是1331112m ,182m 162m 162m s 81m s 31v t --==-∆=-=-∆-==⋅=-⋅∆-r i r i j r r r i j r i j i j v ()()()()(3)2s t =-质点的速度和加速度2s1124m s 8m s 4m s t t =----=-⋅=--⋅=⋅v i j i j a i ()()()2-15 解:物体抛出后,水平方向做匀速直线运动,则有0cos 45cos 60v v ︒︒=竖直方向有 0sin 45sin 60v v gt ︒︒=-解上两式得:v t g= 或:000cos60sin 60 452x y x y v v v v gtv v v t g︒︒︒===-=∴=⋅v 与水平方向成角时,有2-16 解:(1)由加速度定义式,根据初始条件t 0 = 0时v 0 = 0,积分可得d =d (64)d t tt t =+⎰⎰⎰vv a i j积分得在任意时刻的速度: 1(64)m s t t -=+⋅v i j又由d d t=rv 及初始条件t = 0时,r 0 = (10 m)i , 0d =d (64)d ttt t t t =+⎰⎰⎰rr r v i j积分可得在任意时刻的位矢:2210+32m t t =+r i j ()()(2)由上述结果可得质点运动方程的分量式,即2210+32x t y t⎧=⎪⎨=⎪⎩() 消去参数t ,可得运动的轨迹方程: 2(10)3y x =-m 2-20 解:(1)质点的加速度a 的方向恰好与半径成45︒角时,有2n v a a R τ==,0=dva v v a t dtττ=+由得解上两式并带入数据得:15s s 1.67s 33t τ====(2)在上述时间内,质点所经过的路程 由ds v dt =得 20135m=5.83m 26s v t a t τ=+==L第三章P 68页思考题2,3; 2. 解:5510225N s I Fdt tdt ===⋅⎰⎰1010255275N s I Fdt tdt ===⋅⎰⎰21753251I I ==1501P P P I ∆=-= 21052P P P I ∆=-=2211753=251P I P I ∆==∆ 3. 解:在最高点时,物体被扔出后,由相对运动公式得物体对地的速度m m v u v '=-+此时人和物体组成的系统在水平方向动量守恒,则有()sin m m m v mv m m v α'''+=+解上三式可得sin m mv v u m mα'=+'+由sin 0v gt α-= 得 sin v t gα=增加距离:sin (sin )()m muv sv v t m m gαα'∆=-='+3-3(A ); 3-4(A ); 3-7112m m m +;3-8 0; 3-9 3-17.9710m s ⨯⋅; 3-10 20J;3-12解:(1)子弹和木块组成的系统动量守恒,由动量守恒定律得03v mv Mv m =+ 023mv v M∴=(2)设木块对子弹的阻力为F ,由能的转化和守恒定律得22200111F [()]2223v L mv Mv m =-+ 2022F=9M m mv ML-∴()3-13解:(1)1m 和2m 开始分离时弹簧的伸长量为零,此时两物体具有共同的速度,设为1v ,弹簧、1m 和2m 组成的系统机械能守恒,由机械能守恒定律得2212111()22kb m m v =+1=v ∴(2)1m 和2m 分离后,弹簧和1m 组成的系统机械能守恒,1m 速度为零时,弹簧有最大伸长量m x ,则由机械能守恒定律得22111122m kx m v =1m x v ∴=3-15解:221121211()r r r r k W Fdr dr k r r r ===-⎰⎰补充:如图所示,质量为m 的小球在光滑水平面上作圆周运动(半径为R 1,速度为v 1),今用力拉绳使圆半径变为R 2,求此时小球作圆周运动的速度大小。
XXXX 大学2011-2012-1学期《大学物理B2》本科期末考试试卷(B 卷)参考答案及评分细则一、选择题(每题3分,共30分) 1--10、ACADABEDCA 。
二、填空题(每题2分,共14分)1、02、0-I μ3、高4、]3π2π2cos[010/)t (.y P +-= 或 0.01cos t+ππ(2)35、arctan3-π或1arctan 23+π 6、2112/2+n e n λ或 2112/2-n e n λ 7、300三、计算题(共56分)1、(12分)解:长直导线在周围空间产生的磁场分布为B =μ0 I 1/(2πr ),取xoy 坐标如图所示,则在半圆线圈所在处产生的磁感应强度的大小为θR πI μB sin 210=(3分) 方向垂直纸面向里。
式中θ为场点至圆心的连线与y 轴的夹角。
半圆线圈上d l 段线电流所受的力为θr θR πI I μl B I I F d sin 2d d d 21022==⨯=B l (3分)根据对称性知 0=⎰y dF (2分)θF F x sin d d = 222102100II μππI I μdF F πx x =⋅==⎰方向垂直I 1向右。
(4分) 2、(12分)解 由于B 随时间变化,同时ab 导线切割磁场线,故回路中既存在感生电动势,又存在动生电动势。
t BS t S B t BS t Φd d d d d )(d d d +===ε )21(d d 21)21(d d 2t t lx lx t B += 势动εε+=. (6分)动ε的方向从b 指向a ,感ε的方向为逆时针方向。
oo xI将θθtan tan ,vt x l vt x ===代入上式,则 )21(d d tan 21)tan 21(d d 21222222t t t v t v t t i θθε+=θtan 32t v = (4分) i ε的方向为逆时针方向。
大学环境生态专业《大学物理(下册)》期末考试试题B卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。
2、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动角速度应变_____;转动惯量变_____。
3、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R,轮子转速为n,则轮子中心O与轮边缘b之间的感应电动势为______________,电势最高点是在______________处。
4、动方程当t=常数时的物理意义是_____________________。
5、一质点沿半径R=0.4m作圆周运动,其角位置,在t=2s时,它的法向加速度=______,切向加速度=______。
6、同一种理想气体的定压摩尔热容大于定容摩尔热容,其原因是_______________________________________________。
7、刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成______,与刚体本身的转动惯量成反比。
(填“正比”或“反比”)。
8、一长为的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
抬起另一端使棒向上与水平面呈60°,然后无初转速地将棒释放,已知棒对轴的转动惯量为,则(1) 放手时棒的角加速度为____;(2) 棒转到水平位置时的角加速度为____。
()9、一小球沿斜面向上作直线运动,其运动方程为:,则小球运动到最高点的时刻是=_______S。
大学物理下册期末考试B卷题目和答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN大学学年第二学期考试B 卷课程名称 大学物理(下) 考试日期任课教师____________考生姓名 学号 专业或类别题号 一 二 三 四 五 六 七 总分 累分人 签名题分 40101010101010100 得分考生注意事项:1、本试卷共 6 页,请查看试卷中是否有缺页。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
εo =8.85×10-12 F·m -1、μ0=4π×10-7H/m ; k=1.38×10-23 J·K -1、R=8.31 J·K -1·mol -1 、N A =6.02×1023mol -1、e=1.60×10-19C 、 电子静质量m e =9.1×10-31kg , h=6.63×10-34J ·s 。
得分 评卷人一、填空题(每空2分,共40分)1.体积为4升的容器内装有理想气体氧气(刚性分子),测得其压强为5×102Pa ,则容器内氧气的平均转动动能总和为_______________J , 系统的内能为_______________ J 。
2.如图所示,一定质量的氧气(理想气体)由状态a 经b 到达c ,图中abc 为一直线。
求此过程中:气体对外做的功为_ _______________;气体内能的增加_______________;气体吸收的热量_______________。
3.一绝热的封闭容器,用隔板分成相等的两部分,左边充有一定量的某种气体,压强为p ;右边为真空,若把隔板抽去(对外不漏气),当又达到平衡时,气体的内能变化量为_______________J ,气体的熵变化情况是_______________(增大,不变,减3小)。
作业题一(静止电荷的电场)班级:_____________ 姓名:_____________ 学号:_____________ 一、选择题1. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零. (C) 处处不为零. (D) 无法判定 .[ ] 2. 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]3. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则 (A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值. (D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ]4. 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:(A)06εq . (B) 012εq. (C) 024εq . (D) 048εq . [ ]5. 高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场.02εxP +q 0(B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. [ ]6. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. [ ]7. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]8. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ]二、填空题9. A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小为E 0,两平面外侧电场强度大小都为E 0/3,方向如图.则A 、B 两平面上的电荷面密度分别 为σA =_______________, σB =____________________.ABE 0E 0/3E 0/310. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,如图所示,则A 、B 、C 、D 三个区域的电场强 度分别为:E A =_________________,E B =_____________, E C =_________,E D =___________ (设方向向右为正).11. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所 示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.12. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强 度通量=______________;若以 0r 表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________. 三、计算题13. 带电细线弯成半径为R 的半圆形,电荷线密度为λ=λ0sin φ,式中λ0为一常数,φ为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.14. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.+σ+σ+σABCD15. 一半径为R的带电球体,其电荷体密度分布为 ρ =Ar(r≤R) ,ρ =0 (r>R)A为一常量.试求球体内外的场强分布.16. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为:Ex =bx,Ey=0,Ez=0.高斯面边长a=0.1 m,常量b=1000 N/(C·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12C2·N-1·m-2 ) x作业题二(电势)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为 (A)a q 04επ. (B) a q 08επ. (C) a q 04επ-. (D) aq08επ-. [ ]2. 如图所示,两个同心球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r 处的P 点的场强大小及电势分别为: (A) E =0,U =104R Q επ. (B) E =0,U =⎪⎪⎭⎫ ⎝⎛-π21114R R Qε.(C) E =204r Q επ,U =r Q04επ (D) E =204r Q επ,U =104R Q επ.[ ] 3. 关于静电场中某点电势值的正负,下列说法中正确的是: (A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取.(D) 电势值的正负取决于产生电场的电荷的正负. 4. 点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则(A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大. (C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等. [ ] 5. 如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M 点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功A7.-(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ ] 6. 半径为r 的均匀带电球面1,带有电荷q ,其外有一同心的半径为R 的均匀带电球面2,带有电荷Q ,则此两球面之间的电势差U 1-U 2为: (A)⎪⎭⎫ ⎝⎛-πR r q 1140ε . (B) ⎪⎭⎫⎝⎛-πr R Q 1140ε .(C) ⎪⎭⎫ ⎝⎛-πR Q r q 041ε . (D)r q04επ . [ ] 7. 两块面积均为S 的金属平板A 和B 彼此平行放置,板间距离为d (d 远小于板的线度),设A 板带有电荷q 1,B 板带有电荷q 2,则AB 两板间的电势差U AB 为(A) d S q q 0212ε+. (B) d Sq q 0214ε+.(C) d S q q 0212ε-. (D) d Sq q 0214ε-. [ ]8. 面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) S q 022ε.(C) 2022S q ε. (D) 202Sq ε. [ ] 二、填空题9. 如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×108C ,设无穷远处电势为零,则空间另一电势为 零的球面半径r = __________________.10. 真空中一半径为R 的均匀带电球面,总电荷为Q .今在球面上挖去很小一块面积△S (连同其上电荷),若电荷分布不改变,则挖去小块后球心处电势(设无穷远处电势为零)为________________.11. 把一个均匀带有电荷+Q 的球形肥皂泡由半径r 1吹胀到r 2,则半径为R (r 1<R <r 2)的球面上任一点的场强大小E 由______________变为______________;电 势U 由 __________________________变为________________(选无穷远处为电势零点).12. 静电场的环路定理的数学表示式为:______________________.该式的物理意义是:____________________________________________________________.该定理表明,静电场是______ _________场.AS q 1q 2三、计算题13. 一“无限大”平面,中部有一半径为R的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O并与平面垂直的直线上各点的场强和电势(选O点的电势为零).14. 图示为一个均匀带电的球层,其电荷体密度为ρ,球层内表面半径为R1,外表面半径为R2.设无穷远处为电势零点,求空腔内任一点的电势.15.两个带等量异号电荷的均匀带电同心球面,半径分别为R1=0.03 m和R2=0.10 m.已知两者的电势差为450 V,求内球面上所带的电荷.16. 有两根半径都是R的“无限长”直导线,彼此平行放置,两者轴线的距离是d (d≥2R),沿轴线方向单位长度上分别带有+λ和-λ的电荷,如图所示.设两带电导线之间的相互作用不影响它们的电荷分布,试求两导线间的电势差.作业题三(导体和电介质)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为 [ ](A) S Q 012ε .(B) SQ Q 0212ε-.(C) SQ01ε. (D) S Q Q 0212ε+.2. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地. (B) N 上有正电荷入地. (C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ] 3. 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为 [ ] (A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E .4. 一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则 [ ](A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=.5. 在静电场中,作闭合曲面S ,若有0d =⎰⋅SS D (式中D为电位移矢量),则S面内必定 [ ](A) 既无自由电荷,也无束缚电荷. (B) 没有自由电荷. (C) 自由电荷和束缚电荷的代数和为零.(D) 自由电荷的代数和为零.1+Q 2AB6. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点 [ ](A) 保持不动. (B) 向上运动. (C) 向下运动. (D) 是否运动不能确定.7.一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化: [ ](A) U 12减小,E 减小,W 减小.(B) U 12增大,E 增大,W 增大. (C) U 12增大,E 不变,W 增大.(D) U 12减小,E 不变,W 不变. 8. 如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定.[ ] 二、填空题9. 半径为R 1和R 2的两个同轴金属圆筒,其间充满着相对介电常量为εr 的均匀介质.设两筒上单位长度带有的电荷分别为+λ和-λ,则介质中离轴线的距离为r 处的电位移矢量的大小D =____________,电场强度的大小 E =____________.10. 一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的 _________倍;电场能量是原来的_________倍.11. 一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为εr的各向同性均匀电介质.此时两极板间的电场强度是原来的____________倍;电场 能量是原来的___________ 倍.12. 分子的正负电荷中心重合的电介质叫做_______________ 电介质 .在外电场作用下,分子的正负电荷中心发生相对位移,形成________________________.三、计算题13. 如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求:(1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势.(3) 球心O 点处的总电势.+Q14. 半径分别为R1和R2 (R2 > R1 )的两个同心导体薄球壳,分别带有电荷Q1和Q2,今将内球壳用细导线与远处半径为r的导体球相联,如图所示, 导体球原来不带电,试求相联后导体球所带电荷q.1115. 假想从无限远处陆续移来微量电荷使一半径为R的导体球带电.(1) 当球上已带有电荷q时,再将一个电荷元d q从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开始增加到Q的过程中,外力共作多少功?16. 一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R= 2 cm,R2 = 5 cm,其间充满相对介电常量为εr 的各1向同性、均匀电介质.电容器接在电压U = 32 V的电源上,(如图所示),试求距离轴线R = 3.5 cm处的A点的电场强度和A点与外筒间的电势差.1213作业题四(电流的磁场)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为 [ ](A) B 1 = B 2. (B) B 1 = 2B 2. (C) B 1 =21B 2. (D) B 1 = B 2 /4.2. 电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 和3B表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但B 3≠ 0. [ ] 3. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:[ ](A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .4. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为: (A) 01=B ,02=B .(B) 01=B ,lIB π=0222μ.(C) lIB π=0122μ,02=B .C q3.a14 (D) l I B π=0122μ,lIB π=0222μ. [ ] 5. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) 0d =⎰⋅Ll B,且环路上任意一点B = 0. (B) 0d =⎰⋅L l B,且环路上任意一点B ≠0. (C) 0d ≠⎰⋅Ll B,且环路上任意一点B ≠0.(D) 0d ≠⎰⋅Ll B,且环路上任意一点B =常量. [ ]6. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的?(A) I l H L 2d 1=⎰⋅. (B)I l H L =⎰⋅2d(C) I l H L -=⎰⋅3d. (D)I l H L -=⎰⋅4d. [ ]7. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大? (A) Ⅰ区域. (B) Ⅱ区域. (C) Ⅲ区域. (D) Ⅳ区域. (E) 最大不止一个. [ ]8. 如图两个半径为R 的相同的金属环在a 、b 两点接触(ab 连线为环直径),并相互垂直放置.电流I 沿ab 连线方向由a 端流入,b 端流出,则环中心O 点的磁感强度的大小为 (A) 0. (B) RI40μ.(C) RI420μ. (D) R I 0μ. (E)RI820μ. [ ] 4ⅠⅡⅢⅣIIba15二、填空题9. 如图,在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路.两个回路与长直载流导线在同一平面,且矩形回路的一边与长直载流导线平行.则通过面积为S 1的矩形回路的磁通量与通过面积为S 2的矩形回路的磁通量之比为____________. 10. 如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B_____________.(2) 磁感强度B沿图中环路L 的线积分=⎰⋅Ll Bd __________________________________.11. 图中所示的一无限长直圆筒,沿圆周方向上的面电流密度(单位垂直长度上流过的电流)为i ,则圆筒内部的磁感强度的大 小为B =________,方向_______________.12. 将半径为R 的无限长导体薄壁管(厚度忽略)沿轴向割去一宽度为h ( h << R )的无限长狭缝后,再沿轴向流有在管壁上均匀分布的电流,其面电流密度(垂直于电流的单位长度截线上的电流)为i (如上图),则管轴线磁感强度的大小是__________________.三、计算题13. 半径为R 的无限长圆柱形导体和内半径为R 0,外半径也为R 的无限长圆筒形导体,都通有沿轴向的,在横截面上均匀分布的电流I ,导体的磁导率都为μ0.今取长为l 、宽为2 R 的矩形平面ABCD 和A ′B ′C ′D ′,AD 及A ′D ′正好在导体的轴线上,如图所示.(1) 通过ABCD 的磁通量大小为多少?(2) 通过A ′B ′C ′D ′的磁通量为多少? (3) 若电流I 不变,外半径R 不变,圆筒壁变薄,直至壁厚趋于零,再求(2) .10.l′ ′l16 14. 一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.15. 平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).已知两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关系.16. 如图所示,一半径为R 的均匀带电无限长直圆筒,面电荷密度为σ.该筒以角速度ω绕其轴线匀速旋转.试求圆筒内部的磁感强度.R 1 R 2 OI17作业题五(电流在磁场中受力)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 按玻尔的氢原子理论,电子在以质子为中心、半径为r 的圆形轨道上运动.如果把这样一个原子放在均匀的外磁场中,使电子轨道平面与B垂直,如图所示,则在r 不变的情况下,电子轨道运动的角速度将:[ ](A) 增加. (B) 减小. (C)不变. (D)改变方向. 2. 如图,一个电荷为+q 、质量为m 的质点,以速度v沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v-从磁场中某一点出来,这点坐标是x = 0 和 [ ](A) qB m y v +=. (B) qB m y v2+=. (C) qB m y v 2-=. (D) qBm y v-=.3. 一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生?(A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速. 4. 如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 [ ] (A) 向着长直导线平移. (B) 离开长直导线平移. (C) 转动. (D) 不动.5. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将 (A) 绕I 2旋转. (B) 向左运动. (C) 向右运动. (D) 向上运动.(E) 不动. [ ]I 11×××18 6. 如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: [ ](A) 靠近大平板. (B) 顺时针转动.(C) 逆时针转动. (D) 离开大平板向外运动.7. 两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 [ ] (A)RrI I 22210πμ. (B)RrI I 22210μ.(C)rRI I 22210πμ. (D)0.8. 两根载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势是 [ ](A) 沿x 方向平动. (B) 绕x 轴转动. (C) 绕y 轴转动. (D) 无法判断. 二、填空题9. 如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为λ,圆环可绕通过环心O 与环面垂直的转轴旋转.当圆环 以角速度ω 转动时,圆环受到的磁力矩为_________________, 其方向__________________________.10. 有一半径为a ,流过稳恒电流为I 的1/4圆弧形载流导线bc ,按图示方式置于均匀外磁场B中,则该载流导线所受的安培力大小为_______________________.11. 如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流I ,导线置于均匀外磁场B 中,且B与导线所在平面垂直.则该载流导线bc 所受的磁力大小为_________________.12. 如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为_______________,方向_________________.6.I 1I 2O r RI 1 I 2y zxI 1 I 2c aIIlI d19三、计算题13. 在一顶点为45°的扇形区域,有磁感强度为B方向垂直指向纸面内的均匀磁场,如图.今有一电子(质量为m ,电荷为-e )在底边距顶点O 为l 的地方,以垂直底边的速度 v射入该磁场区域,若要使电子不从上面边界跑出,电子的速度最大不应超过多少?14. 一圆线圈的半径为R ,载有电流I ,置于均匀外磁场B 中(如图示).在不考虑载流圆线圈本身所激发的磁场的情况下,求线圈导线上的张力.(载流线圈的法线方向规定与B的方向相同.)l 45° vBO2015. 一矩形线圈边长分别为a =10 cm 和b =5 cm ,导线中电流为I = 2 A ,此线圈可绕它的一边OO '转动,如图.当加上正y 方向的B =0.5T 均匀外磁场B,且与线圈平面成30°角时,线圈的角加速度为β = 2rad/s 2,求∶(1) 线圈对OO '轴的转动惯量J =?(2) 线圈平面由初始位置转到与B 垂直时磁力所做的功?16. 一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.O xyz I30° BO ′ ab作业题六(电磁感应)班级:_____________ 姓名:_____________ 学号:_____________一、选择题1. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大. (D) 两环中感应电动势相等. [ ]2. 如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的 --t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势?[ ]3. 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将 (A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向. [ ]4. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高.(B) A 点与B 点电势相等.(B) A 点比B 点电势低.(D)有稳恒电流从A 点流向B 点. [ ]☜t O (A)☜t O(C)☜ t O (B)☜ t O(D)5. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a – U c 为 [ ](A) =0,U a – U c =221l B ω. (B) =0,U a – U c =221l B ω-. (C) =2l B ω,U a – U c =221l B ω.(D) =2l B ω,U a – U c =221l B ω-.6. 如图所示,两个线圈P 和Q 并联地接到一电动势恒定的电源上.线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计.当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是[ ](A) 4.(B) 2. (C) 1. (D) 21.7. 在感应电场中电磁感应定律可写成t l E LK d d d Φ-=⎰⋅ ,式中K E 为感应电场的电场强度.此式表明:(A) 闭合曲线L 上K E处处相等.(B) 感应电场是保守力场. (C) 感应电场的电场强度线不是闭合曲线. (D) 在感应电场中不能像对静电场那样引入电势的概念. [ ] 8. 对位移电流,有下述四种说法,请指出哪一种说法正确. (A) 位移电流是指变化电场. (B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律. (D) 位移电流的磁效应不服从安培环路定理. [ ]二、填空题9. 如图所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中,磁感强度为 B的匀强磁场垂直于xy 平面.当aOc 以速度v沿x 轴正向运动时,导线上a 、c 两点间电势差U ac =____________;当aOc 以速度v沿y 轴正向运动时,a 、c 两点的电势相比较, 是____________点电势高.Bab clωx ×××××10. 一导线被弯成如图所示形状,acb 为半径为R 的四分之三圆弧,直线段Oa 长为R .若此导线放在匀强磁场B 中,B的方向垂直图面向内.导线以角速度ω在图面内绕O 点匀速转动,则此导线中的动生电动势 i =___________ , 电势最高的点是________________________.11. 一长直导线旁有一长为b ,宽为a 的矩形线圈,线圈与导线共面,长度为b 的边与导线平行且与直导线相距为d ,如图.线圈与导线的互感系数为 ______________________.12. 一无铁芯的长直螺线管,在保持其半径和总匝数不变的情况下,把螺线管拉长一些,则它的自感系数将____________________.三、计算题13. 均匀磁场 B被限制在半径R =10 cm 的无限长圆柱空间内,方向垂直纸面向里.取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如图所示.设磁感强度以d B /d t =1 T/s 的匀速率增加,已知 π=31θ,cm 6==Ob Oa ,求等腰梯形回路中感生电动势的大小和方向.14.如图所示,有一半径为r =10 cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B中(B = 0.5 T ).圆形线圈可绕通过圆心的轴O 1O 2转动,转速 n =600 rev/min .求圆线圈自图示的初始位置转过π21时,(1) 线圈中的瞬时电流值(线圈的电阻R 为 100 Ω,不计自感);(2) 圆心处的磁感强度.(μ0 =4π×10-7 H/m)c15. 两个半径分别为R和r的同轴圆形线圈相距x,且R>>r,x >>R.若大线圈通有电流I而小线圈沿x轴方向以速率v运动,试求x =NR时(N为正数)小线圈回路中产生的感应电动势的大小.16. 载有电流的I长直导线附近,放一导体半圆环MeN与长直导线共面,且端点MN的连线与长直导线垂直.半圆环的半径为b,环心O与导线相距a.设半圆环以速度v 平行导线平移,求半圆环内感应电动势的大小和方向以及MN两端的电压UMU N .。
大学物理b考试卷和答案# 大学物理B考试卷和答案## 一、选择题(每题3分,共30分)1. 以下哪个选项是正确的?A. 光速在真空中是恒定的。
B. 光速在不同介质中是不同的。
C. 光速在所有介质中都是相同的。
D. 光速在真空中是变化的。
**答案:A**2. 根据牛顿第二定律,以下哪个表达式是正确的?A. \( F = ma \)B. \( F = m \cdot v \)C. \( F = m \cdot \frac{v}{t} \)D. \( F = m \cdot \frac{a}{t} \)**答案:A**3. 以下哪个选项是电磁感应定律?A. \( \epsilon = -\frac{d\Phi}{dt} \)B. \( \epsilon = \frac{d\Phi}{dt} \)C. \( \epsilon = \frac{d\Phi}{dx} \)D. \( \epsilon = \frac{d\Phi}{dy} \) **答案:A**4. 以下哪个选项是正确的?A. 电荷的定向移动形成电流。
B. 电流的定向移动形成电荷。
C. 电荷的无规则运动形成电流。
D. 电流的无规则运动形成电荷。
**答案:A**5. 以下哪个选项是正确的?A. 温度升高,气体的体积一定增大。
B. 温度升高,气体的体积不一定增大。
C. 温度降低,气体的体积一定减小。
D. 温度降低,气体的体积不一定减小。
**答案:B**6. 以下哪个选项是正确的?A. 波长越长,频率越高。
B. 波长越长,频率越低。
C. 波长越短,频率越高。
D. 波长越短,频率越低。
**答案:B**7. 以下哪个选项是正确的?A. 所有物质都有热胀冷缩的性质。
B. 所有物质都有热缩冷胀的性质。
C. 水在4℃时密度最大。
D. 水在0℃时密度最大。
**答案:C**8. 以下哪个选项是正确的?A. 相对论中,时间是绝对的。
B. 相对论中,空间是绝对的。
大学物理b试题库及答案详解大学物理B试题库及答案详解在大学物理B的课程学习中,学生往往需要通过大量的练习来加深对物理概念的理解和应用能力。
本文将提供一套大学物理B试题库及答案详解,以帮助学生更好地掌握物理知识。
一、选择题1. 某物体的质量为2kg,受到的重力大小为多少牛顿?A. 19.6 NB. 20 NC. 20.4 ND. 21 N答案:B解析:根据重力公式 \( F = mg \),其中 \( m \) 为物体的质量,\( g \) 为重力加速度(取9.8 m/s²),计算得 \( F = 2 \times 9.8 = 19.6 \) N。
由于选项中没有19.6 N,故选择最接近的20 N。
2. 光在真空中的传播速度是多少?A. 299792 km/sB. 299792.458 km/sC. 300000 km/sD. 299792.5 km/s答案:B解析:光在真空中的传播速度精确值为 \( 299792.458 \) km/s。
二、填空题1. 牛顿第二定律的表达式为 ________ 。
2. 根据能量守恒定律,一个物体的动能与其势能之和在没有外力作用下保持不变,这被称为________。
答案:1. \( F = ma \)2. 机械能守恒定律解析:1. 牛顿第二定律描述了力与加速度之间的关系,即 \( F = ma \),其中 \( F \) 是作用在物体上的力,\( m \) 是物体的质量,\( a \) 是物体的加速度。
2. 机械能守恒定律是能量守恒定律在宏观物体运动中的应用,它指出在没有外力作用的情况下,一个系统的总机械能(动能加势能)是守恒的。
三、简答题1. 简述什么是电磁感应现象,并给出一个应用实例。
答案:电磁感应现象是指当导体在变化的磁场中移动时,导体中会产生感应电动势和感应电流的现象。
这一现象是由法拉第电磁感应定律所描述的。
一个常见的应用实例是发电机,它利用电磁感应原理将机械能转换为电能。
大学物理b2试题及答案根据题目要求,以下是一篇符合要求的大学物理B2试题及答案内容:一、选择题(每题2分,共20分)1. 一个物体从静止开始做匀加速直线运动,第1秒内、第2秒内、第3秒内位移之比为:A. 1:3:5B. 1:2:3C. 1:3:6D. 1:4:9答案:B2. 一质点做匀速圆周运动,其角速度为ω,周期为T,则其线速度大小为:A. ωTB. 2πωC. 2π/TD. ω/2π答案:C3. 一弹簧振子做简谐振动,振幅为A,周期为T,其最大加速度为:A. 2πA/TB. 4π²A/TC. 2A/TD. 4A/T²答案:B4. 一物体从高度为h处自由下落,不计空气阻力,其落地时的速度大小为:A. √(2gh)B. √(gh)C. √(2h/g)D. √(h/g)答案:A5. 一物体以初速度v₀沿斜面匀加速下滑,加速度大小为a,斜面倾角为θ,则其沿斜面下滑的加速度大小为:A. aB. a*sinθC. a*cosθD. a*tanθ答案:B6. 一质量为m的物体以初速度v₀沿水平方向抛出,忽略空气阻力,其落地时的速度大小为:A. v₀B. √(v₀²+2gh)C. √(v₀²+2gh)*sinθD. √(v₀²+2gh)*cosθ答案:B7. 一质量为m的物体以初速度v₀沿斜面匀加速上滑,加速度大小为a,斜面倾角为θ,则其沿斜面上升的加速度大小为:A. aB. a*sinθC. a*cosθD. a*tanθ答案:C8. 一质量为m的物体从高度为h处自由下落,不计空气阻力,其落地时的动能为:A. mghB. 1/2mv₀²C. 1/2mv²D. 1/2mv₀²+mgh答案:C9. 一质量为m的物体以初速度v₀沿水平方向抛出,忽略空气阻力,其落地时的动能为:A. 1/2mv₀²B. 1/2mv²C. 1/2mv₀²+mghD. 1/2mv²+mgh答案:D10. 一质量为m的物体从高度为h处自由下落,不计空气阻力,其落地时的重力势能变化量为:A. -mghB. mghC. 0D. 2mgh答案:A二、填空题(每题2分,共20分)11. 一物体做匀加速直线运动,初速度为v₀,加速度为a,第t秒内的位移为x,则x=v₀t+1/2at²。
01级大学物理(下)B 卷
一、填空题I(每空2分)
1. 一载流导线弯成如图所示形状,电流由无限远处流来,又流向无限远处。
则4
3圆的圆心处O 点的磁感应强度大小为(1) ,方向
为(2) ;
2. 半径为R ,长为L(R<<L),匝数为N 的均匀密绕螺线管的自感系数为(3) ;若给螺线管通以电流I ,则螺线管内的磁感应强度大小为(4) ,储存的磁场能量为(5) ;
3. 在真空中,一平面电磁波的电场)/()](cos[0m V c
z
t B B B y -==ω,则该电磁波的传播
方向为(6) ,电场强度的振幅为(7) ;
4. 已知光从空气射向某介质,且入射角为
3
π时,反射光为完全偏振光,则该介质的折射
率为(8) ;一束强度为I 0的自然光垂直入射于两块平行放置且透光轴方向夹角为︒60的偏振片,则透射光强度为(9) ;
5. 波长nm 600=λ的单色光垂直入射在一光栅上,第二级明纹出现在2.0sin 2=ϕ处,第三级为第一个缺级。
则光栅常数为(10) ,屏上可能观察到的明条纹数为(11) ;
二、填空题II(每空2分)
1. 钠的光电效应极限波长501041.5-⨯=λ厘米,则其红限频率为(1) ,钠电子的逸出功为(2) ;在波长5
106.2-⨯=λ厘米的紫外光照射下,光电子的最大初动能为(3) ;
2. 空腔辐射体(视为绝对黑体)在5000K 时,辐射的峰值波长=m λ(4) ;辐射出射度E(T)= (5) ;
3. π介子,相对静止时测得其平均寿命s .801081-⨯=τ,若使其以c v 6.0=的速率离开加速器,则从实验室观测,π介子的平均寿命为(6) ,飞越的距离为(7) ;
4. 基态氢原子中的电子吸收一个能量为15eV 的光子而成为光电子,该光电子的动能为
(8) ,其德布罗意波长为(9) ; 5. 已知一维无限深势阱中粒子的波函数为:x a
n a x n πψsin 2)(=
,则2=n 时,粒子在2
a
x =
处出现的概率密度为(10) ;
三、(12分)一个半径m .R 10=的半圆形闭合线圈,载有电流A I 10=,放在均匀外磁场中,磁场方向与线圈平面平行,大小为T B 10=,如图所示。
求:
(1) 线圈磁矩的大小与方向; (2) 线圈所受磁力矩的大小与方向;
(3) 在磁力矩作用下,线圈平面绕过O 点的竖直轴转过2/π时,磁力矩作的
功(设I 在旋转过程中不变)。
四、(12分)一无限长直导线与一边长为10=L 厘米的正方形线圈共面,其相对位置如图所示,求:
(1) 其间的互感系数M ;
(2) 若正方形线圈以2米/秒的速率匀速向右运动,求感应电动势的大
小,并指明方向。
五、 (8分)用氦-氖激光器发出的波长为nm 8.632的单色光做牛顿环实验,
第k 级暗环的半径为mm 625.5,第k+5级暗环的半径为mm 956.7,求: 1. 所用平凸透镜的曲率半径; 2. k 的级次
六、(8分)波长nm 500=λ的单色光垂直照射到宽度为mm .250的单缝上,单缝后面放一透镜,若在处于透镜焦平面上的屏幕上观察到中央明纹两侧第三个暗纹之间的距离为mm 0.3,求:
1. 透镜的焦距; 2. 中央明纹的宽度;
七、(8分)S 系中一质量密度为ρ、边长为l 的立方体,若使此立方体沿平行于一边的方向
以c v 6.0=的速度运动,则在S 系中测得的该立方体的体积及其质量密度各为多少?
八、(10分) 求处于第一激发态的氢原子中
1. 电子的电离能;
2. 电子绕核运动的角动量;
3. 跃迁回基态,发出光波的波长。
附常用物理常数
电子静止质量 )(101.9310Kg m -⨯= 电子电量 )(106.119C e -⨯= 普朗克常数 )(10626.634s J h ⋅⨯=- 真空中光速 )/(1038s m c ⨯= 维恩位移常数
)K m (.b ⋅⨯=-3108972 斯特芬常数
)K m W (.42810675---⋅⋅⨯=σ
二.填空题I(每空2分) 1. (1)
R
I
R I πμμ48300-
,(2)垂直纸面向里; 2. (3) 2
0R L N πμ⋅⋅,(4) I L
N ⋅⋅0μ,
(5) 22
202R L
I N πμ⋅⋅; 3. (6) z 轴正方向,,(7) 00cB E = 4. (8) 30==tgi n ,(9)
8
I ; 5. (10) m b a μ6=+,(11)13条;
二.填空题II(每空2分)
1. (1) Hz 140
10545.5⨯=ν,
(2) )(3.21067.3190eV J h A =⨯==-ν, (3) )(48.21098.319eV J E km =⨯=-; 2. (4)m m 710794.5-⨯=λ,
(5)2710544.3)(-⋅⨯=m W T E ;
3. (6)s 81025.2-⨯=τ,(7)m 05.4;
4. (8)eV E k 4.1=,(9)nm 04.1=λ;
5. (10) 0)2
(2
2=a
ψ;
三、 (12分) 1)
磁矩的大小: )(157.01.02
1102
2m A IS P m ⋅=⨯⨯==π
方向:垂直纸面出来 2)
线圈所受磁力矩: B P M m
⨯=
大小: )(57.110157.0m N B P M m ⋅=⨯=⋅= 方向:平行纸面向上 3)
)(57.1)0(J BS I I A =-==∆Φ
四、(12分)解:
① 2ln 22020π
μπμΦIL
Ldr r I S d B L L ==⋅=⎰⎰
)(1039.12ln 280H L
I
M -⨯==
=
π
μΦ
; ②.)(1024)42(
700021V I Iv
Lv L I L I Lv B Lv B -⨯==-=-=π
μπμπμε, 方向:abcda ,顺时针;
五、 (8分)解:λkR r k =
①
λλR R k k r r k k 5)5(225=-+=-+,
)(1010
8.632510)625.5956.7(59
6
222
2
5m r r R k k =⨯⨯⨯-=-=--+λ; ② k 的级次:λkR r k =2
,510
8.6321010625.596
22
=⨯⨯⨯==--λR r k k
六、 (8分)解:
(1). λϕϕ3sin 3
33==≈f
x a
atg a 焦距:)(2502
.310500325.0363mm ax f =⋅⨯⨯==
-λ (2). )(0.125
.010*********
0mm a f l =⨯⨯⨯==-λ
七、 (8分)解:
立方体平行于速度方向的长度:2)(1'c
v l l -=,
32328.0)(1'l c
v
l l l V =-==
立方体运动时的质量:2
0)(1c v m m -=
,
密度:ρρ
ρ
ρ56.164
.0)(1)
)(1(2
230==
-=
-==
c
v c
v l m V
m
八、 (10分)解:第一激发态:n=2
1. 电子的电离能:)(4.3)4.3(002eV E E =--=-= 2. 电子绕核运动的角动量:)(1011.21234--⋅⋅⨯==
=s m kg h
n L π
eV E E hc
2.1012=-=λ
,。