广东省广州市重点学校备战高考数学一轮复习 立体几何试题精选15
- 格式:doc
- 大小:232.02 KB
- 文档页数:6
立体几何341.四棱锥P —ABCD ABCD 是边长为2的正方形,则CD 与PA 所成角的余弦值为( )A B C .45D .352.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A .163πB .83πC .D .【答案】 A【解析】本题主要考查空间几何体的三视图和球的表面积公式. 属于基础知识、基本能力的考查.这个几何体是如图所示的三棱锥,,设外接球的半径为R,则221)3R R R =+⇒=,这个几何体的外接球的表面积为2216443R πππ== 3.如图甲所示,三棱锥P ABC -的高8,3,30,PO AC BC ACB M N ===∠=︒、分别在BC 和PO 上,且,2((0,3])CM x PN x x ==∈,图乙中的四个图像大致描绘了三棱锥N AMC -的体积V 与x 的变化关系,其中正确的是( )4.一个棱锥的三视图如右图所示,则这个棱锥的体积是 A.6 B.12 C.24 D.36 【答案】B【解析】本题主要考查多面体的直观图和三视图、棱锥的体积公式. 属于基础知识、基本思维的考查.由题意,多面体是一个四棱锥E-ABCD,ED 垂直于平面ABCD ,ED=3,AB=4,AD=3,四边形ABCD 是矩形 这个棱锥的体积=1343123⨯⨯⨯=5.已知直线m 、n 和平面α、β,若α⊥β,α∩β=m ,n ⊂α,要使n ⊥β,则应增加的条件是A. m ∥nB. n ⊥mC. n ∥αD. n ⊥α【答案】B【解析】本题主要考查空间直线与平面、平面与平面的位置关系 . 属于基础知识、基本运算的考查.已知直线m 、n 和平面α、β,若α⊥β,α∩β=m ,n ⊂α,应增加的条件n ⊥m ,才能使得n ⊥β。
6.将长方体截去一个四棱锥后,得到的几何体的直观图如右图所示,则该几何体的俯视图为答案】 C【解析】本题主要考查空间几何体的三视图. 属于基础知识、基本运算的考查. 长方体的侧面与底面垂直,所以俯视图是C7、一空间几何体的三视图如图所示 ,则该几何体的体积为 ( )A .533π B .553πC .18πD .763π【答案】 B【解析】本题主要考查空间几何体的三视图、圆柱、圆台的体积计算公式. 属于基础知识、基本运算的考查.由三视图知,空间几何体是一个圆柱和一个圆台的组合体。
立体几何036. 如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F (1)证明PA//平面EDB ;(2)证明PB ⊥平面EFD ;(3)求二面角C —PB —D 的大小AC解析: 方法一:(1)证明:连结AC ,AC 交BD 于O ,连结EO ∵底面ABCD 是正方形,∴点O 是AC 的中点 在PAC ∆中,EO 是中位线,∴PA // EO 而⊂EO 平面EDB 且⊄PA 平面EDB , 所以,PA // 平面EDBAC(2)证明:∵PD ⊥底面ABCD 且⊂DC 底面ABCD ,∴DC PD ⊥∵PD=DC ,可知PDC ∆是等腰直角三角形,而DE 是斜边PC 的中线,∴PC DE ⊥ ①同样由PD ⊥底面ABCD ,得PD ⊥BC∵底面ABCD 是正方形,有DC ⊥BC ,∴BC ⊥平面PDC 而⊂DE 平面PDC ,∴DE BC ⊥ ② 由①和②推得⊥DE 平面PBC 而⊂PB 平面PBC ,∴PB DE ⊥又PB EF ⊥且E EF DE =I ,所以PB ⊥平面EFD方法二:如图所示建立空间直角坐标系,D 为坐标原点,设a DC =(1)证明:连结AC ,AC 交BD 于G ,连结EG依题意得)2,2,0(),,0,0(),0,0,(a a E a P a A),,(),,(000a a a a z y x -=-λ从而a z a y a x )1(,,000λλλ-===所以))21(,)21(,()2,2,(000a a a z a y a x ---=---=λλλ 由条件PB EF ⊥知,0=⋅PB FE ,即0)21()21(222=---+-a a a λλλ,解得31=λ∴点F 的坐标为)32,3,3(aa a ,且)6,6,3(a a a FE --=,)32,3,3(aa a FD ---=∴03233222=+--=⋅a a a FD PB 即FD PB ⊥,故EFD ∠是二面角C —PB —D 的平面角∵691892222a a a a =+-=⋅,且a a a a FE 6636369||222=++=,a a a a FD 369499||222=++=,∴2136666cos 2=⋅==a a a EFD∴3π=∠EFD所以,二面角C —PB —D 的大小为3π7.解析:方法一解: (Ⅰ)记AC 与BD 的交点为O,连接OE,∵O、M 分别是AC 、EF 的中点,ACEF 是矩形, ∴四边形AOEM 是平行四边形, ∴AM∥OE∵⊂OE 平面BDE , ⊄AM 平面BDE , ∴AM∥平面BDEOABCFEM OABC FEMS(Ⅱ)在平面AFD 中过A 作AS⊥DF 于S ,连结BS , ∵AB⊥AF, AB⊥AD, ,A AF AD =I ∴AB⊥平面ADF ,∴AS 是BS 在平面ADF 上的射影, 由三垂线定理得BS⊥DF∴∠BSA 是二面角A —DF —B 的平面角 在RtΔASB 中,,2,36==AB AS ∴,60,3tan ︒=∠=∠ASB ASB∴二面角A —DF —B 的大小为60º方法二(Ⅰ)建立如图所示的空间直角坐标系 设N BD AC =I ,连接NE , 则点N 、E 的坐标分别是()0,22,22、(0,0,1),∴ NE uuu r =()1,22,22--, 又点A 、M 的坐标分别是(022,,)、()1,22,22 ∴ AM u u u u r =()1,22,22-- ∴NE uuu r =AM u u u u r且NE 与AM 不共线,∴NE∥AM又∵⊂NE 平面BDE , ⊄AM 平面BDE , ∴AM∥平面BDF(Ⅱ)∵AF⊥AB,AB⊥AD,AF ,A AD =I ∴AB⊥平面ADF∴(2,0,0)AB =-u u u r为平面DAF 的法向量∵NE DB •u u u r u u u r =()1,22,22--·)0,2,2(-=0, ∴NE NF •u u u r u u u r =()1,22,22--·)0,2,2(=0得 NE DB ⊥u u u r u u u r ,NE NF ⊥u u u r u u u r∴NE 为平面BDF 的法向量NABCDFEM。
立体几何144.已知函数f(x)=-x3+3x2+9x+a,(I)求f(x)的单调递减区间;(II)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.解:(I)f’(x)=-3x2+6x+9.令f‘(x)<0,解得x<-1或x>3,所以函数f(x)的单调递减区间为(-∞,-1),(3,+∞).(II)因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,所以f(2)>f(-2).因为在(-1,3)上f‘(x)>0,所以f(x)在[-1, 2]上单调递增,又由于f(x)在[-2,-1]上单调递减,因此f(2)和f(-1)分别是f(x)在区间[-2,2]上的最大值和最小值,于是有 22+a=20,解得a=-2.故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7,即函数f(x)在区间[-2,2]上的最小值为-7.5.如图, 在直四棱柱ABCD-A1B1C1D1中,AB=AD=2,DC=23,AA1=3,AD⊥DC,AC⊥BD, 垂足为E,(I)求证:BD⊥A1C;(II )求二面角A 1-BD -C 1的大小;(III )求异面直线 AD 与 BC 1所成角的大小.(I )在直四棱柱ABCD -AB 1C 1D 1中,∵AA 1⊥底面ABCD .∴ AC 是A 1C 在平面ABCD 上的射影. ∵BD ⊥AC .∴ BD ⊥A 1C ; (II )连结A 1E ,C 1E ,A 1 C 1. 与(I )同理可证BD ⊥A 1E ,BD ⊥C 1E ,∴ ∠A 1EC 1为二面角A 1-BD -C 1的平面角. ∵ AD ⊥DC ,∴ ∠A 1D 1C 1=∠ADC =90°, 又A 1D 1=AD =2,D 1C 1= DC =23,AA 1=3且 AC ⊥BD , ∴ A 1C 1=4,AE =1,EC =3,∴ A 1E =2,C 1E =23, 在△A 1EC 1中,A 1C 12=A 1E 2+C 1E 2, ∴ ∠A 1EC 1=90°, 即二面角A 1-BD -C 1的大小为90°. (III )过B 作 BF //AD 交 AC 于 F ,连结FC 1,则∠C 1BF 就是AD 与BC 1所成的角. ∵ AB =AD =2, BD ⊥AC ,AE =1, ∴ BF =2,EF =1,FC =2,BC =DC ,∴ FC 1=7,BC 1在△BFC 1 中,1cos C BF ∠==∴ ∠C 1BF =即异面直线AD 与BC 1所成角的大小为.6.如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,(I)求证:AC⊥BC1;(II)求证:AC 1//平面CDB1;(III)求异面直线AC1与B1C所成角的余弦值.(I)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4AB=5,∴ AC⊥BC,且BC1在平面ABC内的射影为BC,∴ AC⊥BC1;7.在四棱锥V-ABCD 中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD .(Ⅰ)证明AB ⊥平面VAD .(Ⅱ)求面VAD 与面VDB 所成的二面角的大小.证明:(Ⅰ)作AD 的中点O ,则VO ⊥底面ABCD .…………………………1分 建立如图空间直角坐标系,并设正方形边长为1,…………………………2分 则A (12,0,0),B (12,1,0),C (-12,1,0), D (-12,0,0),V (0,0,2),∴1(0,1,0),(1,0,0),(2AB AD AV ===- ………………………………3分由(0,1,0)(1,0,0)0AB AD AB AD ⋅=⋅=⇒⊥……………………………………4分1(0,1,0)(022AB AV AB AV ⋅=⋅-=⇒⊥ ……………………………………5分又AB ∩AV=A∴AB⊥平面VAD…………………………………………………………………………6分。
立体几何1221.如图,在五面体中,点是矩形的对角线的交点,面是等边三角形,棱.(1)证明//平面;(2)设,证明平面.解析:本小题考查直线与平面平行、直线与平面垂直等基础知识,考查空间想象能力和推理论证能力。
(Ⅰ)证明:取CD中点M,连结OM.在矩形ABCD 中,,又,则,连结EM,于是四边形EFOM为平行四边形.又平面CDE,切EM平面CDE,∵FO∥平面CDE(Ⅱ)证明:连结FM,由(Ⅰ)和已知条件,在等边△CDE中,且.因此平行四边形EFOM为菱形,从而EO⊥FM而FM∩CD=M,∴CD⊥平面EOM,从而CD⊥EO.而,所以EO⊥平面CDF.22.如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.(Ⅰ)求证:PB⊥DM;(Ⅱ)求CD与平面ADMN所成的角点评:本题主要考查空间线线、线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力。
方法二:如图,以为坐标原点建立空间直角坐标系,设,则.(I)因为,所以(II)因为,所以,又因为,所以平面因此的余角即是与平面所成的角.因为,所以与平面所成的角为.23.如图,在四棱锥 P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且 PA=AD=AB=2BC,M、N分别为 PC、PB的中点。
(Ⅰ)求证:PB⊥DM;(Ⅱ)求 BD与平面 ADMN所成的角。
本题主要考查空间线线、线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力。
满分 14分。
方法二:如图,以A为坐标原点建立空间直角坐标系,设BC=1,则(Ⅰ)因为,所以PB⊥DM .(Ⅱ)因为,所以PB⊥AD.又PB⊥DM. 因此的余角即是BD与平面ADMN所成的角. 因为,所以=,因此BD与平面ADMN所成的角为.24.如图,在四棱锥P-ABCD中,PA底面ABCD,DAB为直角,AB‖CD,AD=CD=24,E、F分别为PC、CD的中点.(Ⅰ)试证:CD平面BEF;(Ⅱ)设PA=k·AB,且二面角E-BD-C的平面角大于,求k的取值范围.解析:(I)证:由已知且为直角。
2025年高考数学一轮复习-空间几何体的结构、表面积和体积-专项训练一、基本技能练1.下列说法中,正确的是()A.棱柱的侧面可以是三角形B.若棱柱有两个侧面是矩形,则该棱柱的其他侧面也是矩形C.正方体的所有棱长都相等D.棱柱的所有棱长都相等2.如图所示的等腰梯形是一个几何图形的斜二测直观图,其底角为45°,上底和腰均为1,下底为2+1,则此直观图对应的平面图形的面积为()A.1+2B.2+2C.2+22D.4+223.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为()A.4B.43D.3C.234.已知在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2,则将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的表面积为() A.(5+2)π B.(4+2)πC.(5+22)πD.(3+2)π5.如图,位于西安大慈恩寺的大雁塔,是唐代玄奘法师为保存经卷、佛像而主持修建的,是我国现存最早的四方楼阁式砖塔.塔顶可以看成一个正四棱锥,其侧棱与底面所成的角为45°,则该正四棱锥的一个侧面与底面的面积之比为()A.3∶2B.2∶2C.3∶3D.3∶46.过圆锥的轴作截面,如果截面为正三角形,则称该圆锥为等边圆锥.已知在一等边圆锥中,过顶点P 的截面与底面交于CD ,若∠COD =90°(O 为底面圆心),且S △PCD =72,则这个等边圆锥的表面积为()A.2π+2πB.3πC.2π+3πD.π+3π7.如图,四边形ABCD 是边长为2的正方形,ED ⊥平面ABCD ,FC ⊥平面ABCD ,ED =2FC =2,则四面体ABEF 的体积为()A.13B.23C.1D.438.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为5-12,约为0.618.这个比例被公认为是最能引起美感的比例,因此被称为黄金比.在几何世界中有很多黄金图形,在三角形中,如果相邻两边之比等于黄金比,且它们夹角的余弦值为黄金比值,那么这个三角形一定是直角三角形,且这个三角形称为黄金分割直角三角形.在正四棱锥中,以黄金分割直角三角形的长直角边作为正四棱锥的高,黄金分割直角三角形的短直角边的边长作为底面正方形的边心距(正多边形的边心距是正多边形的外接圆圆心到正多边形某一边的距离),斜边作为正四棱锥的斜高,这样得到的正四棱锥称为黄金分割正四棱锥.在黄金分割正四棱锥中,以该正四棱锥的高为边长的正方形的面积与该正四棱锥的侧面积之比为()A.5-12B.5+12C.1D.149.如图,在棱长为2的正方体ABCD-A′B′C′D′中,点E,F,G分别是棱A′B′,B′C′,CD的中点,则由点E,F,G确定的平面截正方体所得的截面多边形的面积等于________.10.已知圆锥的顶点为S,底面圆周上的两点A,B满足△SAB为等边三角形,且面积为43,又知圆锥轴截面的面积为8,则圆锥的侧面积为________.11.如图,已知正三棱柱ABC-A1B1C1的各棱长均为2,点D在棱AA1上,则三棱锥D-BB1C1的体积为________.12.已知三棱锥S-ABC中,∠SAB=∠ABC=π2,SB=4,SC=213,AB=2,BC =6,则三棱锥S-ABC的体积为________.二、创新拓展练13.(多选)攒尖是我国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥.已知此正四棱锥的侧面与底面所成的锐二面角为θ,这个角接近30°.若取θ=30°,侧棱长为21米,则()A.正四棱锥的底面边长为6米B.正四棱锥的底面边长为3米C.正四棱锥的侧面积为243平方米D.正四棱锥的侧面积为123平方米14.(多选)如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=12,则下列结论中错误的是()A.AC⊥AFB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.△AEF的面积与△BEF的面积相等15.(多选)《九章算术》是《算经十书》中最重要的一部,其中将有三条棱互相平行且有一个面为梯形的五面体称为“羡除”,则()A.“羡除”有且仅有两个面为三角形B.“羡除”一定不是台体C.不存在有两个面为平行四边形的“羡除”D.“羡除”至多有两个面为梯形16.(多选)如图,四边形ABCD为正方形,ED⊥平面ABCD,FB∥ED,AB=ED=2FB.记三棱锥E-ACD,F-ABC,F-ACE的体积分别为V1,V2,V3,则()A.V3=2V2B.V3=V1C.V3=V1+V2D.2V3=3V1参考答案与解析一、基本技能练1.答案C解析棱柱的侧面都是平行四边形,选项A错误;其他侧面可能是平行四边形,选项B错误;棱柱的侧棱与底面边长并不一定相等,选项D错误;易知选项C正确.2.答案B解析∵平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,∴平面图形为直角梯形,且直角腰长为2,上底边长为1,下底边长为2+1,∴平面图形的面积S=1+1+22×2=2+ 2.故选B.3.答案B解析易知该几何体是由上、下两个全等的正四棱锥组成的,其中正四棱锥底面边长为2,棱锥的高为1,所以该多面体的体积V =2×13×(2)2×1=43.4.答案A解析因为在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,所以将梯形ABCD 绕AD 所在的直线旋转一周得到的几何体是一个底面半径为1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥后剩余的部分,如图所示.所以该几何体的表面积S =π×12+2π×1×2+π×1×12+12=(5+2)π.5.答案D解析设塔顶是正四棱锥P -ABCD (如图),PO 是正四棱锥的高.设正四棱锥底面边长为a ,则底面面积S 1=a 2,因为AO =22a ,∠PAO =45°,所以PA =2×22a =a ,所以△PAB 是正三角形,其面积为S 2=34a 2,所以S 2∶S 1=34a 2∶a 2=3∶4.6.答案B解析如图,连接PO ,设圆锥的母线长为2a ,则圆锥的底面圆的半径为a ,高为PO =3a .由已知得CD =2a ,PC =PD =2a ,则S △PCD =12×2a ×(3a )2+22a 2=72,从而可得a =1,圆锥的表面积为πa ×2a +πa 2=3πa 2=3π.7.答案B解析∵ED ⊥平面ABCD 且AD ⊂平面ABCD ,∴ED ⊥AD .∵在正方形ABCD 中,AD ⊥DC ,又DC ∩ED =D ,DC ,ED ⊂平面CDEF ,∴AD ⊥平面CDEF .易知FC =ED2=1,V A -BEF =V ABCDEF -V F -ABCD -V A -DEF .∵V E -ABCD =13·ED ·S 正方形ABCD =13×2×2×2=83,V B -EFC =13·BC ·S △EFC =13×2×2×1×12=23,∴V ABCDEF =V E -ABCD +V B -EFC =83+23=103.又V F -ABCD =13·FC ·S 正方形ABCD =13×1×2×2=43,V A -DEF =13·AD ·S △DEF =13×2×2×2×12=43,∴V A -BEF =V ABCDEF -V F -ABCD -V A -DEF =103-43-43=23.故选B.8.答案D解析如图,在黄金分割正四棱锥P -ABCD 中,O 是正方形ABCD 的中心,PE 是正四棱锥的斜高,设OE =a ,则CD =2a ,∴Rt△POE为黄金分割直角三角形,则OEPE=5-12,∴PE=5+12,则PO=PE2-OE2=1+52a,∴以该正四棱锥的高为边长的正方形的面积S=PO2=1+52a2,又正四棱锥的四个侧面是全等的,∴S侧=4S△PCD=4×12×CD×PE=2(1+5)a2,∴该正四棱锥的高为边长的正方形的面积与该正四棱锥的侧面积之比为1 4 .9.答案332解析分别取AD,CC′和AA′的中点为P,M,N,可得出过E,F,G三点的平面截正方体所得截面为正六边形EFMGPN,则正六边形的边长MG=CG2+CM2=222+2221,故截面多边形的面积S=6×34×12=332.10.答案82π解析设圆锥的母线长为l,由△SAB为等边三角形,且面积为43,所以12l 2sin π3=43,解得l =4;又设圆锥底面半径为r ,高为h ,则由轴截面的面积为8,得rh =8;又r 2+h 2=l 2=16,解得r =h =22,所以圆锥的侧面积S =πrl =π·22·4=82π.11.答案233解析如图,取BC 的中点O ,连接AO .∵正三棱柱ABC -A 1B 1C 1的各棱长均为2,∴AC =2,OC =1,则AO = 3.∵AA 1∥平面BCC 1B 1,∴点D 到平面BCC 1B 1的距离为3.又S △BB 1C 1=12×2×2=2,∴V D -BB 1C 1=13×2×3=233.12.答案43解析∵∠ABC =π2,AB =2,BC =6,∴AC =AB 2+BC 2=22+62=210.∵∠SAB =π2,AB =2,SB =4,∴AS =SB 2-AB 2=42-22=2 3.由SC =213,得AC 2+AS 2=SC 2,∴AC ⊥AS .又∵SA ⊥AB ,AC ∩AB =A ,AC ,AB ⊂平面ABC ,∴AS ⊥平面ABC .∴AS 为三棱锥S -ABC 的高,∴V 三棱锥S -ABC =13×12×2×6×23=4 3.二、创新拓展练13.答案AC解析如图,在正四棱锥S -ABCD 中,O 为正方形ABCD 的中心,H 为AB 的中点,则∠SHO 为侧面SAB 与底面ABCD 所成的锐二面角,且SH ⊥AB ,∠SHO =30°,设底面边长为2a ,所以OH =AH =a ,OS =33a ,SH =233.在Rt △SAH 中,a 2=21,解得a =3,所以正四棱锥的底面边长为6米,侧面积为S =12×6×23×4=243(平方米).14.答案AD解析由题意及图形知,当点F 与点B 1重合时,∠CAF =60°,故A 错误;由正方体ABCD -A 1B 1C 1D 1的两个底面平行,EF ⊂平面A 1B 1C 1D 1,知EF ∥平面ABCD ,故B 正确;由几何体的性质及图形知,三角形BEF 的面积是定值,点A 到平面DD 1B 1B 的距离是定值,故可得三棱锥A -BEF 的体积为定值,故C 正确;由图形可以看出,B 到直线EF 的距离与A 到直线EF 的距离不相等,故△AEF 的面积与△BEF 的面积不相等,故D 错误.故选AD.15.答案ABC解析由题意知AE ∥BF ∥CD ,四边形ACDE 为梯形,如图所示.选项A ,由题意知“羡除”有且仅有两个面为三角形,故A 正确;选项B ,因为AE ∥BF ∥CD ,所以“羡除”一定不是台体,故B 正确;选项C ,假设四边形ABFE 和四边形BCDF 为平行四边形,则AE ∥BF ∥CD ,且AE =BF =CD ,即四边形ACDE 为平行四边形,与已知四边形ACDE 为梯形矛盾,故不存在,故C 正确;选项D ,若AE ≠BF ≠CD ,则“羡除”有三个面为梯形,故D 错误.故选ABC.16.答案CD 解析如图,连接BD 交AC 于O ,连接OE ,OF .设AB =ED =2FB =2,则AB =BC =CD =AD =2,FB =1.因为ED ⊥平面ABCD ,FB ∥ED ,所以FB ⊥平面ABCD ,所以V 1=V E -ACD =13S △ACD ·ED =13×12AD ·CD ·ED =13×12×2×2×2=43,V 2=V F -ABC =13S △ABC ·FB =13×12AB ·BC ·FB =13×12×2×2×1=23.因为ED ⊥平面ABCD ,AC ⊂平面ABCD ,所以ED ⊥AC ,又AC ⊥BD ,且ED ∩BD =D ,ED ,BD ⊂平面BDEF ,所以AC ⊥平面BDEF .因为OE ,OF ⊂平面BDEF ,所以AC ⊥OE ,AC ⊥OF .易知AC=BD=2AB=22,OB=OD=12BD=2,OF=OB2+FB2=3,OE=OD2+ED2=6,EF=BD2+(ED-FB)2=(22)2+(2-1)2=3,所以EF2=OE2+OF2,所以OF⊥OE.又OE∩AC=O,OE,AC⊂平面ACE,所以OF⊥平面ACE,所以V3=V F-ACE=13S△ACE·OF=13×12AC·OE·OF=13×12×22×6×3=2,所以V3≠2V2,V1≠V3,V3=V1+V2,2V3=3V1,所以选项A,B不正确,选项C,D正确.故选CD.。
2025年高考数学一轮复习-立体几何中的动点及其轨迹问题-专项训练一、基本技能练1.如图,在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹为()A.直线B.圆C.双曲线D.抛物线2.如图,正方体ABCD -A 1B 1C 1D 1中,P 为底面ABCD 上的动点.PE ⊥A 1C 于E ,且PA =PE ,则点P 的轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分3.如图,圆锥的底面直径AB =2,母线VA =3,点C 在母线VB 上,且VC =1,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是()A.13B.7C.433D.3324.如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 中点轨迹的面积为()A.4πB.2πC.πD.π25.已知MN 是长方体外接球的一条直径,点P 在长方体表面上运动,长方体的棱长分别是1,1,2,则PM →·PN →的取值范围为()A.-12,0 B.-34,0C.-12,1 D.-34,16.点P 为棱长是25的正方体ABCD -A 1B 1C 1D 1的内切球O 球面上的动点,点M 为B 1C 1的中点,若满足DP ⊥BM ,则动点P 的轨迹的长度为()A.πB.2πC.4πD.25π7.已知正三棱锥P -ABC 的六条棱长均为6,S 是△ABC 及其内部的点构成的集合.设集合T ={Q ∈S |PQ ≤5},则T 表示的区域的面积为()A.3π4 B.πC.2πD.3π8.如图,三角形PAB 所在的平面α和四边形ABCD 所在的平面β垂直,且AD ⊥α,BC ⊥α,AD =4,BC =8,AB =6,∠APD =∠CPB ,则点P 在平面α内的轨迹是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分9.已知正方体ABCD -A ′B ′C ′D ′的棱长为1,点M ,N 分别为线段AB ′,AC 上的动点,点T 在平面BCC ′B ′内,则MT +NT 的最小值是()A.2 B.233C.62 D.110.如图,长方体ABCD -A ′B ′C ′D ′中,AB =BC =2,AA ′=3,上底面A ′B ′C ′D ′的中心为O ′,当点E 在线段CC ′上从C 移动到C ′时,点O ′在平面BDE 上的射影G 的轨迹长度为()A.2π3B.3π3C.π3D.3π611.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为是正确的条件即可).12.如图,P 是棱长为1的正方体ABCD -A 1B 1C 1D 1表面上的动点,且AP =2,则动点P 的轨迹的长度为________.二、创新拓展练13.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,E 是AA 1的中点,P 是底面ABCD 所在平面内一动点,设PD 1,PE 与底面ABCD 所成的角分别为θ1,θ2(θ1,θ2均不为0),若θ1=θ2,则三棱锥P -BB 1C 1体积的最小值是()A.92B.52C.32D.5414.(多选)如图,设正方体ABCD -A 1B 1C 1D 1的棱长为2,E 为A 1D 1的中点,F 为CC 1上的一个动点,设由点A ,E ,F 构成的平面为α,则()A.平面α截正方体的截面可能是三角形B.当点F 与点C 1重合时,平面α截正方体的截面面积为26C.当点D 到平面α的距离的最大值为263D.当F 为CC 1的中点时,平面α截正方体的截面为五边形15.已知面积为23的菱形ABCD 如图①所示,其中AC =2,E 是线段AD 的中点.现沿AC 折起,使得点D 到达点S 的位置,此时二面角S -AC -B 的大小为120°,连接SB ,得到三棱锥S -ABC 如图②所示,则三棱锥S -ABC 的体积为________;若点F 在三棱锥的表面运动,且始终保持EF ⊥AC ,则点F 的轨迹长度为________.16.如图,三棱锥S-ABC的所有棱长均为1,SH⊥底面ABC,点M,N在直线SH上,且MN=33,若动点P在底面ABC内,且△PMN的面积为212,则动点P的轨迹长度为________.参考答案与解析一、基本技能练1.答案D解析点P到直线C1D1的距离即为点P到点C1的距离,所以在平面BB1C1C中,点P到定点C1的距离与到定直线BC的距离相等,由抛物线的定义可知,动点P的轨迹为抛物线,故选D.2.答案A解析由题意知,△A1AP≌△A1EP,则点P 为在线段AE 的中垂面上运动,从而与底面ABCD 的交线为线段.3.答案B 解析在圆锥侧面的展开图中,AA ′=2π,所以∠AVA ′=AA ′︵VA =23,所以∠AVB =12∠AVA ′=π3,由余弦定理得AC 2=VA 2+VC 2-2VA ·VC ·cos ∠AVB =32+12-2×3×1×12=7,所以AC =7.所以这只蚂蚁爬行的最短距离是7,故选B.4.答案D 解析易知DD 1⊥平面ABCD ,∠MDN =90°,取线段MN 的中点P ,则DP =12MN =1,所以点P 的轨迹是以D 为球心,1为半径的18球面,故S =18×4π×12=π2.5.答案B 解析根据题意,以D 为坐标原点,DA →为x 轴正方向,DC →为y 轴正方向,DD 1→为z 轴正方向,建立空间直角坐标系,如图所示.设长方体外接球球心为O ,则DB 1为外接球的一条直径,设O 为DB 1的中点,不妨设M 与D 重合,N 与B 1重合.则外接球的直径长为12+12+(2)2=2,所以半径r =1,所以PM →·PN →=(PO →+OM →)·(PO →+ON →)=(PO →+OM →)·(PO →-OM →)=|PO →|2-|OM →|2=|PO →|2-1,由P 在长方体表面上运动,所以|PO →|∈12,1,即|PO →|2∈14,1,所以|PO →|2-1∈-34,0,即PM →·PN →∈-34,0.6.答案C 解析根据题意知,该正方体的内切球半径为r =5,如图,取BB 1的中点N ,连接CN ,则CN ⊥BM ,在正方体ABCD -A 1B 1C 1D 1中,CN 为DP 在平面B 1C 1CB 中的射影,∴点P 的轨迹为过D ,C ,N 的平面与内切球的交线,∵正方体ABCD -A 1B 1C 1D 1的棱长为25,∴O 到过D ,C ,N 的平面的距离为1,∴截面圆的半径为(5)2-1=2,∴点P 的轨迹的长度为2π×2=4π.7.答案B 解析设顶点P 在底面上的投影为O ,连接BO ,则O 为△ABC 的中心,且BO =23×6×32=23,故PO =36-12=2 6.因为PQ =5,故OQ =1,故Q 的轨迹为以O 为圆心,1为半径的圆,而△ABC 内切圆的圆心为O ,半径为2×34×363×6=3>1,故Q 的轨迹圆在△ABC 内部,故其面积为π.8.答案A 解析由条件易得AD ∥BC ,且∠APD =∠CPB ,AD =4,BC =8,可得tan ∠APD =AD PA =CB PB =tan ∠CPB ,即PB P A =CB AD=2,在平面P AB 内以AB 所在的直线为x 轴,AB 的中点O 为坐标原点,建立直角坐标系(图略),则A (-3,0),B (3,0),设P (x ,y ),则有PB PA =(x -3)2+y 2(x +3)2+y 2=2,整理可得x 2+y 2+10x +9=0(x ≠0).由于点P 不在直线AB 上,故此轨迹为圆的一部分,故答案选A.9.答案B 解析A 点关于BC 的对称点为E ,M 关于BB ′的对称点为M ′,记d 为直线EB ′与AC 之间的距离,则MT +NT =M ′T +NT ≥M ′N ≥d ,由B ′E ∥D ′C ,d 为E 到平面ACD ′的距离,因为V D ′-ACE =13×1×S △ACE =13×1×1=13,而V D ′-ACE =V E -ACD ′=13×d ×34×(2)2=36d =13,故d =233.10.答案B 解析如图,以CA ,CC ′分别为x 轴,y 轴正方向建立平面直角坐标系,则有C (0,0),O (1,0),O ′(1,3),设G (x ,y ),由O ′G ⊥OG ,可得y x -1·y -3x -1=-1,+(x -1)2=34,所以点O ′在平面BDE 上的射影G 的轨迹是以F半径为32的OG ︵.因为tan ∠GOF =O ′C ′OO ′=33,所以O ′G =O ′O ·sin ∠GOF =32,所以△O ′GF 是等边三角形,即∠GFO =2π3,所以圆弧OG 的长l =2π3×32=3π3.11.答案DM ⊥PC (或BM ⊥PC )解析连接AC ,BD ,则AC ⊥BD ,因为PA ⊥底面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD .又PA ∩AC =A ,所以BD ⊥平面PAC ,PC ⊂平面PAC ,所以BD ⊥PC ,所以当DM ⊥PC (或BM ⊥PC )时,有PC ⊥平面MBD ,PC ⊂平面PCD ,所以平面MBD ⊥平面PCD .12.答案3π2解析由已知AC =AB 1=AD 1=2,在平面BC 1,平面A 1C 1中,BP =A 1P =DP =1,所以动点P 的轨迹是在平面BC 1,平面A 1C 1,平面DC 1内分别以B ,D ,A 1为圆心,1为半径的三段圆弧,且长度相等,故轨迹长度和为π2×3=3π2.二、创新拓展练13.答案C 解析以D 为坐标原点建立如图所示空间直角坐标系,因为正方体的棱长为3,则3,0,32D 1(0,0,3),设P (x ,y ,0)(x ≥0,y ≥0),则PE →3-x ,-y ,32,PD 1→=(-x ,-y ,3).因为θ1=θ2,平面ABCD 的一个法向量z =(0,0,1),所以|PE →·z ||PE →|·|z |=|PD 1→·z ||PD 1→|·|z |,得32(3-x )2+y 2+94=3x 2+y 2+9,整理得x 2+y 2-8x +12=0,即(x -4)2+y 2=4(0≤y ≤2),则动点P 的轨迹为圆的一部分,所以点P 到平面BB 1C 1的最小距离为1,所以三棱锥P -BB 1C 1体积的最小值是13×12×3×3×1=32.14.答案BCD 解析如图,建立空间直角坐标系,延长AE 与z 轴交于点P ,连接PF 并延长与y 轴交于点M ,则平面α由平面AEF 扩展为平面APM .由此模型可知A 错误.当点F 与点C 1重合时,截面是一个边长为5的菱形,该菱形的两条对角线长度分别AC 1=22+22+22=23和22+22=22,则此时截面的面积为12×23×22=2 6.当F 为CC 1的中点时,平面α截正方体的截面为五边形,B ,D 正确.D (0,0,0),A (2,0,0),P (0,0,4),设点M 的坐标为(0,t ,0)(t ∈[2,4]),DA →=(2,0,0),AM →=(-2,t ,0),PA →=(2,0,-4),则可知点P 到直线AM 的距离为d =|P A →|2-|PA →·AM →|AM →||2=20t 2+644+t 2,S △APM =12t 2+4·d =5t 2+16.S △P AD =12×2×4=4,设点D 到平面α的距离为h ,利用等体积法V D -APM =V M -P AD ,即13·S △APM ·h =13·S △P AD ·t ,可得h =4t 5t 2+16,则h =45+16t 2,由h =45+16t 2在t ∈[2,4]上单调递增,所以当t =4时,h 取到最大值为263.故选BCD.15.答案323+32解析依题意,12AC ·BD =BD =23,点S 到平面ABC 的距离为3sin 60°=32,△ABC 的面积为12×23=3,则三棱锥S -ABC 的体积为13×3×32=32.如图,取AC 边上靠近点A 的四等分点G ,取BA 的中点为H ,连接EH ,EG ,GH ,故点F 的轨迹长度即为△EHG 的周长,又EG =GH =32,EH =12SB =32,故点F 的轨迹长度为3+32.16.答案6π12解析设P 到直线MN 的距离为d ,由题易得d =66,易知H 为△ABC 的中心,又MN ⊥平面ABC ,当点P 在平面ABC 内时,其轨迹是以H 为圆心,66.∵△ABC 内切圆的半径为36,∴圆H 的一部分位于△ABC 外,结合题意得,点P 的轨迹为圆H 位于底面△ABC 内的三段相等的圆弧(利用正三角形的性质判断出圆H 有一部分在△ABC 外,才能正确得到点P 的轨迹),如图,过点H 作HO ⊥AC ,垂足为O ,则HO =36,记圆H 与线段OC 的交点为K ,连接HK ,可得HK =66,∴cos∠OHK=OHHK=3666=22,∴∠OHK=π4,∴点P的轨迹长度为圆H周长的14(利用圆及正三角形的对称性分析求解),∴点P的轨迹长度为14×2π×66=6π12.。
大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
立体几何041.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为A.3 B .13π C .23π D.3 解:此正八面体是每个面的边长均为a的正三角形,所以由8=1a =,则,故选A 。
2.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )一条直线 (B )一个圆(C )一个椭圆 (D )双曲线的一支3.设A 、B 、C 、D 是空间四个不同的点,在下列命题中,不正..确.的是 (A )若AC 与BD 共面,则AD 与BC 共面(B )若AC 与BD 是异面直线,则AD 与BC 是异面直线 (C) 若AB =AC ,DB =DC ,则AD =BC (D) 若AB =AC ,DB =DC ,则AD ⊥BC解:A 显然正确;B 也正确,因为若AD 与BC 共面,则必有AC 与BD 共面与条件矛盾; C 不正确,如图所示:D 正确,用平面几何与立体几何的知识都可证明。
选C4.已知正方体外接球的体积是π332,那么正方体的棱长等于 A.22 B.332 C.324 D.3345.对于平面α和共面的直线m 、n ,下列命题中真命题是A.若m ⊥α,m ⊥n ,则n ∥αB.若m ∥α,n ∥α,则m ∥nABDCC.若m ⊂α,n ∥α,则m ∥nD.若m 、n 与α所成的角相等,则n ∥m 解:对于平面α和共面的直线m 、,n 真命题是“若,m n αα⊂∥,则m ∥n ”,选C.6.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 ③如果两条直线都平行于一个平面,那么这两条直线互相平行,④如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 其中真命题的个数是A.4B. 3C. 2D. 1 解:①②④正确,故选B.7.关于直线,m n 与平面,αβ,有以下四个命题:①若//,//m n αβ且//αβ,则//m n ;②若,m n αβ⊥⊥且αβ⊥,则m n ⊥; ③若,//m n αβ⊥且//αβ,则m n ⊥;④若//,m n αβ⊥且αβ⊥,则//m n ; 其中真命题的序号是A .①②B .③④C .①④D .②③ 解:用排除法可得选D9.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图1,则图中三角形(正四面体的截面) 的面积是 ( )A.2解:棱长为2的正四面体ABCD 的四个顶点都在同一个球面上, 若过该球球心的一个截面如图为△ABF ,则图中AB=2,E 为AB 中点,则EF ⊥DC ,在△DCE 中,DE=EC=3,DC=2,∴EF=2,∴三角形ABF 的面积是2,选C.12.如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( )A .S 1<S 2 B. S 1>S 2C. S 1=S 2D. S 1,S 2的大小关系不能确定解:连OA 、OB 、OC 、OD ,则V A -BEFD =V O -ABD +V O -ABE +V O -BEFD ,V A -EFC =V O -ADC +V O -AEC +V O -EFC 又V A -BEFD =V A -EFC 而每个三棱锥的高都是原四面体的内切球的半径,故S ABD +S ABE +S BEFD =S ADC +S AEC +S EFC 又面AEF 公共,故选C13.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题...是( ) A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补 C.等腰四棱锥的底面四边形必存在外接圆 D.等腰四棱锥的各顶点必在同一球面上解:因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A ,C 正确,且在它的高上必能找到一点到各个顶点的距离相等,故D 正确,B 不正确,如底面是一个等腰梯形时结论就不成立。
立体几何 0215. 如图,某几何体的正视图和俯视图都是矩形,侧视图是平行四边形,则该几何体的体积为ABCD【答案】 B长为 32=1+2=3,所以该几何体的体积为 33⨯=B. 16.面积中最大的是(A(B (C 1 (D 2【答案】 A【解析】由三视图可知,该几何体是一个三棱锥,三棱锥的三个侧面都是等腰直角三角形,,所以四个面中面积最大的为BCD ∆, 且B C D ∆是边长为为 2的正三角形 , 所以1222BCD S ∆=⨯⨯=A.17. 已知一个几何体是由上下两部分构成的组合体, 其三视图如下, 若图中圆的半径为 1,等( A.43π B. 2π C. 83π D. 103π【答案】 A【解析】由三视图可知,该几何体上部分是一个圆锥,下部分是个半球,球半径为1,圆锥的高为 2h ==,所以圆锥的体积为12233ππ⨯⨯=,半球的体积为 23π,所以几何体的总体积为 224333πππ+=,选 A. 18. 设 , m n 是不同的直线, , αβ是不同的平面,下列命题中正确的是(A .若//, , m n m n αβ⊥⊥,则αβ⊥B .若//, , m n m n αβ⊥⊥,则//αβC .若//, , //m n m n αβ⊥,则α⊥ βD .若//, , //m n m n αβ⊥,则//αβ 【答案】 C【解析】 C 中,当//, //m m n α,所以, //, n α或, n α⊂当n β⊥,所以α⊥ β,所以正确。
19. 某三棱锥的三视图如图所示,该三棱锥的体积是( A .38 B . 4 C . 2 D .34【答案】 B【解析】由三视图可知该几何体为三棱锥,三棱锥的高为 2,底面三角形的高为 3,底面边长为 3,所以底面积为14362⨯⨯=,所以该几何体的体积为 16243⨯⨯=,选 B. 20. 一个几何体的三视图如图所示,该几何体的表面积是(A 16+(B 12+C 8+D 4+【答案】 B【解析】由三视图可知, 该几何体是一个平放的直三棱柱, 棱柱的底面为等腰直角三角形, 棱柱的高为 2, 所以该几何体的底面积为 122242⨯⨯⨯=, 侧面积为侧(左视图2(2228++⨯=+8412+=+B.21. 某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是((AB(CD【答案】 C【解析】由三视图可知该四面体为V ABC-, 其中2E C C B ==, AE =2VC =, , AE BE VC ABE ⊥⊥. 所以六条棱中,最大的为VA或者AB.22222216AC AE EC =+=+=, 所以 22216220V AA C V C =+=+=, 此时VA ==。
广东省2021届高三数学一轮复习典型题专项训练
立体几何
一、选择、填空题
1、(广州市2018高三一模)如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表 面积为
A .44223+
+
B .1442+
C .104223++
D .4
2、(珠海市2019届高三9月摸底考试)如图,圆锥顶点为P ,底面圆心为O ,过轴PO 的截面PAB ∆,C 为PA 中点,3PA =6PO =,则从点C 经圆锥侧面到点B 的最短距离为
A. 15
B. 21562-
C. 6
D. 21563-C
0P
3、(华附、省实、广雅、深中2019届高三上学期期末联考)在半径为4的球O 的球面上有不同的四点A ,B ,C ,D ,若4AB AC AD ===,则平面BCD 被球O 所截得的图形的面积为 ※※ .
4、(珠海市2019届高三9月摸底考试)S 为顶点的正四面体S ABC -3D 为SC 的中点,则BD 与AC 所成角的余弦值为
A. 3
B. 3
C. 3
D. 16
5、(深圳实验、珠海一中等六校2019届高三第二次联考)某几何体的三视图如图所示,则该几何体的体积为( )
A.32163π-
B.16163
π- C.3283π- D.1683π-。
立体几何15
8.如图, PA=BC=6,AB=8,PB=AC=10,
342=PB ,F 是线段PB 上一点,17
34
15=
CF ,点E 在线段AB 上,且EF ⊥PB (I )求证:PB ⊥平面CEF
(II )求二面角B —CE —F 的大小(14分)
证明:∵2221006436PC AC PA ==+=+ ∴△PAC 是以∠PAC 为直角的直角三角形,同理可证 △PAB 是以∠PAB 为直角的直角三角形,△PCB 是以∠PCB 为直角的直角三角形。
故PA ⊥平面ABC 又∵306102
1
||||21=⨯⨯==
∆BC AC S PBC 而
PBC S CF PB ∆==⨯⨯=3017
34
1534221||||21 故CF ⊥PB,又已知EF ⊥PB ∴PB ⊥平面CEF
9.如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB=3, BC=1,PA=2,E 为PD 的中点.
(Ⅰ)求直线AC 与PB 所成角的余弦值;
(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC ,并求出N 点到 AB 和AP 的距离.
本小题主要考查线面关系和四棱锥等基础知识,同时考查空间想象能力和推理运算能力.
解法1:(Ⅰ)建立如图所示的空间直角坐标系, 则A 、B 、C 、D 、P 、E 的坐标为A (0,0,0)、
B (3,0,0)、
C (3,1,0)、
D (0,1,0)、 P (
0,0,2)、E (0,
2
1
,1), 从而).2,0,3(),0,1,3(-==PB AC 设PB AC 与的夹角为θ,则
,14
7
37
23|
|||cos =
=
⋅=
PB AC PB AC θ ∴AC 与PB 所成角的余弦值为
14
7
3. (Ⅱ)由于N 点在侧面PAB 内,故可设N 点坐标为(x ,O ,z ),则
)1,2
1
,(z x NE --=,由NE ⊥面PAC 可得,
⎪⎩⎪⎨⎧=+-=-⎪⎪⎩
⎪⎪⎨⎧=⋅--=⋅--⎪⎩⎪⎨⎧=⋅=⋅.021
3,01.0)0,1,3()1,21,(,0)2,0,0()1,21,(.
0,0x z z x z x AC NE AP NE 化简得即 ∴⎪⎩⎪⎨⎧==163z x 即N 点的坐标为)1,0,63(
,从而N 点到AB 、AP 的距离分别为1,6
3
.
(Ⅱ)在面ABCD 内过D 作AC 的垂线交AB 于F ,则6
π
=
∠ADF .
连PF ,则在Rt △ADF 中.3
3
tan ,332cos ====
ADF AD AF ADF AD DF
设N 为PF 的中点,连NE ,则NE//DF ,
∵DF ⊥AC ,DF ⊥PA ,∴DF ⊥面PAC ,从而NE ⊥面PAC. ∴N 点到AB 的距离12
1
==
AP ,N 点到AP 的距离.6321=
=AF
10.如图所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,
BC=2,CC 1=3,BE=1. (Ⅰ)求BF 的长;
(Ⅱ)求点C 到平面AEC 1F 的距离.
本小题主要考查线面关系和空间距离的求法等基础知识,同时考查空间想象能力和推理运算能力.
解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. 又∵AF ∥EC 1,∴∠FAD=∠C 1EH.
∴Rt △ADF ≌Rt △EHC 1. ∴DF=C 1H=2.
.6222=+=∴DF BD BF
(Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG. 过C 作CM ⊥AG ,垂足为M ,连C 1M ,
由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC ,且
AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到平面AEC 1F 的距离.
.
11
33
4
17
12
3
17
12
3
,
17
12
17
4
3
cos
3
cos
3
,
.
17
,1
,
2
2
1
1
2
2
1
=
+
⨯
=
⨯
=
∴
=
⨯
=
=
=
∠
=
∠
=
+
=
=
=
MC
CC
CM
CQ
GAB
MCG
CM
MCG
GAB
BG
AB
AG
BG
CG
BG
CC
EB
知
由
从而
可得
由
(II)设
1
n为平面AEC1F的法向量,
)1,
,
(
,
1
1
y
x
n
ADF
n=
故可设
不垂直于平面
显然
⎩
⎨
⎧
=
+
⨯
+
⨯
-
=
+
⨯
+
⨯
⎪⎩
⎪
⎨
⎧
=
⋅
=
⋅
2
2
1
4
,0
,0
1
1
y
x
y
x
AF
n
AE
n
得
由
⎪⎩
⎪
⎨
⎧
-
=
=
∴
⎩
⎨
⎧
=
+
-
=
+
.
4
1
,1
,0
2
2
,0
1
4
y
x
x
y
即
1
1
1
),3,0,0(n
CC
CC与
设
又=的夹角为a,则
.
33
33
4
1
16
1
1
3
3
|
||
|
cos
1
1
1
1=
+
+
⨯
=
⋅
=
n
CC
α
∴C到平面AEC1F的距离为
.
11
33
4
33
33
4
3
cos
|
|
1
=
⨯
=
=α
CC
d
11.如图,在长方体ABCD —A 1B 1C 1D 1,中,AD=AA 1=1,AB=2,点E 在棱AD 上移动. (1)证明:D 1E ⊥A 1D ;
(2)当E 为AB 的中点时,求点E 到面ACD 1的距离;
(3)AE 等于何值时,二面角D 1—EC —D
的大小为
4
π.
解法(一)
(1)证明:∵AE ⊥平面AA 1DD 1,A 1D ⊥AD 1,∴A 1D ⊥D 1E
(2)设点E 到面ACD 1的距离为h ,在△ACD 1中,AC=CD 1=5,AD 1=2, 故.2
121,232152211=⋅⋅==-⋅⋅=
∆∆BC AE S S ACE C AD 而 .31,23121,3
1
31111=∴⨯=⨯∴⋅=⋅=
∴∆∆-h h h S DD S V C AD AEC AEC D
(3)过D 作DH ⊥CE 于H ,连D 1H 、DE ,则D 1H ⊥CE , ∴∠DHD 1为二面角D 1—EC —D 的平面角. 设AE=x ,则BE=2-x
,
,,1,.
1,4
,211x EH DHE Rt x DE ADE Rt DH DHD DH D Rt =∆∴+=∆=∴=
∠∆中在中在中在ΘΘπ
.
4
,32.
32543.54,3122π
的大小为二面角时中在中在D EC D AE x x x x x x CE CBE Rt CH DHC Rt ---=∴-=⇒+-=+∴+-=∆=∆
(3)设平面D 1EC 的法向量),,(c b a n =,∴),1,0,0(),1,2,0(),0,2,1(11=-=-=DD C D x CE
由⎩⎨
⎧=-+=-⇒⎪⎩⎪⎨⎧=⋅=⋅.0)2(02,
0,01x b a c b C D n 令b=1, ∴c=2,a =2-x , ∴).2,1,2(x n -= 依题意.2
25
)2(22
2
|
|||4
cos
211=
+-⇒=
⋅=
x DD n π ∴321+=x (不合,舍去),322-=x . ∴AE=32-时,二面角D 1—EC —D 的大小为4
π
.。