江苏省泰州市第二中学高三数学复习学案_向量的概念及其表示
- 格式:doc
- 大小:93.00 KB
- 文档页数:4
2.1向量的概念及表示
1.B 已知平行四边形ABCD,对角线AC,BD交于点O,点E为线段OB中点,完成下列各题.(用于填空的向量为图中已有线段所表示的向量)
(1)图中与向量AB相等的向量为 .
(2)图中与向量AD平行的向量为 .
(3)在图中画出与向量OA平行的向量,并且经过点B.
CF,并且DO CF
.
可否能用图中的向量表示?
2.B 已知如图,点O是正六边形ABCDEF的中心,完成下列各题.(用于填空的向量为图中已有线段所表示的向量)
(1)
图中与向量OA相等的向量为;
(2)图中与向量OA长度相等的向量有个;
(3)图中与向量OA共线的向量为;
(4)图中与向量OA相等且反向的向量为 .
3.A “向量平行”与“向量共线”是一回事吗?试着回答下面问题:
(1)两个向量共线,则它们一定在一条直线上吗?
(2)两个向量平行,则它们的基线一定平行吗?
3)两个向量方向相反,则它们一定共线吗?
4)两个向量共线,则它们一定同向或反向吗?
第二章平面向量
2.1向量的概念及表示
1.(1)DC (2)DA CB BC
、、
(3)
(4)
(5)留作思考,后续课程会解决
2.(1)CB EF DO
、、 (2)23
(3)BC CB DO OD AD DA AO FE EF
、、、、、、、、
(4)BC FE OD AO
、、、
3.(1)不一定,可能在两条平行的直线上(2)不一定,基线可能重合(3)一定 (4)不一定,0的方向不确定.。
江苏省泰兴中学高一数学教学案(52) 必修4_02 向量的概念及表示班级 姓名目标要求1.了解向量的实际背景,会用字母表示向量,理解向量的几何表示;2. 理解零向量、单位向量、平行向量、共线向量、相等向量、相反向量等概念. 重点难点重点:向量、相等向量、共线向量及向量的几何表示; 难点:向量、共线向量的概念. 教学过程: 一、问题情境 二、数学建构 1.向量的概念: 2.向量的表示方法: 3.零向量、单位向量概念: 4.平行向量定义: 5.相等向量定义:6.共线向量与平行向量关系: 三、典例剖析例1 已知O 为正六边形ABCDEF 的中心,在图2-1-6所标出的向量中:(1) 试找出与FE u u u r共线的向量; (2) 确定与FE u u u r相等的向量; (3) OA u u u r 与BC uuu r相等吗?C例2 在图2-1-7中的45⨯方格纸中有一个向量AB u u u r,分别以图中的格点为起点和终点作向量,其中与AB u u u r 相等的向量有多少个?与AB u u u r 长度相等的共线向量有多少个(AB u u u r除外)?图2-例3 判断下列各题是否正确:(1) 向量AB u u u r 与CD uuur 是共线向量,则A 、B 、C 、D 必在同一直线上;(2) 若a b =r r,则a b =r r 或a b =-r r ;(3) 若与是平行向量,则a b =r r; (4) 若//,//a b b c r r r r,则//a c r r .(5) 已知四边形ABCD ,当且仅当AB DC =u u u r u u u r时,该四边形是平行四边形.例4 某人从A 点出发向西走了200m 到达B 点,然后向西偏北走了450m 到达C 点,最后向东走了200m 到达D 点(1)作出向量,,AB BC CD u u u r u u u r u u u r (2)求A 到D 的位移例5 下列各种情况中,向量终点各构成什么图形: (1) 把所有单位向量起点平移到原点;(2) 把平行于某一直线的所有单位向量的起点平移到同一点; (3) 把平行于某一直线的一切向量平移到同一起点.A四、课堂练习1、 在质量、重力、速度、加速度、身高、面积、体积这些量中,哪些是数量?哪些是向量?2、在下列结论中,哪些是正确的?(1) 若两个向量相等,则它们的起点和终点分别重合;(2)模相等的两个平行向量是相等的向量;(3)若a r 和b r 都是单位向量,则a b =r r;(4)两个相等向量的模相等.3、关于零向量的说法正确的是____________ ①零向量没有方向 ②零向量长度为0 ③零向量与任一向量平行 ④零向量的方向任意4、如图,四边形ABCD 与ABDE 都是平行四边形 (1) 写出与向量相等的向量__________________ (2) 写出与向量共线的向量__________________ (3)23=,则向量的长度______________ 江苏省泰兴中学高一数学作业(52)班级 姓名 得分1、下列说法中正确的是___________.①若||||a b >r r ,则a b >r r ; ②若||||a b =r r,则a b =r r ;③若a b =r r ,则//a b r r ; ④若a b ≠r r ,则a r 与b r不是共线向量.2、下面给出的五个命题:(1)单位向量都相等;(2)若=则=且//AB CD ;(3)若b a =且c b =,则c a =;(4)若//a b r r ,//b c r r ,则//a c r r;(5)若四边形ABCD 是平行四边形,则CD AB =. 其中真命题有 3、如图,ABC ∆和111C B A ∆是在各边的31处相交的两个全等正三角形,设正ABC ∆的边长是a ,图中列出了长度均为3a的若干个向量,则 (1)与向量相等的向量是(2)与向量GH 共线且模相等的向量有_________个CBCB1A1(3)与向量平行且模相等的向量有________个4、若e r 是a r 方向上的单位向量,则||aa rr 与e r 的方向 长度 .5、在直角坐标系中,已知||2OA =u u u r,那么点A 构成的图形是_____________.6、给出以下5个条件:①=;②a b =r r ;③与的方向相反;④||0a =r 或||0b =r;⑤与都是单位向量,其中能使与共线成立的是 .7、如图,O 为正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形.在图中所示的向量中:(1) 分别写出与,AO BO u u u r u u u r相等的向量;(2) 写出与AO u u u r共线的向量; (3) 写出与AO u u u r的模相等的向量; (4) 向量AO u u u r 与CO uuu r是否相等?8、已知飞机从甲地按北偏东30°的方向飞行2000km 到达乙地,再从乙地按南偏东 30°的方向飞行2000km到达丙地,再从丙地按西南方向飞行km 到达丁地,问丁地在甲地的什么方向?丁地距甲地多远?FE方格纸中的格点为起点和终点的所有向量中,有多少种大小不同的模?有9、如图,以13多少种不同的方向?。
高中数学2.1 向量的概念及表示互动课堂学案苏教版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学2.1 向量的概念及表示互动课堂学案苏教版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学2.1 向量的概念及表示互动课堂学案苏教版必修4的全部内容。
高中数学 2.1 向量的概念及表示互动课堂学案苏教版必修4疏导引导1.位移的概念在物理学中,研究物体在平面内的位置和运动规律时,一般忽略它的大小,把它看作是一个质点,用点表示它在平面的位置.一个质点从点A运动到A′,如果我们不考虑它的运动路线,只考虑点A′相对A的“方向”和“直线"距离,我们说质点在平面上作了一次位移,因此位移被“方向”与“距离"唯一确定,位移只表示位置的变化,起、终点间的位置关系,而与质点实际运动的路线无关.特别提示:从两个不同点出发的位移,只要方向相同,距离相等,我们可将它们看成是相同的位移或相等的位移。
2.向量的概念及表示(1)向量的概念在高中阶段,我们暂且把具有大小和方向的量叫做向量,更具体一些,向量可以理解为“一个位移”或表达“一个点相对于另一点的位置”的量.有些向量不仅有大小和方向,而且还有作用点.例如,力就是既有大小,又有方向,并且还有作用点的向量。
有些向量只有大小与方向;而无特定的位置.例如,位移、速度等.通常将后一种向量叫做自由向量.以后无特殊说明,我们所提到的向量,都是自由向量,即我们高中阶段所研究的向量只有大小、方向两个要素,如果两个向量的大小、方向都相同,则说这两个向量相等。
疑难疏引由于向量是具有大小和方向的量,所以向量不能比较大小.这是向量与数量的不同之处。
第 1 课时:§2.1 向量的概念及表示【三维目标】:一、知识与技能1.了解向量的实际背景,会用字母表示向量,理解向量的几何表示;2.理解向量的概念,掌握向量的二要素(长度、方向);注意向量的特点:可以平行移动(长度、方向确定,起点不确定)。
3.理解零向量、单位向量、平行向量、共线向量、相等向量、相反向量等概念4.通过教师指导发现知识,培养学生抽象概括能力和逻辑思维能力;通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.二、过程与方法1.通过实例,引导学生了解向量的实际背景,让学生认识到向量在刻画数学问题和物理问题中的作用,帮助学生理解平面向量与向量相等的含义以及向量的几何表示;2.通过师生互动、交流与学习,培养学生探求新知识的学习品质。
3.通过讲解例题,指导学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题.三、情感、态度与价值观1. 通过向量(包含大小、方向)概念的学习,感知数学美;2.向量的方向包含正反两个方面,正反关系的对照培养学生辩证唯物主义思维.【教学重点与难点】:重点:向量、相等向量、共线向量的概念难点:向量概念的理解及向量的几何表示.【学法与教学用具】:1. 学法:(1)自主性学习+探究式学习法;(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.2.教法:采用提出问题,引导学生通过观察,类比,归纳,抽象的方式形成概念,结合几何直观引导启发学生去理解概念,不断创设问题情景,激发学生探究。
3.教学用具:多媒体、实物投影仪、尺规.【授课类型】:新授课【课时安排】:1课时【教学思路】:一、创设情景,揭示课题【问题1】:下列物理量中,哪些量分别与位移和距离这两个量类似:(1)物体在重力作用下发生位移,重力所做的功;(2)物体所受重力;(3)物体的质量为a千克;(4)1月1日的4级偏南风的风速。
向量的概念及表示二、重难点提示重点:向量的概念、相等向量的概念、向量的几何表示。
难点:向量的概念和共线向量的概念。
一、向量及相关概念(1)向量:既有大小,又有方向的量叫向量,其中向量的大小称为向量的模(也就是用来表示有向线段的长度)。
注意:向量与数量的区别向量有大小有方向,数量只有大小没有方向。
故长度能比较大小,而向量不能说哪个大哪个小,只能说相等还是不相等。
(2)零向量:长度为0的向量叫做零向量,记做0。
(3)单位向量:长度等于1个单位长度的向量叫做单位向量。
(4)相等向量:长度相等且方向相同的向量叫做相等向量。
(5)相反向量:长度相等且方向相反的向量叫做相反向量。
(6)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量。
规定零向量与任一向量平行。
【要点诠释】两个向量共线,不一定相等;而两个向量相等,则一定共线。
向量“共线”的含义不是平面几何里的“共线” 的含义。
平面几何里的三点共线与两个向量共线不同:首先共线向量不考虑起点,其次明确共线向量可分为以下五种情况:(1)方向相同、模相等;(2)方向相同、模不等;(3)方向相反、模相等;(4)方向相反、模不等;(5)零向量和任一向量共线。
二、向量的表示(1)几何法:用有向线段来表示,即用有向线段的起点、终点来表示,如AB用AB表示。
(2)整体法:用一个小写英文字母来表示,如a,b,c等,注意此时手写(a)与书写体a不一样。
(3)坐标法:用坐标来表示向量(以后学习)。
【易错点】注意:1.零向量的手写体为0,书写体用黑体字0表示。
2. 如果有向线段AB表示一个向量,通常我们就说向量AB,但有向线段只是向量的表示,并不是说向量就是有向线段。
3. 共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,当然向量所在的直线可以平行,也可以重合。
示例:四边形ABCD满足=,则四边形ABCD的形状是________。
思路分析:根据相等向量的定义可得。
2.1 向量的概念及表示课堂导学三点剖析1.向量、相等向量、共线向量的概念【例1】判断下列各命题的真假.(1)向量的长度与向量的长度相等;(2)向量a与向量b平行,且a与b方向相同或相反;(3)两个有共同起点而且相等的向量,终点相同;(4)两个有共同终点的向量,一定是共线向量;(5)与CD共线,则点A、B、C、D必在同一条直线上;(6)有向线段就是向量,向量就是有向线段.思路分析:考查向量的基本概念及表示.解:(1)真命题.与互为相反向量.(2)假命题.若a、b中有一个为零向量时,其方向是不确定的.(3)真命题.(4)假命题.终点相同并不能说明这两个向量的方向相同或相反.(5)假命题.共线向量所在的直线可以重合也可以平行.(6)假命题.向量是用有向线段来表示的,但并不是有向线段.温馨提示对于零向量它比较特殊,它与任一向量平行.解题时加以注意.2.共线向量(平行向量)的概念理解【例2】如右图D、E、F分别是等腰Rt△ABC各边中点,∠B AC=90°.(1)写出图中与、长度相等的向量;(2)分别写出图中与向量、共线的向量.思路分析:长度相等的向量包括相等向量、相反向量以及模相等的所有向量.共线与否只看方向不看大小.解:(1)与长度相等的向量有、FC、、、.与长度相等的向量有CE、EB.(2)与共线的向量有、、.与共线的向量有,,.温馨提示共线向量有以下四种情况:方向相同且模相等;方向相同且模不等;方向相反且模相等;方向相反且模不等.这样,也就找到了共线向量与相等向量的关系,即共线向量不一定是相等向量,而相等向量一定是共线向量.3.向量的模与零向量【例3】下列四个命题,其中正确命题的个数是()①若|a|=0,则a=0 ②若|a|=|b|,则a=b或a=-b③若a∥b,则|a|=|b| ④若a=0,则-a=0A.1B.2C.3D.4思路分析:考查零向量与向量的模的概念.解:分清0与0的区别,知①错误;两个向量模相等,它们有无数种位置关系,故②不正确;两向量平行模不一定相等,故③错误.④正确.答案:A温馨提示①容易忽略0与0的区别;②误认为模相等时向量相等,把向量的模同实数的绝对值等同起来.【例4】给出下列命题,其中正确命题的个数是()①零向量是唯一没有方向的向量②平面内的单位向量有且仅有一个③a与b共线,b与c是平行向量,则a与c是方向相同的向量④相等的向量必是共线向量A.1个B.2个C.3个D.4个解析:①零向量方向任意.②平面内的单位向量有无数个.③a与c方向可能相反.答案:A各个击破类题演练1如图B、C是线段AD的三等分点,分别以图中各点为起点和终点最多可以写出多少个互不相等的非零向量?思路分析:大小相等、方向相同的向量是相等的.只需从大小和方向两方面思考即可.解:可设AD的长度为3,那么长度为1的向量有6个,其中=BC=CD,=CB=DC;CA ;长度为3的向量有2个,所以最多可长度为2的向量有4个,其中AC=BD,DB以写出6个互不相等的向量.变式提升1(1)如图,D、E、F分别是正△ABC的各边中点,则在以A、B、C、D、E、F六个点中任意两点为起点与终点的向量中,找出与向量DE平行的向量.解:与向量平行的向量有7个,分别是、、、、、、. (2)判断下列命题的真假,并注意体会它们之间的联系与不同.①若a∥b,则a=b.( )②若|a|=|b|,则a=b.()③若|a|=|b|,则a∥b.()④若a=b,则|a|=|b|.( )答案:(1)假命题;(2)假命题;(3)假命题;(4)真命题.类题演练2不相等的两个向量a和b,有可能是平行向量吗?若不可能,请说明理由;若有可能,请把各种可能的情形一一列出.解:不相等的两个向量有可能平行.有如下三种情况:情况1:两个向量a和b中有一个是零向量而另一个是非零向量;情况2:两个向量a和b都为非零向量,且方向相同;情况3:两个向量a和b都为非零向量,且方向相反.变式提升2判断下列命题是否正确.(1)若a∥b,则a与b的方向相同或相反;(2)共线的向量.若起点不同,则终点一定不同.解:(1)错.若a、b中有一零向量,其方向不定.(2)错.如图,与共线,虽起点不同,但终点却相同.类题演练3下列命题中,正确的是()A.|a|=|b|⇒a=bB.|a|>|b|⇒a>bC.a=b⇒a∥bD.|a|=0⇒a=0 解法1:(直接法)∵如果两个向量相等,则这两个向量必定平行.∴应选C.解法2:(排除法)由向量的定义知:向量既有大小,也有方向,由向量具有方向性可排除A、B,零向量,数字0是两个不同的概念,零向量是不等于数字0的.∴应排除D,∴应选C.答案:C变式提升3根据图形回答下列问题.(1)写出与EF共线的向量;(2)写出与的模大小相等的向量;(3)写出与相等的向量.思路分析:利用三角形中位线定理解决线段的平行和相等问题,再将线段的平行、相等转化为共线的向量、相等的向量.解:(1)∵E、F 分别是AC 、AB 的中点,∴EF 21BC. 又∵D 是BC 的中点, ∴与向量共线的向量有:,,,DC ,CD ,BC ,CB .(2)与EF 模相等的向量有:FE ,BD ,DB ,DC ,CD .(3)与相等的向量有:,.温馨提示零向量在共线向量问题中是一个特别的对象,应按照平行向量的补充规定来判断;考查向量应考查其大小和方向,二者缺一不可,对于一个向量只要不改变其大小与方向是可以任意平行移动的,即我们研究的向量是自由向量;平行向量与向量的模无关,而方向包含相同和相反两种情形.。
§2.1 向量的概念及表示教学目标:1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的2.模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分3.平行向量、相等向量和共线向量.4.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.5.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:(1)向量概念的引入,会表示向量.(2)理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,教学难点:(1)“数”与“形”的结合思想(2)平行向量、相等向量和共线向量的区别和联系.学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.教具:多媒体,尺规一、问题情景:(1)湖面上有三个景点O,A,B,(如图)一游艇将游客从景点O送至景点A,半小时后,游艇再将游客送至景点B.从景点O到景点A有一个位移,从景点A到景点B也有一个位移。
思考:位移和距离这两个量有什么不同?(位移既有大小又有方向,距离只有大小没有方向)(2)据报道:我国用来发射“神舟六号”宇宙飞船推力约为2万牛,每个航天员的质量约为65kg,火箭进入轨道后的速度约为708km/s。
上述力、质量、速度这些在生产生活中常见的量我们如何用数学模型来刻画呢?思考:上述的力、质量、速度三个量有什么区别?AB 二、建构数学: 1.向量的概念:既有大小又有方向的量叫向量 (例:位移、力、速度、加速度等) 注意:数量只有大小,是一个代数量,可以进 行代数运算、比较大小;(例: 距离、身高、时间、质量等)而向量有方向与大小双重性,不能比较大小。
2.向量的表示方法: ①几何表示法:有向线段.有向线段------具有确定方向的线段. 有向线段的三要素:起点、方向、长度 ②代数表示法:字母i)用有向线段的起点与终点字母来表示 ii)用小写的字母来表示 3.两种特殊向量零向量:长度为 0 的向量。
2016-2017学年高中数学第2章平面向量2.1 向量的概念及表示学案苏教版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第2章平面向量2.1 向量的概念及表示学案苏教版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第2章平面向量2.1 向量的概念及表示学案苏教版必修4的全部内容。
2.1 向量的概念及表示1.了解向量的实际背景,理解平面向量的概念.(重点)2.理解零向量、单位向量、相等向量、共线(平行)向量、相反向量的含义.(重点、难点) 3.理解向量的几何表示.(重点)[基础·初探]教材整理1 向量的定义及表示阅读教材P59图2。
1.2以上部分内容,完成下列问题.定义既有大小又有方向的量称为向量表示方法(1)几何表示:向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向,以A为起点、B为终点的向量记为错误!;(2)字母表示:用小写字母a,b,c表示模向量错误!的大小称为向量的长度(或称为模),记作|错误!|1.判断(正确的打“√”,错误的打“×”)(1)有向线段就是向量.()(2)向量就是有向线段.( )(3)有向线段可以用来表示向量.()【答案】(1)×(2)×(3)√2.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有________(填序号).【解析】一个量是不是向量,就是看它是否同时具备向量的两个要素:大小和方向.由于速度、位移、力、加速度都是由大小和方向确定的,所以是向量;而质量、路程、密度、功只有大小而没有方向,所以不是向量.【答案】①⑥⑦⑧教材整理2 向量的有关概念及其表示阅读教材P59图2。
向量的概念及其表示
教学目标:
1、了解向量的实际背景,会用字母表示向量,理解向量的几何表示、向量与数量、向量与有向线段的区别.
2、理解零向量、单位向量、平行向量、共线向量、相等向量、相反向量等概念,会辨识图形中这些相关概念.
3、培养用类比的方法研究向量,获得研究数学新问题的基本思路.
4、让学生感受向量的概念方法源于现实世界,养学生认识客观事物的数学本质的能力,激发学生学习数学的热情,培养学生学习数学的兴趣.
教学重、难点:向量、相等向量、共线向量的概念及向量的几何表示.
教学过程
一、问题情境
由于大陆和台湾没有直航,因此2006年春节探亲,乘飞机要先从台北到香港,再从香港到上海,这里发生了两次位移.
(1)在图中标出两个位移.
(2)请说出位移和距离的异同.
二、自主学习
阅读课本第59至60页,回答下列问题:
(1)什么是向量?
(2)怎么表示向量?
(3)什么是向量的模?
(4)有哪些特殊向量?
三、建构数学
1.向量的概念及表示.
(1)向量的定义:
(2)向量的表示:
(3)向量的大小及表示:
(4)零向量:
(5)单位向量:
2.向量的关系.
(1)平行向量
(2)相等向量
(3)共线向量
(4)相反向量
四、数学运用
例1、判断下列命题是否正确,并说明理由.
(1)若b a ≠,则a 一定不与b 共线;
(2)若=,则D C B A ,,,四点是平行四边形的四个顶点;
(3)在平行四边形ABCD 中,一定有DC AB =;
(4)若向量与任一向量平行,则=;
(5)若,,c b b a ==则c a =;
(6)若,//,//则//.
例2、已知O 为正六边形ABCDEF 的中心,在图中所标出的向量中:
(1)试找出与共线的向量;
(2)确定与相等的向量;
(3)与相等吗?
例3、在图中的4×5方格纸中有一个向量AB ,分别以图中的格点为起点和终点作向量,其中与AB 相等的向量有多少个?与长度相等的共线向量有多少个(除外)?
五、当堂巩固
1、如图,在△ABC 中,若DE ∥BC ,则图中所示向量中是共线向量的有
________.
2、在四边形ABCD 中,AB →∥CD →且|AB →|≠|CD →|,则四边形ABCD 的形状是________.
3、如图所示,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中.
(1)写出与AF →、AE →相等的向量;
(2)写出与AD →模相等的向量.
六、回顾小结
1、向量的概念:既有大小又有方向的量称为向量.
2、向量的几何表示:常用一条有向线段来表示.
3、两种特殊的向量:零向量,单位向量.
4、向量间关系:平行向量(共线向量)、相等向量、相反向量.
七、布置作业
课本第61至62页习题2.1.
B
A。