解三角形和数列等差数列
- 格式:doc
- 大小:131.00 KB
- 文档页数:2
杨辉三角与等差数列的关系杨辉三角和等差数列之间存在着一定的关系。
下面我将按照要求逐段解释这个问题。
1. 杨辉三角是一个由数字构成的三角形,起始数字为1,每个数字是其位于上方两个数字之和。
例如,第一行只有一个数字1,第二行有两个数字1,第三行有三个数字1,和两个2,第四行有四个数字1,和三个3,和两个4,以此类推。
这种构造方式形成了一种特殊的数字规律。
2. 等差数列是由一组数字组成的序列,其中每个数字与前一个数字的差值都是相等的。
例如,1, 3, 5, 7, 9就是一个等差数列,其中差值为2。
等差数列可以用一个公式来表示,即通项公式an = a1 + (n-1)d,其中an表示第n个数字,a1表示第一个数字,d表示公差(等差数列中相邻两个数字的差值)。
3. 杨辉三角中的每一行都可以看作是一个等差数列。
事实上,每一行的数字之间的差值是相等的。
这个差值就是等差数列中的公差。
例如,第三行的数字是1, 2, 1,可以看出这是一个等差数列,公差为1。
同样地,第四行的数字是1, 3, 3, 1,也可以看出这是一个等差数列,公差同样为1。
4. 进一步地,我们可以观察到杨辉三角中的每一行的首尾数字都是1,这可以看作是等差数列的首项和末项。
而中间的数字则是等差数列的中间项。
例如,第四行的数字是1, 3, 3, 1,可以看作是等差数列1, 3, 3, 1的首项、中间项、末项。
5. 另外,我们还可以发现杨辉三角中的每一行的数字个数与行数是相等的。
这也符合等差数列的性质,等差数列的项数与最后一项和首项之差再加1相等。
例如,第四行的数字个数是4,与行数相等。
综上所述,杨辉三角中的每一行可以看作是一个等差数列,其中数字之间的差值是相等的,首尾数字是等差数列的首项和末项,中间的数字是等差数列的中间项。
同时,每一行的数字个数与行数是相等的。
这种关系使得杨辉三角和等差数列在结构上有一定的相似性。
第十二章 解三角形及数列一.重点知识1.解三角形重点知识:1、正弦定理:外接圆的半径)是ABC (2sin sin sin ∆===R R CcB b A a 2、余弦定理:Cab b a c B ac c a b Abc c b a cos 2cos 2cos 2222222222-+=-+=-+=3、三角形面积公式:B ac A bc C ab S ABC sin 21sin 21sin 21===∆2.数列重点知识1.在数列{a n }中,前n 项和S n 与通项a n 的关系为:⎩⎨⎧∈≥-===-)N n ,2( )1(111n S S n S a a n n n2.等差与等比数列的定义、通项公式、求和公式重要性质比较3.知识梳理(数列求和的方法)1.公式法:1)等差数列求和公式;2)等比数列求和公式;3)可转化为等差、等比的数列;2.分组求和法:把数列的每一项分成多个项或把数列的项重新组合,使其转化成等差数列或等比数列,然后由等差、等比数列求和公式求解。
3.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
如:1)111111()n n n na a d a a++=-⋅;21d=。
常见裂项公式:(1)111(1)1n n n n++=-;(2)1111()()n n k k n n k++=-;4.错位相减法:适用于差比数列(如果{}n a等差,{}n b等比,那么{}n na b叫做差比数列)即把每一项都乘以{}n b的公比q,向后错一项,再对应同次项相减,转化为等比数列求和.二.课前自测1.在△ABC中,角A,B,C的对边分别为a,b,c,已知1=a,1=b,︒=120C,则=c. 2.在ABC∆中,已知35513sin B,cos A==,则cosC=.3.已知锐角△ABC的面积为33,BC=4,CA=3,则角C的大小为________.4.在中,若,则最大角的余弦值等于_______________.5、已知数列{a n}的前n项和S n=n2+3n+1,求通项.6、数列{}n a适合:11a=,1na+22nnaa=+,写出前四项并写出其通项公式;7、在等差数列{a n}中,已知a15=10,a45=90,求a608、在等比数列{}n a中,若1232a a a=,23416a a a=, 则公比q=ABC∆6:2:1::=cba三.典例解析【例1】在∆ABC中,已知=ac 060=B ,求b 及A ;【变式训练1】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2=c ,6=b ,︒=120B 。
数列和解三角形大题专练1.(2023•济宁一模)已知数列{a n}的前n项和为S n,且满足:a1=1,na n+1=2S n+n(n∈N*).(1)求证:数列为常数列;(2)设,求T n.2.(2023•江宁区一模)设S n为数列{a n}的前n项和,a2=7,对任意的自然数n,恒有.(1)求数列{a n}的通项公式;(2)若集合A={x|x=a n,n∈N*},B={x|x=3n,n∈N*},将集合A∪B中的所有元素按从小到大的顺序排列构成数列{b n},计数列{b n}的前n项和为T n.求T102的值.3.(2023•汕头一模)已知T n为正项数列{a n}的前n项的乘积,且a1=3,=.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求[S2023]([x]表示不超过x的最大整数).4.(2023•广州模拟)已知数列{a n}的前n项和为S n,且.(1)求a,并证明数列是等差数列;1(2)若,求正整数k的所有取值.5.(2023•广东模拟)已知数列{a n}的前n项和为S n,且.(1)求数列{a n}的通项公式;(2)若b n=na n,且数列{b n}的前n项和为T n,求证:当n≥3时,.6.(2023•宁波模拟)y=f(x)的图象为自原点出发的一条折线,当n-1≤y≤n(n∈N*)时,该函数图象是斜率为b n(b≠0)的一条线段.已知{a n}由定义.(1)用b表示a1,a2;(2)若b=2,记T n=a1+2a2+⋯+na n,求证:.7.(2023•邵阳二模)已知S n为数列{a n}的前n项和,a1=2,S n+1=S n+4a n-3,记b n=log2(a n-1)+3.(1)求数列{b n}的通项公式;(2)已知,记数列{c n}的前n项和为T n,求证:.8.(2022秋•慈溪市期末)记x i=x1+x2+x3+⋯+x n,,x i=x1×x2×x3×⋯×x n,n∈N*,已知数列{a n}和{b n}分别满足:a i=n2,b i=()n2+n.(1)求{a n},{b n}的通项公式;(2)求a i b i.9.(2023•南平模拟)已知数列{a n}的前n项和为S n,,a2=3.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求T n的取值范围.10.(2023•杭州一模)已知数列{a n}的前n项和为S n,且S n+2=2a n.(1)求a2及数列{a n}的通项公式;(2)在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,求数列{}的前n项和T n.11.(2023•南通模拟)设数列{a n}的前n项和为S n,已知S n=2a n-n+1.(1)证明:数列{a n+1}是等比数列;(2)若数列{b n}满足b1=a2,,求数列{b n}的前14项的和.12.(2023•杭州一模)已知△ABC中角A、B、C所对的边分别为a、b、c,且满足2c sin A cos B+2b sin A cos C=a,c>a.(1)求角A;(2)若b=2,BC边上中线AD=,求△ABC的面积.13.(2023•宁波模拟)记锐角△ABC的内角为A,B,C,已知sin2A=sin B sin C.(1)求角A的最大值;(2)当角A取得最大值时,求2cos B+cos C的取值范围.14.(2022秋•温州期末)记△ABC的内角A,B,C的对边分别为a,b,c,已知=1.(1)求B;(2)若,△ABC内切圆的面积为π,求△ABC的面积.15.(2023•龙岩模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,.(1)求角B;(2)若D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,求sinθ的值.16.(2023•湖北模拟)在△ABC中,记角A,B,C的对边分别为a,b,c,已知,且c= 2,点D在线段BC上.(1)若,求AD的长;(2)若的面积为,求的值.17.(2023•南通模拟)如图,在平面四边形ABCD中,AB=1,,CD=2,.(1)若BC⊥CD,求sin∠ADC;(2)记△ABD与△BCD的面积分别记为S和S2,求的最大值.118.(2023•广州模拟)记△ABC的内角A,B,C的对边分别为a,b,c.已知a.(1)证明:sin A+sin C=2sin B;(2)若,求△ABC的面积.19.(2023•平湖市模拟)已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角A的大小;(2)设AD是BC边上的高,且AD=2,求△ABC面积的最小值.20.(2023•烟台一模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且c-2b cos A=b.(1)求证:A=2B;(2)若A的角平分线交BC于D,且c=2,求△ABD面积的取值范围.参考答案与试题解析一.解答题(共20小题)1.(2023•济宁一模)已知数列{a n}的前n项和为S n,且满足:a1=1,na n+1=2S n+n(n∈N*).(1)求证:数列为常数列;(2)设,求T n.【解答】解:(1)证明:∵na n+1=2S n+n,+n-1,n≥2,∴(n-1)a n=2S n-1两式相减得:na n+1-(n-1)a n=2a n+1,∴na n+1=(n+1)a n+1,+1)=(n+1)(a n+1),∴n(a n+1∴,(n≥2),又a2=2S1+1=2a1+1=3,∴,上式也成立,∴数列为常数列;(2)由(1)得,∴a n=2n-1,∴=,∴,两式相减得=,∴.2.(2023•江宁区一模)设S n为数列{a n}的前n项和,a2=7,对任意的自然数n,恒有.(1)求数列{a n}的通项公式;(2)若集合A={x|x=a n,n∈N*},B={x|x=3n,n∈N*},将集合A∪B中的所有元素按从小到大的顺序排列构成数列{b n},计数列{b n}的前n项和为T n.求T102的值.【解答】解:(1)a2=7,对任意的自然数n,恒有,可得n=1时,a1=2a1-3,解得a1=3;n=2时,2a2=2S2-6=2(a1+a2)-6,解得a1=3;n=3时,3a3=2S3-9=2(a1+a2+a3)-9,解得a3=11.当n≥2时,na n=2S n-3n变为(n-1)a n-1=2S n-1-3(n-1),两式相减可得(n-2)a n=(n-1)a n-1-3,当n≥3时,上式变为(n-3)a n-1=(n-2)a n-2-3,上面两式相减可得a n+a n-2=2a n-1,且a1+a3=2a2,所以数列{a n}是首项为3,公差为4的等差数列,可得a n=3+4(n-1)=4n-1;(2)集合A={x|x=4n-1,n∈N*},B={x|x=3n,n∈N*},集合A∪B中的所有元素的最小值为3,且3,27,243三个元素是{b n}中前102项中的元素,且是A∩B中的元素,所以T102=(a1+a2+a3+...+a100)+9+81=×100×(3+400-1)+90=20190.3.(2023•汕头一模)已知T n为正项数列{a n}的前n项的乘积,且a1=3,=.(1)求数列{a n}的通项公式;(2)设b n=,数列{b n}的前n项和为S n,求[S2023]([x]表示不超过x的最大整数).【解答】解:(1)T n为正项数列{a n}的前n项的乘积,且a1=3,=,可得n≥2时,==,即为=,两边取3为底的对数,可得(n-1)log3a n=n log3a n-1,即为==...==1,所以log3a n=n,则a n=3n,对n=1也成立,所以a n=3n,n∈N*;(2)b n===1-,数列{b n}的前n项和为S n=n-(++...+)>n-2(++...+)=n-1+,所以S2023>2023-1+=2022+>2022,又S2023=2023-(+...+)<2023,所以[S2023]=2022.4.(2023•广州模拟)已知数列{a n}的前n项和为S n,且.(1)求a1,并证明数列是等差数列;(2)若,求正整数k的所有取值.【解答】解:(1)证明:∵①,∴当n=1时,S1+2=2a1+1,解得a1=1,当n≥2时,S n-1+2n-1=2a n-1+1②,由①-②得a n+2n-1=2a n-2a n-1,即a n-2a n-1=2n-1,∴-=,又,∴数列{}是首项为,公差为的等差数列;(2)由(1)得=+(n-1)=n,即a n=n•2n-1,∴S n=1+2×2+3×22+...+n•2n-1③,2S n=2+2×22+3×23+...+n•2n④,由③-④得-S n=1+2+22+...+2n-1-n•2n=-n•2n=(1-n)2n-1,∴S n=(n-1)•2n+1,则S2k=(2k-1)•22k+1,2=k2•22k-1,∵,∴k2•22k-1<(2k-1)•22k+1,即k2-4k+2-<0,令f(x)=x2-4x+2-,∵y=x2-4x+2=(x-2)2-2在(2,+∞)上单调递减,y=-在(2,+∞)上单调递减,∴f(x)=x2-4x+2-在(2,+∞)上单调递减,又f(1)=1-4+2-=-<0,f(2)=4-8+2-=-<0,f(3)=9-12+2-=-<0,f(4)=2->0,要使,即f(x)<0,故正整数k的所有取值为1,2,3.5.(2023•广东模拟)已知数列{a n}的前n项和为S n,且.(1)求数列{a n}的通项公式;(2)若b n=na n,且数列{b n}的前n项和为T n,求证:当n≥3时,.【解答】解:(1)∵,∴n≥2时,S1+2S2+⋯+(n-1)S n-1=(n-1)3,相减可得:nS n=n3-(n-1)3,可得S n=3n-3+,n=1时,a1=S1=1.n≥2时,a n=S n-S n-1=3n-3+-[3(n-1)-3+]=3+-,n=1时,上式不满足,∴a n=.(2)证明:n=1时,b1=1,n≥2时,b n=na n=3n+1-=3n-,当n≥3时,数列{b n}的前n项和为T n=1+6-1+3×(3+4+⋯+n)-(++⋯+)=6+3×-(++⋯+)=-3-(++⋯+),要证明当n≥3时,,即证明当n≥3时,1≤++⋯++,令f(n)=++⋯++-1,n=3时,f(3)=0成立,而f(n)单调递增,因此当n≥3时,1≤++⋯++成立,即当n≥3时,.6.(2023•宁波模拟)函数y=f(x)的图象为自原点出发的一条折线,当n-1≤y≤n(n∈N*)时,该函数图象是斜率为b n (b ≠0)的一条线段.已知数列{a n }由定义.(1)用b 表示a 1,a 2;(2)若b =2,记T n =a 1+2a 2+⋯+na n ,求证:.【解答】解:(1)由题意可得,,,解得:,;证明:(2)当b =2时,由,得,∴,则,∴T n =a 1+2a 2+⋯+na n =(1+2+...+n )-()=(),令P n =,则,∴==,∴,则>.7.(2023•邵阳二模)已知S n 为数列{a n }的前n 项和,a 1=2,S n +1=S n +4a n -3,记b n =log 2(a n -1)+3.(1)求数列{b n }的通项公式;(2)已知,记数列{c n }的前n 项和为T n ,求证:.【解答】解:(1)由S n +1=S n +4a n -3,可得S n +1-S n =4a n -3,即a n +1=4a n -3,即有a n +1-1=4(a n -1),可得a n -1=(a 1-1)•4n -1=4n -1,则b n =log 2(a n -1)+3=log 24n -1,+3=2n +1;(2)证明:=(-1)n +1•=(-1)n +1•(+),当n为偶数时,T n=(+)-(+)+...-(+)=(-),由{-}在n∈N*上递增,可得T n≥T2=(-)=;当nn为奇数时,T n=(+)-(+)+...+(+)=(+),由>0,可得T n>>.所以.8.(2022秋•慈溪市期末)记x i=x1+x2+x3+⋯+x n,,x i=x1×x2×x3×⋯×x n,n∈N*,已知数列{a n}和{b n}分别满足:a i=n2,b i=()n2+n.(1)求{a n},{b n}的通项公式;(2)求a i b i.【解答】解:(1)∵a i=n2,b i=()n2+n,∴n≥2时,a n=n2-(n-1)2=2n-1,b n===3n.n=1时,a1=1,b1=3,满足上式,∴a n=2n-1,b n=3n.(2)a n b n=(2n-1)3n.∴a i b i=T n=3+3×32+5×33+⋯+(2n-1)3n,3T n=32+3×33+⋯+(2n-3)3n+(2n-1)3n+1,相减可得:-2T n=3+2(32+33+⋯+3n)-(2n-1)3n+1=3+2×-(2n-1)3n+1,化为:T n=(n-1)3n+1+3,即a i b i=(n-1)3n+1+3.9.(2023•南平模拟)已知数列{a n}的前n项和为S n,,a2=3.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求T n的取值范围.【解答】解:(1)因为a n+1=S n+1-S n,所以由,得,所以,所以,即.在中,令n=1,得,所以a1=1.所以数列是首项为1,公差为1的等差数列,所以,即:.当n≥2时,,a1=1也适合上式,所以数列{a n}的通项公式为a n=2n-1.(2)由(1)知,,所以,因为b n>0,所以T n随着n的增大而增大,所以,又显然,所以,即T n的取值范围为.10.(2023•杭州一模)已知数列{a n}的前n项和为S n,且S n+2=2a n.(1)求a及数列{a n}的通项公式;2(2)在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,求数列{}的前n项和T n.【解答】解:(1)由题意,当n=1时,S1+2=a1+2=2a1,解得a1=2,当n=2时,S2+2=2a2,即a1+a2+2=2a2,解得a2=4,当n≥2时,由S n+2=2a n,可得S n-1+2=2a n-1,两式相减,可得a n=2a n-2a n-1,整理,得a n=2a n-1,∴数列{a n}是以2为首项,2为公比的等比数列,∴a n=2•2n-1=2n,n∈N*.(2)由(1)可得,,,在a n与a n+1之间插入n个数,使得这(n+2)个数依次组成公差为d的等差数列,则有a n+1-a n=(n+1)d n,∴,∴,∴T n=++•••+=+++•••+,,两式相减,可得T n=+++•••+-=1+-=-,∴T n=3-.11.(2023•南通模拟)设数列{a n}的前n项和为S n,已知S n=2a n-n+1.(1)证明:数列{a n+1}是等比数列;(2)若数列{b n}满足b1=a2,,求数列{b n}的前14项的和.【解答】解:(1)S n=2a n-n+1⋯①,则S n+1=2a n+1-(n+1)+1⋯②,②-①,得a n+1=2a n+1-2a n-1,即a n+1=2a n+1,∴a n+1+1=2(a n+1),即,令S n=2a n-n+1中n=1,得S1=a1=2a1-1+1,解得a1=0,则a1+1=1,∴{a n+1}是首项为1,公比为2的等比数列.(2)由(1)知,则,∴,且,∴当n为偶数时,,即,∴b1+b2+⋯+b14=b1+(b2+b3)+(b4+b5)+⋯+(b12+b13)+b14=1+21-1+23-1+⋯+211-1+212-1=.12.(2023•杭州一模)已知△ABC中角A、B、C所对的边分别为a、b、c,且满足2c sin A cos B+2b sin A cos C=a,c>a.(1)求角A;(2)若b=2,BC边上中线AD=,求△ABC的面积.【解答】解:(1)∵2c sin A cos B+2b sin A cos C=a,∴由正弦定理得2sin C sin A cos B+2sin B sin A cos C=3sin A,∵sin A>0,∴sin C cos B+sin B cos C=,∴sin(B+C)=,∵A+B+C=π,∴sin A=,∵c>a,∴;(2)∵,则,b=2,BC边上中线AD=,故,解得,∴.13.(2023•宁波模拟)记锐角△ABC的内角为A,B,C,已知sin2A=sin B sin C.(1)求角A的最大值;(2)当角A取得最大值时,求2cos B+cos C的取值范围.【解答】解:(1)∵sin2A=sin B sin C,∴在锐角△ABC中,由正弦定理得a2=bc,∴,∵0<A≤,故角A的最大值为;(2)由(1)得,则C=-B,则=,在锐角△ABC中,<B<,∴B+∈(,),∴sin(B+)∈(,),故2cos B+cos C的取值范围为(,).14.(2022秋•温州期末)记△ABC的内角A,B,C的对边分别为a,b,c,已知=1.(1)求B;(2)若,△ABC内切圆的面积为π,求△ABC的面积.【解答】解:(1)因为=1,∴b cos C+b sin C-a-c=0,根据正弦定理可得:sin B cos C+sin B sin C-sin A-sin C=0又A+B+C=π,∴sin B cos C+sin B sin C-sin(B+C)-sin C=0,∴sin B sin C-cos B sin C-sin C=0,又C∈(0,π),∴sin C>0,∴,∴,又B∈(0,π),∴,∴,∴;(2)∵△ABC内切圆的面积为π,所以内切圆半径r=1.由于,∴,①由余弦定理得,b2=(a+c)2-3ac,∴b2=48-3ac,②联立①②可得,即,解得或(舍去),∴.15.(2023•龙岩模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,.(1)求角B;(2)若D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,求sinθ的值.【解答】解:(1)△ABC中,,所以+=,由正弦定理得,=,因为sin(A+B)=sin(π-C)=sin C,所以=;又因为C∈(0,π),所以sin C≠0,所以sin B=cos B,即tan B=,又因为B∈(0,π),所以B=.(2)因为D是AC边上的点,且AD=3DC=3,∠A=∠ABD=θ,所以∠BDC=2θ,AD=BD=3,DC=1,AC=4,在△ABC中,由正弦定理得,=,所以BC==8sinθ,在△BDC中,由余弦定理得,BC2=BD2+CD2-2BD•CD cos2θ=10-6cos2θ,所以64sin2θ=10-6cos2θ,所以52sin2θ=4,解得sin2θ=,又因为θ∈(0,),所以sinθ=.16.(2023•湖北模拟)在△ABC中,记角A,B,C的对边分别为a,b,c,已知,且c= 2,点D在线段BC上.(1)若,求AD的长;(2)若的面积为,求的值.【解答】解:(1)由,得2sin B sin(A+)=sin A+sin C=sin A+sin A cos B+ cos A sin B,∴sin A sin B+sin B cos A=sin A+sin A cos B+cos A sin B,∴sin B-cos B=2sin(B-)=1,又B∈(0,π),∴B-=,∴B=,∵,∴∠ADB=,在△ABD中,由正弦定理得=,∴=,解得AD=;(2)设CD=t,则BD=2t,又S△ABC=3,∴×2×3t×=3,解得t=2,∴BC=3t=6,又AC===2,在△ABD中,由正弦定理可得=,∴sin∠BAD=2sin∠ADB,在△ACD中,由正弦定理可得=,∴sin∠CAD=sin∠ADC,∵sin∠ADB=sin(π-∠ADC)=sin∠ADC,∴==2.17.(2023•南通模拟)如图,在平面四边形ABCD中,AB=1,,CD=2,.(1)若BC⊥CD,求sin∠ADC;(2)记△ABD与△BCD的面积分别记为S和S2,求的最大值.1【解答】解:(1)∵BC⊥CD,∴,,,,,∴sin∠ADC=sin(∠BDC+∠ADB)=sin∠BDC cos∠ADB+cos∠BDC sin∠ADB=;(2)设∠BAD=α,∠BCD=β,∴,∴,∴①,==,当且仅当,时取最大值,综上,,的最大值是.18.(2023•广州模拟)记△ABC的内角A,B,C的对边分别为a,b,c.已知a.(1)证明:sin A+sin C=2sin B;(2)若,求△ABC的面积.【解答】证明:(1)∵a,∴,∴a(1+cos C)+c(1+cos A)=3b,∴由正弦定理可得,sin A(1+cos C)+sin C(1+cos A)=3sin B,∴sin A+sin A cos C+sin C+sin C cos A=3sin B,∴sin A+sin C+sin(A+C)=3sin B,∵A+B+C=π,∴sin A+sin C+sin B=3sin B,∴sin A+sin C=2sin B;(2)∵sin A+sin C=2sin B,∴a+c=2b,∵b=2,∴a+c=4①,∵,∴bc cos A=3,∴a2=b2+c2-2bc•cos A,即a2=4+c2-6,∴c2-a2=2,即(c-a)(c+a)=2,∴c-a=②,联立①②解得,a=,c=,∴,∴sin A=,∴S△ABC===.19.(2023•平湖市模拟)已知△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角A的大小;(2)设AD是BC边上的高,且AD=2,求△ABC面积的最小值.【解答】解:(1)左边=,右边=,由题意得⇒sin(B+C)+cos(B +C)=0⇒tan(B+C)=-1,即tan A=1,又因为0<A<π,所以;(2)由,由余弦定理得,,,当且仅当b=c 时取“等号”,而,故.20.(2023•烟台一模)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且c-2b cos A=b.(1)求证:A=2B;(2)若A的角平分线交BC于D,且c=2,求△ABD面积的取值范围.【解答】证明:(1)∵c-2b cos A=b,∴由正弦定理可得,sin C-2sin B cos A=sin B,∵A+B+C=π,∴sin(A+B)=sin C,∴sin(A+B)-2sin B cos A=sin A cos B+cos A sin B-2sin B cos A=sin B,∴sin(A-B)=sin B,∵△ABC为锐角三角形,∴A∈(0,),B∈(0,),∴A-B∈,∵y=sin x在(-,)上单调递增,∴A-B=B,即A=2B;(2)解:∵A=2B,∴在△ABD中,∠ABC=∠BAD,由正弦定理可得,=,∴AD=BD=,∴=,∵△ABC为锐角三角形,∴,解得,∴,∴△ABD面积的取值范围为().。
郑州树人中学2017-2018学年(上)第二次周考高二数学(文)命题范围:解三角形、数列(通项、求和)、不等式命题人:刘中阳一、选择题:(本大题共12小题,每小题5分,共60分,每小题只有一个选项符合题目要求)1.若1a <1b<0(a ,b ∈R ),则下列不等式恒成立的是(D) A .a <b B .a +b >ab C .|a |>|b |D .ab <b 2 2.在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( B ) A .(-∞,1) B .(1,+∞)C .(-1,+∞)D .(0,1) 3.设等比数列{a n }中,前n 项之和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9=( B )A .-18B.18C.578 D.558 4.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为(D )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形5.不等式组⎩⎪⎨⎪⎧ x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为( D )A .(0,3]B .[-1,1]C .(-∞,3]D .[3,+∞)6.已知a >1,则不等式x 2-(a +1)x +a <0的解集为( C )A .(a ,+∞)B .(-∞,1)C .(1,a )D .(-∞,1)∪(a ,+∞)7.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( B )A .5B .6C .7D .8 8.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧ x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 的值为( A ).A .12B .1C .2D .139.已知不等式ax 2-5x +b >0的解集为{x |-3<x <2},则不等式bx 2-5x +a >0的解集为( B )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -13<x <12B.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-13或x >12C .{x |-3<x <2}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >13 10.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6等于( C )A .31B .32C .63D .6411.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1)…的前n 项和为( D ) A .2n -1 B .n ·2n -n C .2n +1-n D .2n +1-2-n12.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( C ) A .3B.932 C.332 D .3 3二、填空题(本题共4个小题,每题5分,共20分)13.若x ,y 满足⎩⎪⎨⎪⎧ x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为_____2___.14.在等差数列{a n }中,S 10=100,S 100=10,则S 110=___-110_____.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a -c =0,则角B =___π3_____. 16.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为____1941____. 三、解答题(本题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知f (x )=x 2-⎝⎛⎭⎫a +1a x +1. (1)当a =12时,解不等式f (x )≤0;(2)若a >0,解关于x 的不等式f (x )≤0. 解 (1)当a =12时,有不等式f (x )=x 2-52x +1≤0,所以⎝⎛⎭⎫x -12(x -2)≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 12≤x ≤2. (2)因为不等式f (x )=⎝⎛⎭⎫x -1a (x -a )≤0,当0<a <1时,有1a >a ,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ a ≤x ≤1a ; 当a >1时,有1a <a ,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a ≤x ≤a ; 当a =1时,不等式的解集为{x |x =1}.18.(本小题满分12分)在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.19.(本小题满分12分)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1600x +2400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1600x +2400y 经过可行域的点P 时,直线z =1600x +2400y 在y 轴上的截距z 2400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小.20.(本小题满分12分)如图,在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C; (2)若AD =1,DC =22,求BD 和AC 的长. 解 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD , 所以AB =2AC .由正弦定理可得sin B sin C =AC AB =12. (2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2.在△ABD 和△ADC 中,由余弦定理,知AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB ,AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC .故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6,由(1)知AB =2AC ,所以AC =1.21.(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =3b sin A -a cos B .(1)求角B ;(2)若b =2,△ABC 的面积为3,求a ,c .解 (1)由a =3b sin A -a cos B 及正弦定理,得sin A =3sin B ·sin A -sin A ·cos B ,∵0<A <π,∴sin A >0,∴3sin B -cos B =1,即sin ⎝⎛⎭⎫B -π6=12.又∵0<B <π,∴-π6<B -π6<5π6,∴B =π3. (2)∵S =12ac sin B =3,∴ac =4,①又∵b 2=a 2+c 2-2ac cos B ,即a 2+c 2=8.②由①②联立解得a =c =2.22.(本小题满分12分)已知数列{a n }的首项a 1=23,a n +1=2a n a n +1,n =1,2,3,…. (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -1是等比数列;(2)求数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n . 解 (1)证明:因为a n +1=2a n a n +1,所以1a n +1=a n +12a n =12+12·1a n ,所以1a n +1-1=12⎝⎛⎭⎫1a n -1. 又a 1=23,所以1a 1-1=12,所以数列⎩⎨⎧⎭⎬⎫1a n -1是以12为首项,12为公比的等比数列. (2)由(1)知1a n -1=12·12n -1=12n ,即1a n =12n +1,所以n a n =n 2n +n . 设T n =12+222+323+…+n 2n ,①则12T n =122+223+…+n -12n +n 2n +1,② 由①-②得12T n =12+122+…+12n -n 2n +1=12⎝⎛⎭⎫1-12n 1-12-n 2n +1=1-12n -n 2n +1,所以T n =2-12n -1-n 2n , 又1+2+3+…+n =n (n +1)2.所以数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n =2-2+n 2n +n (n +1)2=n 2+n +42-n +22n .要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截成三种规格小钢板的块数如下表:每张钢板的面积,第一种1平方单位,第二种2平方单位,今需要A 、B 、C 三种规格的成品各12、15、27块,问各截这两种钢板多少张,可得到所需三种规格成品,且使所用钢板面积最小?解 设需截第一种钢板x 张,第二种钢板y 张,所用钢板面积为z 平方单位,则⎩⎪⎨⎪⎧ x +y ≥12,2x +y ≥15,x+3y ≥27,x ≥0,x ∈N ,y ≥0,y ∈N ,目标函数z =x +2y ,作出一组平行线x +2y =z ,作出不等式组表示的可行域.由⎩⎪⎨⎪⎧x +3y =27,x +y =12.解得x =92,y =152,点A ⎝⎛⎭⎫92,152不是可行区域内整点,在可行区域内的整点中,点(4,8)和(6,7)使目标函数取最小值20.答:符合题意要求的钢板截法有两种,第一种截法是截第一种钢板4张,第二种钢板8张.第二种截法是截第一种钢板6张,第二种钢板7张,两种方法都最少要截两种钢板20平方单位.设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n -2n (n -1)(n ∈N *).(1)求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n .求证:15≤T n <14. 证明 (1)当n ≥2时,a n =S n -S n -1=na n -(n -1)a n -1-4(n -1),∴a n -a n -1=4,∴数列{a n }是以1为首项,4为公差的等差数列.∴a n =4n -3,S n =12n (a 1+a n )=2n 2-n . (2)T n =1a 1a 2+1a 2a 3+…+1a n a n +1=11×5+15×9+19×13+…+1(4n -3)(4n +1)=14⎣⎢⎡ ⎝⎛⎭⎫1-15+⎝⎛⎭⎫15-19+⎝⎛⎭⎫19-113+…+⎝⎛ 14n -3⎦⎥⎤ ⎭⎫-14n +1=14⎝⎛⎭⎫1-14n +1<14. 又T n 为单调递增的,故T n ≥T 1=15, ∴15≤T n <14. 10.[2016·徐州高二检测](本小题满分10分)。
数列解三角形数列是数学中一个重要的概念,它是由一系列按照一定规律排列的数字组成的。
解三角形则是指根据已知条件推导出三角形中各边长和角度的过程。
本文将以数列和解三角形为主题,讨论它们的相关性和应用。
一、数列的定义与性质数列是由一系列按照一定规律排列的数字组成的序列。
数列中的每个数字被称为数列的项,用a_n表示第n个项。
数列可以是有限的,也可以是无限的。
数列有许多重要性质和特征,其中包括等差数列和等比数列。
等差数列是指数列中相邻两项之差始终相等的数列,通常用a, a+d, a+2d, ...来表示,其中a为首项,d为公差。
等比数列是指数列中相邻两项的比值始终相等的数列,通常用a, ar, ar^2, ...来表示,其中a为首项,r为公比。
二、数列的应用领域数列在许多领域中都有重要的应用。
在数学中,数列是数学归纳法的研究对象,通过研究数列的性质和规律,可以推导出各种数学定理和公式。
在物理学中,数列可以用来描述许多自然现象的规律。
比如,等差数列可以用来描述自由落体运动的位移变化,等比数列可以用来描述指数增长或衰减的现象。
在计算机科学中,数列被广泛应用于算法设计和数据结构的研究中。
比如,斐波那契数列是一种经典的数列,它在递归和动态规划算法中有着重要的应用。
三、解三角形的方法和技巧解三角形是根据已知条件确定三角形的各边长和角度的过程。
常见的解三角形方法包括正弦定理、余弦定理和正切定理。
正弦定理是指在任意三角形中,三条边的比值等于相应的正弦比,即a/sinA = b/sinB = c/sinC,其中a、b、c分别为三角形的边长,A、B、C分别为相应的角度。
余弦定理是指在任意三角形中,三条边的平方和等于另外两边的平方和减去它们的二倍乘积和相应的余弦值的乘积,即a^2 = b^2 + c^2 -2bc*cosA,其中a、b、c分别为三角形的边长,A为对应的夹角。
正切定理是指在任意三角形中,两条边的比值等于相应的正切比,即tanA = b/c,其中A为夹角,b、c分别为相应边长。
必修5第一章《解三角形》知识点归纳1. 高线定理:△ABC 中,a 边上的高B c C b h a sin sin ==2. 正弦定理:△ABC 中,A a sin =B b sin =Ccsin =2R ,推论c b a C B A ::sin :sin :sin = 3. 余弦定理:△ABC 中,a 2=b 2+c 2-2bc cos A ,推论 cos A =bcac b 2222-+4. 三角形的面积公式:△ABC 的面积C ab B ac A bc S sin 21sin 21sin 21===5. 解三角形的四种基本类型:(1)已知三边(SSS 型)----用余弦定理推论求三角(2)已知两边和它们的夹角(SAS 型)----用余弦定理求第三边(3)已知两角和任一边(AAS 型)----用内角和定理求第三角,用正弦定理求另两边 (4)已知两边和其中一边的对角(SSA 型)----用正弦定理求另一边的对角 注1:SSS 型,SAS 型,AAS 型至多有一解. 注2:SSA 型解情况复杂:若正弦值小于1,则用大边对大角判定角范围,可能一解或两解;若正弦值大于1,则无解.若已知角为锐角,则可能一解或两解;若已知角为钝角,则至多一解.注3:SSA 型也可以用余弦定理求第三边,通过一元二次方程解的情况判断三角形解的情况!!! 6. 应用举例:(1)求河两岸两点的水平距离(一点可达,另一点不可达). (2)求河对岸两点的水平距离(两点均不可达).(3)求底部不可达的建筑物的竖直高度(即两点的垂直距离)(注意取测量点的两种方法). (4)求航行距离与航向(方向角或方位角). 7. 常用方法:(1)边角混合式的处理方法!!!(2)韦达定理、降次公式、二倍角公式、和差角公式、辅助角公式的运用方法!!! (3)平面向量的数量积定义与坐标运算公式、两个向量夹角公式的运用方法!!!8. 其他有关结论:在△ABC 中, 下列结论也应熟记:B A B A <⇔<sin sinπ=+=⇔=B A B A B A 22222sin 2sin 或sin(A+B)=sinCcos(A+B) -cosCtan(A+B) -tanC ==2cos 2sinC B A =+ 2sin 2cos CB A =+ 12tan 2tan =+C B A tan tan tan tan tan tan A B C A B C ++=⋅⋅【典型题目】(学案)必修5第二章《数列》知识点归纳1. 等差数列与等比数列知识点类比:2. 等差数列与等比数列有关公式的推导方法:等差数列通项公式推导方法----累差法,等比数列通项公式推导方法----累商法;等差数列前n项和公式推导方法----倒序相加法,等比数列前n项和公式推导方法----乘公比错位相减法.3. 等差数列与等比数列的函数特征:等差数列通项公式是关于n的一次函数,等比数列通项公式是关于n的指数型函数;等差数列前n项和公式是关于n的二次函数,且常数项为零;等比数列前n 项和公式形如)1(nqA -,其中1,0≠≠q A .4. 证明一个数列是等差数列或等比数列的方法!!!5. 求等差数列前n 项和S n 最值的方法------对称轴法与变号项法!!!6. 形如}{n nb a +的数列求前n 项和S n 的方法-----拆项重组法!!!(其中}{n a }{n b 为等差或等比数列)7. 形如}1{1+⋅n n a a 的数列求前n 项和S n 的方法-----裂项相消法!!!(其中}{n a 为等差数列)8. 形如}{n nb a ⋅的数列求前n 项和S n 的方法-----乘公比错位相减法!!!(其中}{n a 为等差,}{n b 等比)9. 由S n 求a n 的方法!!!10. 处理S n 与a n 混合式的方法!!!11. 求等差数列的绝对值数列的前n 项和S n 的方法. 12. 判断一个数列单调性的方法.13. 等差数列的单调性与什么量有关?有什么关系?!!! 14. 等比数列的单调性与什么量有关?有什么关系?!!! **15. 求两个等差数列的公共项的方法.**16. 求一个等差数列与一个等比数列的公共项的方法.【典型题目】(学案)。
高中数学必修知识点解三角形及数列(一)解三角形:1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b cR C===A B (R 为C ∆AB 的外接圆的半径)2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a RA =,sin 2bR B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111sin sin sin 222CSbc ab C ac ∆AB =A ==B . 4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =第二章 数列11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。
2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +), 那么这个数列就叫做等差数列。
⑵等差中项:若三数a A b 、、成等差数列2a bA +⇔= ⑶通项公式:1(1)()n m a a n d a n m d =+-=+- 或(n a pn q p q =+、是常数). ⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+; ②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列; ③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、,…也成等差数列。
高一数学知识点全部归纳总结大全数学是一门重要的学科,也是高中阶段学习的核心科目之一。
在高一学年,学生们将接触到许多数学知识点,这些知识点对于他们后续的学习起着至关重要的作用。
为了帮助广大高一学生更好地理解和掌握数学知识,在这里我将对高一数学知识点进行归纳总结。
以下是高一数学知识点的全部梳理:一、函数与导数1. 函数的定义与性质函数的概念、自变量、因变量、定义域、值域等函数的奇偶性、周期性函数的可导性与连续性等2. 初等函数幂函数、指数函数、对数函数、三角函数及其性质等3. 导数与微分导数的概念与求导法则函数的单调性与凹凸性函数的极值与最值等二、平面解析几何1. 点、线、面的位置关系平行、垂直、共面等概念及判定方法2. 直线与圆的性质直线的斜率与截距圆的标准方程与一般方程切线与法线方程等3. 向量的概念与运算向量的加减法、数量积、向量积等三、三角函数与解三角形1. 三角函数的基本概念正弦、余弦、正切等的定义与性质2. 角度与弧度制角度与弧度的换算关系3. 解三角形已知三边、已知两边一角、已知两角一边的三角形解法四、数列与数列求和1. 等差数列与等比数列等差数列的通项公式、前n项和公式等比数列的通项公式、前n项和公式2. 递推关系与递推公式递推关系的求解与应用3. 等差中项与等比中项等差中项、等比中项的求解与应用五、平面向量与解几何问题1. 平行四边形法则与平行向量性质平行四边形法则的应用平行向量的性质与判定方法2. 向量的数量积与投影数量积与投影的定义与性质3. 点与直线的距离与位置关系点到直线的距离公式与应用直线与直线的位置关系判定方法六、概率论与数理统计1. 随机事件与概率基本概念与计算方法2. 条件概率与独立事件条件概率与乘法公式独立事件的概念与判定方法3. 数理统计的概念与应用样本与总体的区别与联系统计指标的计算与应用以上就是高一数学知识点的全部归纳总结。
希望这些内容能够对高一学生的学习有所帮助,让大家更好地掌握数学知识,提高数学水平。
本讲主要复习了必修(5)数列、解三角形、不等式等三部分知识要点和考点。
在利用这些知识点解决问题时注重函数的思想、数与形结合的思想、方程的数学思想、分类讨论的数学思想、等价转化的数学思想及配方法、特值法、分离参数法等数学思想方法的应用。
考点一:数列、不等式、解三角形等基础知识的考查例1、在下列命题中,把正确命题的序号填在题后的横线上。
(1)当三角形的各角的余切成等差数列时,各角所对边的平方成等差数列(2)已知不等式①②x2-6x+8<0 ③2x2-9x+m<0若同时满足①②的x值也满足③,则m9.(3)一个等差数列和一个等比数列,其首项是相等的正数,若其第(2n+1)项是相等的,则这两个数列的第(n+1)项也是相等的。
(4)方程有解时a的取值范围是在上述命题中正确命题的序号是。
分析:(1)设三个角A,B,C所对的边分别是a,b,c.由已知条件得:2cotB=cotA+cotC然后化为正、余弦。
通分再利用正、余弦定理可证:2b2=a2+c2.(2)可用特值法:先求不等式①②解集的交集。
再对m取特值验证。
也可利用二次函数的图像解决。
(3)利用等差、等比数列的通项公式表示这两个数列的第(n+1)项,然后比较大小。
或取特值验证。
(4)分离参数法:把a分离出来,用表示a,再用均值不等式求解。
解析:(1)由已知得:2cotB=cotA+cotC.利用正、余弦定理可证:2b2=a2+c2.故命题(1)是正确的。
(2)不等式①②的交集是(2,3),取m=0时,不等式化为:显然当2<x<3时,不等式成立。
故命题(2)错误另解:利用二次函数图像求解:设f(x)=2x2-9x+m,如图由已知得:(3)设数列分别是等差数列、等比数列。
首项分别是>0公差和公比分别是d、q,取n=2,q=2,由已知:即:,故==-=故,故命题(3)错误。
(4)由方程得:-(4+a)=.故此命题错误。
考点二:不等式与数列的综合应用的考查例2、已知数列{a}是首项a1>0,q>-1且q≠1的等比数列,设数列{b}的通项为b=a-ka(n∈N),数列{a}、{b}的前n项和分别为S,T.如果T>kS对一切自然数n都成立,求实数k的取值范围.分析:由探寻T和S的关系入手谋求解题思路。
解三角形、数列、不等式考点分析必修五所学三章都为高考考察重点,且是与高考数学联络严密的知识点,复习中应引起大家重视,本文通过对考点进展分析来指导复习。
一、解三角形考点分析〔1〕判断三角形的形状;〔2〕正余弦定理的简单应用;〔3〕测量问题。
这些题目难度 不大,题型是中档题与简单题,主要考察考生运用正余弦定理及三角公式进展恒等变形的才能;化简、求值或判断三角形形状为主,也可能与其他知识相结合,重点与三角恒等或平面向量交汇。
例1、台风中心此A 地以每小时20千米的速度向正北方向挪动,离台风中心30千米内 的地区为危险区,城市B 在A 的正东方40千米处,城市B 处于危险区内的时间为多长?解:如图,设台风中心从A 地到C 地用时为t ,|AC|=20t ,在▲ABC 中,由余弦定理得:t t A AC AB AC AB BC 280024001600cos ||||2||||||22-+=-+=,依题意,只要30||≤BC ,城市B 就处于危险区内,由此得: 121222122min max =--+=-t t 〔小时〕, 所以城市B 处于危险区内的时间为1小时。
点评:正确理解方位角,画出符合实际情况的图形,一般是以时间为变量表达出图形中的线段,然后利用正、余弦定理,结合详细问题情境列式解决,这是利用正、余弦定理解决实际问题的重要思路之一。
例2、▲ABC 的内角A 、B 、C 所对的边分别为a ,b ,c ,它的外接圆半径为6,三边a ,b ,c ,角A 、C 和▲ABC 的面积S 满足以下条件:22)(a c b S --=和〔1〕求B sin 的值;〔2〕求▲ABC 的面积的最大值。
分析:此题从所给条件▲ABC 的面积S 满足以下条件:22)(a c b S --=能获取的信息是利用面积公式B ac S sin 21=与的关系式建立起等量关系,结合余弦定理第一问可求得;由条件外接圆半径为6应联想正弦定理以及条件34sin sin =+C A 可得a +c =16为定值,应与根本不等式联络解第二问。
1
A
2A
120
105
7题
1、 某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果 他离出发点恰好3km ,那么x 的值为_______________ km .
2、 一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在 北偏东60,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15, 这时船与灯塔的距离为 km .
3、 有一长为1km 的斜坡,它的倾斜角为20︒,现要将倾斜角改为10︒, 则坡底要伸长_______km .
4、 某船上的人开始看见灯塔在南偏东30︒方向,后来船沿南偏东
60︒方向航行45海里后,看见灯塔在正西方向,则此时船与灯塔
的距离是__________海里.
5、如图,我炮兵阵地位于A 处,两观察所分别设于B ,D ,已知ABD ∆为边长 等于a 的正三角形,当目标出现于C 时,测得45BDC ∠=,75CBD ∠=, 求炮击目标的距离AC
6、 如图,一架直升飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔 10千米,速度为180千米/小时,飞行员先看到山顶的俯角为30︒,经过2分钟后又 看到山顶的俯角为75,求山顶的海拔高度.
7.如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105方向的1B 处,此时两船相距20海里,当甲船航行20分钟到达2A 处时,乙船航行到甲船的
北偏西120方向的2B 处,此时两船相距海里,问乙船每小时航行多少海里?
A
B C
D
第5题
8、数列
{}n a 中,2007
2006
--
=n n a n ,则该数列前100项中的最大项与最小项分别是( )
A.501,a a
B. 441,a a
C. 4445,a a
D. 5045,a a
9、含12+n
个项的等差数列其奇数项的和与偶数项的和之比为( ).
A n n 12+ .
B n n 1+ .
C n n 1- .
D n n 21
+
10、已知等差数列{}n a 共有10项,其奇数项之和为10,偶数项之和为30,则其公差是 .
11、设数列{}n a 中,112,1n n a a a n +==++,则通项n a = .
12、已知n S 为等差数列
{}n a 的前n 项和,10,10010010==S S ,求110S .
13、已知下列数列
{}n a 的前n 项和n S ,分别求它们的通项公式n a .⑴n n S n 322+=; ⑵13+=n n S .
14、已知数列{}n a 的首项11
2a =,其前n 项和()21n n S n a n =≥.求数列{}n a 的通项公式.
15、⑴已知n S 为等差数列
{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;
⑵若一个等差数列的前4项和为36,后4项和为124,且所有项的和为780,求这个数列的项数n .
16、已知n S 为等差数列{}n a 的前n 项和,212n n S n -=.
⑴求321a a a ++; ⑵求
10321a a a a ++++ ; ⑶求n
a a a a ++++ 321.。