2017年高三双基测试数学试卷(理科)
- 格式:doc
- 大小:514.00 KB
- 文档页数:26
昆明市2017届高三摸底调研测试理科数学( 全卷满分:150分 测试时间:120分钟 )第I 卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个答案中,只有一项是符合题目要求.)1. 设集合}03|{2≥-=x x x A ,1},|{x <=x B ,则=B A ( )A. ),3[]0,(+∞-∞B. ),3[]1,(+∞-∞C. )1,(-∞D. 0],(-∞ 2. 已知复数z 满足|43|)2(i z i +=-,则复数=z ( )A. i 2+B. i --2C. i -2D. i +-2 3. 已知向量)3,(),3,(-==x x ,若⊥+)2(,则=||( ) A. 1 B. 2 C. 3 D. 24. 执行如图所示的程序框图,如果输入的1,1==b a ,那么输出的值等于( ) A.21 B. 34 C.55 D.895. 已知函数)(x f 是奇函数,当0>x 时,)1(log )(2+=x x f ,则=-)3(f () A. -2 B. 2 C. -1 D. 16. 如图,某几何体的三视图由半径相同的圆和扇形构成,若俯视图中扇形的面积为π3,则该几何体的体积等于()A. π8B.π316 C. π4 D. π347. 如图,阴影部分是由四个全等的直角三角形组成的图形,在大正方形内随机取一点,这一点落在正方形内的概率为51,若直角三角形的两条直角边的长分别为)(,b a b a >,则=ab()A. 31B. 21C. 33D. 228. 为了得到函数x x y 2cos 2sin -=的图像,可以将函数x y 2cos 2=的图像 A. 向左平行移动83π个单位 B. 向右平行移动83π个单位 C. 向左平行移动43π个单位 D. 向右平行移动43π个单位 9. 点F A ,分别是椭圆11216:22=+y x C 的左顶点和右焦点,点P 再椭圆C 上,且AF PF ⊥,则AFP ∆的面积为( ) A.6 B. 9 C. 12 D. 18 10. 已知数列}{n a 满足:1)11(,2211++-==+n n a a a ,则=12a ( ) A. 101 B. 122 C. 145 D. 17011. 已知函数⎪⎩⎪⎨⎧<<-≤=21),1ln(1,2)(x x x x f x ,若存在实数a ,当2<x 时,b ax x f +≤)(恒成立,则实数b 的取值范围是()A. ),1[+∞B. ),2[+∞C. ),3[+∞D. ),4[+∞12. 在平面直角坐标系xOy 中,以)1,1(C 为圆心的圆与x 轴和y 轴分别相切于B A ,两点,点N M ,分别在线段OB OA ,上,若MN 与圆C 相切,则||MN 的最小值为( )A.1B. 22-C. 222+D. 222-第∏卷二、填空题(本大题共4小题,每小题5分,共20分,把答案写在答题纸上)13. 若y x ,满足条件,04001⎪⎩⎪⎨⎧≤-+≤-≥-y x y x x 则y x 2+的取值范围是14. 在ABC ∆中,BC 边上的中线等于BC 31,且2,3==AC AB ,则=BC15. 如图,在正方体1111D C B A ABCD -中,2=AB ,过直线11D B 的BD A 1平面平面⊥α,则平面α截该正方体所得截面的面积为16. 设Q P ,分别是曲线x xe y 2-=和直线2+=x y 上的动点,则Q P ,两点间的距离的最小值是三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本小题满分12分)已知等差数列}{n a 的前n 项和为n n n n a a S a S +==2212,1,. (1)求数列}{n a 的通项公式;(2)若n a n b 2=,求12531+++++n b b b b .18. (本小题满分12分)如图,四棱锥ABCD P -中,BC AB CD AB ABCD PAD ⊥⊥,//,平面平面,E BC CD PD PA AB ,4,1,3=====为线段AB 上一点,F BE AE ,21=为PD 的中点. (1)证明:ACF PE 平面//; (2)求二面角B CF A --的正弦值.19. 某汽车美容公司为吸引顾客,推出优惠活动,对首次消费的顾客,按200元一次收费,并注册成会员,对会员逐次消费给予相应优惠,标准如下:该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题: (1)估计该公司一位会员至少消费2次的概率;(2)某会员仅消费2次,求这2次消费中,公司获得的平均利润;(3)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为X 元,求X 的分别列和数学期望)(X E .20. (本小题满分12分)已知点F 是抛物线)0(22>=p px y C :的焦点,若点)1,(0x M 在C 上,且45||0x MF =. (1)求p 的值;(2)若直线l 经过点)1,3(-Q ,且与C 交于B A ,(异于M )两点,证明:直线AM 与直线BM 的斜率之积为常数.21. (本小题满分12分)已知函数3)(2-+=ax e x f ,由曲线)(x f y =在点))0(,0(f 处的切线方程2-=y . (3)求实数a 的值及函数)(x f 的单调区间;(4)用][m 表示不超过实数m 的最大整数,如:2]3.1[,0]3.0[-=-=,若0>x 时,2)(+<-m e x m x ,求][m 的最大值.请在第22、23、24题中任意选择一题作答,如果多做,则按照所做的第一部分,做答时请写清题号22. (本小题满分10分)选修4-1几何证明选讲如图,在ABC ∆中, 90=∠BAC ,以AB 为直径的圆O 交BC 于D ,E 是边AC上一点,BE 与圆O 交于点F 连接DF .(1)证明:E F D C ,,,四点共圆; (2)若5,3==AF EF ,求BC BD ⋅的值.23. (本小题满分10分)选修4-4:坐标系与参数方程 已知曲线C 的极坐标方程是01sin 2cos 6=++-ρθθρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,在平面直角坐标系xOy 中,直线l 经过点)3,3(P ,倾斜角3πα=.(1)写出曲线C 的直角坐标方程和直线l 的参数方程; (2)设l 与曲线C 相交于B A ,两点,求||AB 的值.24. (本小题满分10分)选修4-5:不等式选讲已知函数|1|m )(mx x x f -++=,其中0>m . (1)当1=m 时,解不等式4)(≤x f ; (2)若0≠∈a R a 且,证明:4)1()(≥+-af a f .答案11。
2017年沈阳市高中三年级教学质量监测(二)数学(理科)参考答案与评分标准说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 三、只给整数分数,选择题和填空题不给中间分. 一、选择题(本大题共12小题,每小题5分,共60分)1. B2. D3. A4. D5.C6.B7. D8. A9. C 10. A 11. A 12. C简答与提示:1. 【命题意图】本题考查复数的共轭复数及复数运算.【试题解析】B (12)(12)5z z i i ⋅=+-=. 故选B.2. 【命题意图】本题考查集合运算.【试题解析】D 由{|13},{|0,A x x B x x =-<<=<或1}x >,故{|10,A B xx =-<< 或13}x <<. 故选D.3. 【命题意图】本题考查祖暅原理及简易逻辑等知识.【试题解析】A 根据祖暅原理容易判断q ⌝是p ⌝的充分不必要条件,再利用命题的等价性, 故p 是q 的充分不必要条件. 故选A. 4. 【命题意图】本题考查抛物线的相关知识.【试题解析】D 抛物线22y x =上的点到焦点的最小距离是2p ,即18. 故选D.5. 【命题意图】本题主要考查等差数列.【试题解析】 C {}n a 是以2为公差的等差数列,12627,||||||n a n a a a =-+++53113518=+++++=. 故选C.6. 【命题意图】本题主要考查线性规划问题.【试题解析】B 不等式组所表示的平面区域位于直线03=-+y x 的上方区域和直线10x y -+=的上方区域,根据目标函数的几何意义确定4≤z . 故选B.7. 【命题意图】本题考查三视图.【试题解析】D 四棱锥的体积为. 382431=⨯⨯=V . 故选D. 8. 【命题意图】本题考查概率相关问题.【试题解析】A 由已知1151(),4216nn -≥≥. 故选A. 9. 【命题意图】本题主要考查三角函数的相关知识.【试题解析】C令26t x π=+,从而7[,]66t ππ∈,由于方程有两个解,所以12122()3t t x x ππ+=++=,进而123x x π+=. 故选C.10. 【命题意图】本题主要考查程序框图.【试题解析】A 第一次执行循环体有,33,,1,||0.522m b a a b ===-=;第二次执行循环 体有,535,,,||0.25424m b a a b ===-=;第三次执行循环体有, 11311,,,||0.125828m b a a b d ===-=<. 故选A.11. 【命题意图】本题考查平面向量的相关知识.【试题解析】A 由已知22(3,3),||(3)(3)OC m n m n OC m n m n =+-=++-2210m n =+,由0,0,12m n m n >>≤+≤,有22222m n ≤+<,则5||210OC ≤<. 故选A.12. 【命题意图】本题是考查函数的应用.【试题解析】C ①当2m =时显然成立;②当2m >时,2()[1,1]3m f x m -∈+-,只要 22(1)13m m -+>-即可,有25m <<,;③当2m <时,2()[1,1]3m f x m -∈-+,只要 21213m m -+<-即可,有725m <<. 故选C.二、填空题(本大题共4小题,每小题5分,共20分)13. 4814. x y =15. 30 16.233简答与提示:13. 【命题意图】本题考查排列组合相关知识.【试题解析】甲乙二人的票要连号,故424248A A =. 14. 【命题意图】本题考查导数的几何意义.【试题解析】()(sin cos ),(0)1,xf x e x x f ''=+=切线方程为x y =. 15. 【命题意图】本题考查等比数列.【试题解析】由条件可求得12,2,q a ==所以430S =.16. 【命题意图】本题考查双曲线问题.【试题解析】法一:由||1||2AF BF =可知,||1||2OA OB =,则Rt OAB ∆中,3AOB π∠=,渐近线OA 的斜率3tan 63b k a π===,即离心率2231()3b e a =+=. 法二:设过左焦点F 作x a b y -=的垂线方程为)(c x bay +=联立⎪⎩⎪⎨⎧-=+=x a b y c x b a y )(,解得,c ab y A =联立⎪⎩⎪⎨⎧=+=x a b y c x b a y )(,解得,22a b abc y B -= 又||1||2AF BF = A B y y 2-=∴ 223a b =∴所以离心率2231()3be a=+=. 三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数性质及正弦定理等. 【试题解析】(Ⅰ)(3,1),(3cos ,1sin )OP QP x x ==--, (2分)()33cos 1sin 42sin()3f x x x x π=-+-=-+, (4分))(x f 的周期为π2. (5分)(Ⅱ)因为()4f A =,所以23A π=, (6分)又因为3BC =,由正弦定理,23sin ,23sin AC B AB C ==, (8分)所以三角形周长为323sin 23sin 323sin()3B C B π++=++ (10分)因为03B π<<,所以3sin()(,1]32B π+∈, 所以三角形周长最大值为323+. (12分)18. (本小题满分12分)【命题意图】本小题主要考查学生对概率统计知识的理解,以及统计案例的相关知识,同时考查学生的数据处理能力.【试题解析】(Ⅰ)解:女性用户和男性用户的频率分布表分别如下左、右图:(3分)由图可得女性用户的波动小,男性用户的波动大. (4分)(Ⅱ)运用分层抽样从男性用户中抽取20名用户,评分不低于80分有6人,其中评分小于 90分的人数为4,从6人中任取3人,记评分小于90分的人数为X ,则X 取值为1,2,3,12423641(1)205C C P X C ====;214236123(2)205C C P X C ====; 评分频率组距100908070600.0350.0250.020.0150.010.0050.030.04O 50评分频率组距100908070600.0350.0250.020.0150.010.0050.030.04O 5032423641(3)205C C P X C ====. (9分)所以X 的分布列为X1 2 3 P1535151632555EX =++=.(12分)19. (本小题满分12分)【命题意图】本题以四棱锥为载体,考查直线与平面垂直,以及二面角问题等. 【试题解析】(Ⅰ)⊥PA 平面ABCD ,⊂AB 平面ABCD ,AB PA ⊥∴,平面ABCD 为矩形,AD AB ⊥∴ , A AD PA = ,⊥∴AB 平面PAD , (2分)⊂PD 平面PAD , PD AB ⊥∴, AD PA = , E 为PD 中点⊥∴=⊥∴PD A AB AE AE PD ,平面ADE (4分) (Ⅱ)以A 为原点,以,,AB AD AP 为,,x y z 轴正方向,建立空间直角坐标系A BDP -,令||2AB =,则(0,0,0)A ,(2,0,0)B ,(0,0,2)P ,(2,2,0)C ,(0,1,1)E ,(1,0,0)F ,(1,0,2)PF =-,(2,2,2)PM λλλ=-,(2,2,22)M λλλ- (6分)设平面PFM 的法向量111(,,)m x y z =,=0=0m PF m PM ⎧⋅⎪⎨⋅⎪⎩,即202220x z x y z λλλ-+=⎧⎨+-=⎩,(2,1,1)m =- (8分)设平面BFM 的法向量222(,,)n x y z =,=0=0n BF n FM ⎧⋅⎪⎨⋅⎪⎩,即()()0212220x x y z λλλ=⎧⎪⎨-++-=⎪⎩,(0,1,)n λλ=- (10分) ()2213|cos ,|3||||61m nm n m n λλλλ⋅-+<>===+-,解得12λ=. (12分)20. (本小题满分12分)【命题意图】本小题考查椭圆的标准方程及直线与椭圆的的位置关系,考查学生的逻辑思维 能力和运算求解能力.【试题解析】(Ⅰ)由已知222=a ,2=a ,记点)(0,0y x P ,1PA OM k k = ,2202000000122ax ya x y a x y k k k k PA PA M PA -=-⨯+=⨯=⨯∴, (2分) 又)(0,0y x P 在椭圆上,故1220220=+by a x ,212202-=-=⨯∴a b k k M PA ,2122=∴a b ,∴12=b ,∴椭圆的方程为1222=+y x . (4分)(Ⅱ)设直线)1(:+=x k y l ,联立直线与椭圆方程⎪⎩⎪⎨⎧=++=12)1(22y x x k y 得0224)12(2222=-+++k x k x k ,记),(),,(2211y x B y x A由韦达定理可得⎪⎪⎩⎪⎪⎨⎧+-=⨯+-=+122212422212221k k x x k k x x ,可得122)2(22121+=++=+k kx x k y y , (6分) 故AB 中点)12,122(222++-k kk k Q , QN 直线方程:121)122(1122222+--=++-=+-k k x k k k x k k ky (8分) )0,12(22+-∴k k N ,已知条件得:<-4101222<+-k k ,∴ 1202<<k , (10分) )1211(212122112224)124(12222222222++=+++=+--+-+=∴k k k k k k k k kAB , 1121212<+<k,)22,223(∈∴AB . ( 12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的知识,具体涉及到导数的运算,用导数来研究函 数的单调性等,考查学生解决问题的综合能力.【试题解析】(Ⅰ)21ln ()xf x x -'=, (0,)x e ∈时,()0f x '>,()f x 单调递增;(,)x e ∈+∞时,()0f x '<,()f x 单调递减. 当x e =时,()f x 取极大值为1e,无极小值. (3分)(Ⅱ)要证)()(x e f x e f ->+,即证:xe x e x e x e -->++)ln()ln(,只需证明:)ln()()ln()(x e x e x e x e -+>+-.(5分)设)ln()()ln()()(x e x e x e x e x F -+-+-=,222222222222()4()l n ()[2l n ()]0e x x F x e x e xe xe x+'=--=--+>--, (7分)0)0()(=>∴F x F .故)ln()()ln()(x e x e x e x e -+>+-,即)()(x e f x e f ->+. (8分) (III )不妨设21x x <,由(Ⅰ)知210x e x <<<,e x e <-<∴10,由(Ⅱ)得)()()]([)]([2111xf x f x e e f x e e f ==-->-+, (10分) 又e x e >-12,e x >2,且)(x f 在),(+∞e 上单调递减, 122e x x ∴-<,即e x x 221>+,e x x x >+=∴2210,0)(0<'∴x f . (12分) 22. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化.【试题解析】 (I) 由221:40,C x y x +-=:230l x y +-=.(5分)(II )(,22),4P π直角坐标为(2,2),1(2cos ,sin ),(1cos ,1sin )2Q M αααα++, M 到l 的距离|1cos 2sin 3|10|sin()|545d ααπα+++-==+,从而最大值为105. (10分)23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法及不等式证明等内容. 本小题重点考查考生的化归与转化思想.【试题解析】(I)因为2b a -<,所以3,()|||2|=,23,2x a b x a b f x x a x b x a b a x b x a b x ⎧⎪--+<-⎪⎪=++--++-≤<⎨⎪⎪+-≥⎪⎩,显然()f x 在(,]2b -∞上单调递减,()f x 在[,)2b+∞上单调递增,所以()f x 的最小值为()22b b f a =+,所以12ba +=,22ab +=. (5分)(II)因为2a b tab +≥恒成立,所以2a bt ab+≥恒成立, 212121122()(2)(14)22a b a b a b ab b a b a b a +=+=++=+++1229(142)22a b b a ≥++⋅= 当23a b ==时,2a b ab +取得最小值92,所以92t ≥,即实数t 的最大值为92. (10分)。
河南省2017届高三下学期质量检测理科数学试卷答 案一、选择题:共12题1~5.DCDCB 6~10.ABACD 11~12.CB 二、填空题:共4题 13.5 14.16 15.π416三、解答题:共7题17.解:(1)1n n n S a a λ+=,33a =,所以112a a a λ=且()122323a a a a a λ+==,①所以2123,3a a a a λ=+==,②因为数列{}n a 是等差数列,所以1322a a a +=,即2123a a -=, 由①②得11a =,22a =,所以n a n =,2λ=, 所以14b =,316b =,则12n n b +=. (2)因为(1)2n n n S +=,所以2(2)n c n n =+,所以22222122435(1)(1)(2)n T n n n n =+++++⨯⨯⨯-++L 111111111132435112n n n n =-+-+-++-+--++L 2323232n n n +=-++. 18.解:(1)由题意可知,所求概率12211123424233366C C C C 2221C ()(1)(1)C 33C 315P =⨯-+⨯-=, (2)设甲公司正确完成面试的题数为X ,则X 的取值分别为1,2,3,124236C C 1(1)C 5P X ===,214236C C 3(2)C 5P X ===,304236C C 1(3)C 5P X ===,则X 的分布列为:131()1232555E X =⨯+⨯+⨯=,2221312()(12)(22)(32)5555D X =-⨯+-⨯+-⨯=.设乙公司正确完成面试的题数为Y ,则Y 取值分别为0,1,2,3,1(0)27P Y ==,123212(1)C ()339P Y ==⨯⨯=,223214(2)C ()339P Y ==⨯⨯=, 328(3)()327P Y ===,则Y 的分布列为:所以1248()01232279927E Y =⨯+⨯+⨯+⨯=(或因为2(3,)3Y B ~,所以2()323E Y =⨯=), 222212482()(02)(12)(22)(32)2799273D Y =-⨯+-⨯+-⨯+-⨯=,由()()E X E Y =,()()D X D Y <可得,甲公司成功的可能性更大.19.证明:因为AB AC ⊥,AB AC =,所以90ACB ∠=︒, 因为底面ABCD 是直角梯形,90ADC ∠=︒,AD BC ∥, 所以45ACD ∠=︒,即AD CD =,所以2BC AD =,因为2AE ED =,2CF FB =,所以2D 3AE BF A ==. 所以四边形ABFE 是平行四边形,则AB EF ∥,所以AC EF ⊥,因为PA ⊥底面ABCD ,所以PA EF ⊥, 因为PA AC A =I ,所以EF ⊥平面PAC ,因为EF ⊂平面PEF ,所以平面PEF ⊥平面PAC .(2)因为PA AC ⊥,AC AB ⊥,所以AC ⊥平面PAB ,则APC ∠为直线PC 与平面PAB 所成的角,若PC 与平面PAB 所成角为45︒,则tan 1ACAPC PA∠==,即PA AC == 取BC 的中点为G ,连接AG ,则AG BC ⊥,以A 坐标原点建立如图所示的空间直角坐标系A xyz -.则(1,1,0)B -,(1,1,0)C ,2(0,,0)3E,P ,所以(1,1,0)EB =-u u u r,2(0,3EP =-u u u r ,设平面PBE 的法向量(,,)x y z =n ,则00n EB n EP ⎧=⎪⎨=⎪⎩u u u r u u g u r g ,即503203x y y ⎧-=⎪⎪⎨⎪-=⎪⎩,令3y =,则5x =,z =,=n ,因为(1,1,0)AC =u u u r是平面PAB 的一个法向量,所以cos ,AC 〈〉==u u u r n ,即当二面角A −PB −EPC 与平面PAB 所成的角为45︒. 20.解:(1)设200(,)4y A y ,圆C 的方程200(2)()()04y x x y y y --+-=,令1x =,得2200104y y y y -+-=,所以0M N y y y +=,214M N y y y =-,||||2M N MN y y =-=.(2)设直线l 的方程为x my n =+,11(,)P x y ,22(),Q x y ,则由24x my n y x=+⎧⎨=⎩消去x ,得2440y my n --=. 124y y m +=,124y y n =-,因为3OP OQ =-u u u r u u u r g ,所以12123x x y y +=-,则21212()316y y y y +=-,所以2430n n -+=,解得1n =或3n =, 当1n =或3n =时,点(2,0)B 到直线l的距离为d =,因为圆心C 到直线l 的距离等于到直线1x =的距离,所以208y =, 又20024y m y -=,消去m 得4200646416y y +=g ,求得208y =,此时2024y m y -=,直线l 的方程为3x =,综上,直线l 的方程为1x =或3x =.21.解:(1)设切点的坐标为2(,e )t t ,由2()e x f x =,得22(e )x f x =', 所以切线方程为22e 2e ()t t y x t -=-,即222e (12)e t t y x t =+-,由已知222e (12)e x x y x t =+-和1y kx =+为同一条直线,所以22e t k =,2(12)e 1t k -=, 令()(1)e x h x x =-,则()e x h x x =-',当(,0)x ∈-∞时,()0h x '>,()h x 单调递增,当(0,)x ∈+∞时,()0h x '<,()h x 单调递减, 所以()(0)1h x h ≤=,当且仅当0x =时等号成立,所以0t =,2k =. (2)①当2k >时,有(1)结合函数的图像知: 存在00x >,使得对于任意0(0,)x x ∈,都有()()f x g x <,则不等式|()()|>2f x g x x -等价()()2g x f x x ->,即2(2)1e 0x k x -+->, 设2(2)1e x t k x =-+-,22()2e x t k =--',由0t '>得12ln 22k x -<,由0t '<得12ln 22k x ->, 若24k ≤<,12ln022k -≤,因为012(0,)(,ln )22k x ∞-⊆-,所以()t x 在12(0,ln )22k -上单调递减, 因为(0)0t =,所以任意12(0,ln)22k x -∈,()0t x >,与题意不符, 若4k >,12ln022k ->,1212(0,ln )(,ln )2222k k --⊆-∞,所以()t x 在12(0,ln )22k -上单调递增, 因为(0)0t = ,所以对任意12(0,ln)22k x -∈,()0t x >符合题意, 此时取120min{0,ln}22k m -<≤,可得对任意(0,)x m ∈,都有|()()|>2f x g x x -. ②当02k <≤时,有(1)结合函数的图像知()2e210(0)xx x -+≥>,所以22()()e 1e (21)(2)(2)0x x f x g x kx x k x k x -=--=-++-≥-≥对任意0x >都成立, 所以|()()|>2f x g x x -等价于2e (2)10x k x -+->, 设2()e (2)1x x k x ϕ=-+-,则2()=2e (2)x x k ϕ'-+,由()0x ϕ'>得12ln 22k x +>,()0x ϕ'<得,12ln 22k x +<, 所以()x ϕ在12(0,ln)22k -上单调递减,注意到(0)0ϕ=, 所以对任意12(0,ln)22k x -∈,()0x ϕ<,不符合题设, 综上所述,k 的取值范围为()4,+∞.22.解:(1)由πcos()4ρθ+=-cos sin )ρθρθ-=-)x y -=-,即直线l 的方程为40x y -+=, 依题意,设(2cos ,2sin )P t t ,则P 到直线l的距离π|)4|π2co ()4s t d t ++==+, 当π2ππ4t k +=+,即3π2π4t k =+,k ∈Z时,min 1d =. (2)因为曲线C 上的所有点均在直线l 的右下方,所以对t ∀∈R ,有cos 2sin 40a t t -+>恒成立,)4t t ϕ+>-(其中2tan aϕ=)恒成立,4<,又0a >,解得0a << 故a的取值范围为.23.解:(1)当2x =时,()|2|g x a x =--取得最大值为a ,因为()|1||3|4f x x x =++-≥,当且仅当13x -≤≤,()f x 取最小值4, 因为关于x 的不等式()()f x g x <有解, 所以4a >,即实数a 的取值范围是(4,)+∞.(2)当72x =时,()5f x =, 则77()2522g a =-++=,解得132a =,所以当2x <时,9()2g x x =+,令9()42g x x =+=,得1(1,3)2x =-∈-,所以12b =-,则6a b +=河南省2017届高三下学期质量检测理科数学试卷解析1.【解析】本题主要考查集合的关系与运算、解一元二次不等式.A={x|x(5−x)>4}={x|1<x<4},B={x|x≤a},若A∪B=B,则A⊂B,∴a≥4.故选D.2.【解析】本题主要考查复数的运算和几何意义.∵z=a+2i32−i =a−2i2−i=(a−2i)(2+i)5=2a+25+a−45i,∴{2a+25>0a−45<0,解得−1<a<4.故选C.3.【解析】本题主要考查独立性检验.选项D中不服药与服药样本中患病的频率差距最大.故选D.4.【解析】本题主要考查同角三角函数的基本关系、倍角公式和诱导公式.由3cos2θ=tanθ+3得3sin2θ=−tanθ,∵θ≠kπ(k∈Z),∴3sinθcosθ=−1,即sin2θ=−23,则sin[2(π−θ)]=sin(2π−2θ)=−sin2θ=23.故选C.5.【解析】本题主要考查程序框图和数学史.模拟程序运行,可得:n=1,S=k,满足循环条件n<4,执行循环体,n=2,S=k2,满足循环条件n<4,执行循环体,n=3,S=k3,满足循环条件n<4,执行循环体,n=4,S=k4,不满足循环条件n<4,结束循环,输出S的值为k4,则k4=1.5,解得k=6.故选B.6.【解析】本题主要考查双曲线的标准方程和性质、点到直线的距离.点(0,−2)到渐近线bx+ay=0的距离为√b2+a2=2ac=23,∴c=3a,∴b=2√2a,∵双曲线C 过点(√2,2√2),∴2a 2−88a 2=1,解得a =1, 则双曲线C 的实轴长为2. 故选A .7.【解析】本题主要考查函数的零点、奇函数的性质.∵x 0是函数y =f(x)−e x 的一个零点,∴f (x 0)−e x 0=0,即f (x 0)=e x 0, 又f(x)为奇函数,∴f (−x 0)=−f (x 0)=−e x 0, 当x =x 0时,.y =f (x )⋅e −x +1=0. 故选B .8.【解析】本题主要考查三视图与体积.由三视图可知,该几何体是由一个四棱锥与一个三棱柱组合而成,其中四棱锥的底面与三棱柱的左侧面重合.则该几何体的体积为V =13×22×1+12×1×2×2=103.故选A .9.【解析】本题主要考查平面向量的数量积和模.设AD ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,∵CD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,∴AB ⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ⋅(AD ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ) =λAB ⃗⃗⃗⃗⃗ 2−AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =25λ−5×4×cos60°=5,解得λ=35, 则|BD ⃗⃗⃗⃗⃗⃗ |=25|AB ⃗⃗⃗⃗⃗ |=2. 故选C .10.【解析】本题主要考查椭圆的几何性质.由题知,M 在椭圆的短轴上.设椭圆C 的左焦点为F 1,连结AF 1. ∵|OA|=|OF 2|,∴|OA|=12|F 1F 2|,即AF 1⊥AF 2, ∵|AF 1||AF 2|=|OM||OF 2|=12,∴|AF 1|=2√55c,|AF 2|=4√55c ,∴2a =|AF 1|+|AF 2|=6√55c ,则椭圆C 的离心率为e =ca =√53. 故选D . 11.【解析】本题主要考查空间线面的位置关系.取DC 中点N ,连结MN ,NB ,则MN ∥A 1D ,NB ∥DE , ∴平面MNB ∥平面A 1DE ,∴MB ∥平面A 1DE ,故A 正确;取A 1D 中点F ,连结MF ,EF ,则EFBM 为平行四边形,则∠A 1EF 为异面直线BM 与A 1E 所成角,故B 正确; 点A 关于直线DE 的对称点为N ,则DE ⊥平面AA 1N ,即过O 与DE 垂直的直线在平面AA 1N 上,故C 错误; 三棱锥A 1−ADE 外接球半径为√22AD ,故D 正确.故选C.12.【解析】本题主要考查利用导数研究函数的单调性和最值.g′(x)=−3x2+2x<0(x<0),∴函数g(x)在(−∞,0)上单调递减,∴g(x)>g(0)=0.设A(x0,1aln(x0+1)),由斜边AB的中点y轴上可得B(−x0,x03+x02),∵OA⊥OB,∴k OA∙k OB=−1,即1aln(x0+1)x0∙x03+x02−x0=−1,∴a=x0+1ln(x0+1),设ℎ(x)=x+1ln(x+1)(e−1<x<e2−1),则ℎ′(x)=ln(x+1)−1ln2(x+1),∵e−1<x<e2−1,∴ℎ′(x)>0,∴ℎ(e−1)=e<ℎ(x)<ℎ(e2−1)=e22,即实数a的取值范围是(e,e22).故选B.13.【解析】本题主要考查简单的线性规划及点到直线的距离.作出不等组表示的可行域,如图所示,z的几何意义为可行域内的点到点(0,−1)距离的平方.则z的最小值为点(0,−1)到直线2x+y−4=0距离的平方,z=(22)2=5.故答案为5.14.【解析】本题主要考查排列组合问题.把5名新生分配到甲、乙两个班,每个班分到的新生不少于2名,有C52A22种分配方案,其中甲班都是男生的分配方案有C32+1种,则不同的分配方案种数为C52A22−(C32+1)=16.故答案为16.15.【解析】本题主要考查函数f(x)=Asin(ωx+φ)的图象和性质.由图可得T=2×(7π8−3π8)=π=2πω,∴ω=2,∵f(5π8)=2∴5π4+φ=π2+kπ(kϵZ),又|φ|<π2,∴φ=π4,∴f(x)=Asin(2x+π4),又f(π8)=A=−2,∴f(x)=−2sin(2x+π4),则g(x)=−2sin[2(x−7π24)+π4]=−2sin(2x−π3).若函数g(x)在区间[−π3,θ](θ>−π3)上的值域为[−1,2],则2θ−π3=π6,∴θ=π4.故答案为π4.16.【解析】本题主要考查正弦定理、余弦定理、三角形面积公式.由(a2+b2)tanC=8S得a2+b2=4abcosC=4ab∙a2+b2−c22ab,即a2+b2=2c2.由sinAcosB=2cosAsinB得a∙a2+c2−b22ac =2b∙b2+c2−a22bc,即a2−b2=13c2.∴a2=76c2,b2=56c2,∴cosA=b2+c2−a22bc=√3015.故答案为√3015.17.【解析】本题主要考查等差数列、等比数列,考查裂项求和.(1)在λS n=a n a n+1中,令n=1,2得到关系式,再由等差数列的性质可得a n,λ,从而求得b1,b3,再由等比数列的通项公式求得公比,进而得到b n;(2)由等差数列的前n项和公式可得S n,代入求出c n,利用裂项求和可得T n.18.【解析】本题主要考查互斥事件、相互独立事件的概率,考查离散型随机变量的数学期望和方差.(1)根据互斥事件的概率加法公式和相互独立事件的概率可得结论;(2)分别列出两公司正确完成面试题数的所有取值,计算其相应的概率,得到分布列,代入公式求出期望和方差,比较它们的大小可得结论.19.【解析】本题主要考查线面垂直的判定与性质、用向量法求空间角的大小.(1)由平面几何知识易证ABFE是平行四边形,得AB//EF,从而AC⊥EF,由线面垂直的性质得PA⊥EF,由线面垂直的判定可得EF⊥平面PAC,由面面垂直的判定可得结论;(2)易证AC⊥平面PAB,则∠APC为直线PC与平面PAB所成的角.取BC的中点为G,连接AG,则AG⊥BC,以A坐标原点建立空间直角坐标系A−xyz.分别求出平面PBE和平面PAB的一个法向量,利用向量夹角公式可得结论.20.【解析】本题主要考查直线与抛物线的位置关系、数量积的坐标运算及点到直线的距离.(1)设出点A坐标,由A、B点坐标可得圆C的方程,直线x=1方程联立,得关于y的一元二次方程,利用韦达定理和弦长公式可得线段MN的长;(2)设出直线l的方程,与抛物线方程联立,消去x得关于y的一元二次方程,利用韦达定理、数量积的坐标运算及点到直线的距离公式可求出l的方程.21.【解析】本题主要考查导数的几何意义、利用导数研究函数的单调性、最值和不等式恒成立问题.(1)求导,根据导数的几何意义及直线的点斜式方程可得切线方程,与已知切线方程比较,构造函数,利用导数研究函数的单调性和最值,则可得k值.(2)分k>2和0<k≤2两种情况讨论.将不等式转化,利用导数研究函数的单调性和最值,则结论可得.22.【解析】本题主要考查将极坐标方程化成直角坐标方程,点到直线的距离及简单的线性规划的应用.(1)利用x=ρcosθ,y=ρsinθ及两角和的余弦公式将l的极坐标方程化成直角坐标方程,设出P的参数坐标,由点到直线的距离公式及余弦函数的性质可得最值;(2)问题转化为对∀t∈R,acost−2sint+4>0恒成立.利用辅助角公式及余弦函数的值域可得结论.23.【解析】本题主要考查绝对值不等式的求解.(1)利用绝对值三角不等式可得f(x)的最小值,易得g(x)的最大值,问题转化为g(x)的最大值大于f(x)的最小值.为方程f(x)=g(x)的根,代入可求得a;当x<2时,由g(x)=f(x)min求出x,验证可得b,(2)由题知,72则a+b可得.。
2017年高考理科数学基础试题及答案高三数学 (理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
满分150分,考试时间120分钟.第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =( )A .∅B .{}1,4--C .{}0D .{}1,42.已知复数z 在复平面内对应的点为 (-1,1),则复数2z 3z ++—的模为 ( )A .10B .210C . 2D .23. 设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的( )A.充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。
从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .1 B. 2111 C. 2110 D. 2155.执行如图所示的程序框图,输出S 的值是( )A. 32-B.32C.1-2D.126.已知,31)cos(,322sin -=+=βαα且),(,20πβα∈,则)sin(βα-的值为( )A. 21-B. 21 C.31-D. 27210 7.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( )A .64B .100C .110D .1208.已知向量a = (2,1), a ·b = 10,︱a + b ︱= 52,则︱b ︱=( ) A.5 B.5 C. 10 D.259.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A .25+B .45+C .225+D .5正(主)视图11俯视图侧(左)视图2110. 若变量x ,y满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23zx y =+的最大值为( ) A .10 B .8 C .5 D .211.已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是(A )(13,23) (B)[13,23) (C)(12,23) (D) [12,23)12.椭圆)0(12222>>=+b a by a x 上一点A 关于原点的对称点为B ,F 为其右焦点,若AF ⊥BF,设∂=∠ABF ,且⎥⎦⎤⎢⎣⎡∈∂412ππ,,则该椭圆的离心率的最大值为 ( )A. 36B. 23C. 22 D. 1第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分。
大连市2017年高三双基测试卷数学试题(理科)说明:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第22题~第24题为选考题,其它题为必考题.2.考生作答时,将答案答在答题卡上,在本试卷上答题无效,考试结束后,将本试卷和答题卡一并交回.第I 卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知{|3},{|15},()A B A x x B x x C A B =<=-<< 则等于 ( )A .{|1}x x x ≤-≤或3<5B .{|13}x x x ≤-≥或C .{|13}x x x <-≥或D .{|1}x x x ≤-≤≤或352.设复数11,2z i z=+那么等于( )A.12+ B12i + C12i - D.12- 3.下列函数中,在其定义域内既是增函数又是奇函数的是 ( )A .1y x=-B .2log y x =-C .3xy =D .3y x x =+4.已知cos 5αα=-为第二象限角,则tan()4πα+=( )A .13-B .13C .3D .—35.在△ABC 中,a 、b 、c 分别为三个内角A 、B 、C 所对的边,设向量(,),m b c c a =--(,)n b c a =+,若m n ⊥,则角A 的大小为( )A .6π B .3π C .2π D .23π6.工人月工资y (元)与劳动生产率x (千元)变化的回归直线方程为ˆ8050yx =+,则下列判断正确的是( )①劳动生产率为1千元时,工资约为130元;②劳动生产率每提高1千元时,工资平均提高80元; ③劳动生产率每提高1千元时,工资平均提高130元; ④当月工资为210元时,劳动生产率约为2千元. A .①③ B .②④ C .①②④D .①②③④7.定义在R 上的函数()[3,)f x +∞在上单调递减,且(3)f x +是偶函数,则下列不等式中正确的是( ) A .(3)(4)(1)f f f >> B .(1)(3)(4)f f f >>C .(3)(1)(4)f f f >>D .(4)(3)(1)f f f >>8.已知函数2()423x x f x a a =-⋅+-,则函数()f x 有两个相异零点的充要条件是( )A .22a -<<B 2a ≤≤C 2a <≤D 2a <<9.设102100121013579(21),x a a x a x a x a a a a a -=++++++++ 则的值( )A .10132+B .10132-C .10312-D .—10132+10.程序框图如图所示,其输出结果是( )A B C .0D 11.双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1、F 2,离心率为e ,过F 2的直线与双曲线的右支交于A 、B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则e 2的值是( )A.1+B.3+C.4-D.5-12.棱长为球,则这些球的最大半径为( ) AB.2C.4D.6第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答, 二、填空题(本大题共4小题,每小题5分,共20分.)13.如图所示是一个几何体的三视图(单位:cm),则这个几何体的表面积 cm 2.14.设坐标原点为O ,抛物线22y x =上两点A 、B 在该抛物线的准线上的射影分别是A ′、B ′,已知|AB|=|AA ′|+|BB ′|,则OA OB ⋅= 。
湖北省部分重点中学2017届高三第二次联考高三理科数学参考答案一、选择题1—5:ACCAA 6—10:BDABC 11—12:DB二、填空题13、2 14、2.6 15、1 16、2三、解答题17、(1)设等差数列{}n a 的公差为d ,由已知得1212234,()()12,a a a a a a +=⎧⎨+++=⎩ ……2分即12234,8,a a a a +=⎧⎨+=⎩所以1111()4,()(2)8,a a d a d a d ++=⎧⎨+++=⎩解得11,2,a d =⎧⎨=⎩ ……4分所以21n a n =-. ……6分(2)由(1)得,所以122135232112222n n n n n S ----=+++++…,① 23111352321222222n n n n n S ---=+++++……,② ……8分 -①②得:2211112123113222222n n n n n n S --+=+++++-=-… ……10分所以4662n nn S +=-. ……12分18、(1)由正弦定理得:1sin sin sin cos 2B C A C -= ……2分又∵sin sin()B A C =+ ∴1sin()sin sin cos 2A C C A C +-=即1cos sin sin 2A C C = ……4分又∵sin 0C ≠ ∴1cos 2A =,又A 是内角 ∴60A =……6分(2)由余弦定理得:2222222cos ()3a b c bc A b c bc b c bc =+-=+-=+- ……8分 ∴2()4()12b c b c +-+= 得:6b c += ∴8bc = ……10分∴11sin 822S bc A ==⨯= ……12分 112122n n n a n ---=19、(1)证明:连接1AB 交1AB 于点D , 因1AA AB =,则1AD A B ⊥由平面1A BC ⊥侧面11A ABB ,且平面1ABC 侧面11A ABB 1A B =, 得1AD A BC 平面⊥,又BC ⊂平面1A BC , 所以AD BC ⊥. ……2分 三棱柱111ABC A B C —是直三棱柱,则1AA ABC ⊥底面,所以1AA BC ⊥. ……3分又1=AA AD A ,从而BC ⊥侧面11A ABB ,又AB ⊂侧面11A ABB ,故AB BC ⊥. ……5分(2)由(1)1AD A BC 平面⊥,则ACD ∠直线AC 与平面1A BC 所成的角 所以6ACD π∠=,又AD =AC = ……7分假设在线段1AC 上是否存在一点E ,使得二面角A BE C --的大小为23π由111ABC A B C -是直三棱柱,所以以点A 为原点,以1AC AA 、所在直线分别为,x z 轴建立空间直角坐标系A xyz -,如图所示,且设11(01)A E AC λλ=≤≤,则由1(0,0,2)A,C,得,0,22)E λ-所以,0,22)AE λ=-,AB=设平面EAB 的一个法向量1(,,)n x y z = ,由1AE n ⊥, 1AB n⊥ 得:(22)0x z λ+=+-=⎪⎩,取1(1,n =- ……9分 由(1)知11AB A BC 平面⊥,所以平面CEB的一个法向量1AB=……10分所以111121cos 32AB n AB nπ∙===,解得12λ=∴点E 为线段1AC 中点时,二面角A BE C --的大小为23π……12分20、(1)设动圆P 的半径为R,则541PE RPE PF EF PF R ⎧=-⎪⇒+=>=⎨=-⎪⎩所以圆心P 的轨迹C 为以E 与F 为焦点的椭圆, ……3分设椭圆:C 22221(0)x y a b a b+=>>则2,a c ==,所以曲线C 的方程:2214x y += ……5分 (2)设直线()()1122:,,,,y l x my n A x y B x =+, 由方程组()22222424044x my nm y mny n x y =+⎧⇒+++-=⎨+=⎩ ① 2121212222248,,444mn n ny y y y x x m m m -⇒+=-=+=+++. 1212224,,2244x x y y nmn M m m ++⎛⎫⎛⎫⇒=- ⎪ ⎪++⎝⎭⎝⎭, ()22224116m OM n m +=⇒=+②, ……7分设直线l 与x 轴的交点为(),0D n ,则12121122AOB S OD y y n y y ∆=-=-, 令()()()222212224841416m S n y y m +=-=+, ……9分 设()244t m t =+≥,则2222248(4)48481144(16)2414424m t S m t t t t+===≤=+++++, 当12t =时,即m n =±=AOB ∆的面积取得最大值1 ……12分21、(1)依题意,函数()f x 的定义域为(0,)+∞,所以方程'()0f x =在(0,)+∞有两个不同根.即,方程ln 20x ax +=在(0,)+∞有两个不同根.转化为,函数ln ()xg x x=与函数2y a =-的图象在(0,)+∞上有两个不同交点……2分 又'21ln ()x g x x-=,即0x e <<时,'()0g x >,x e >时,'()0g x <, 所以()g x 在(0,)e 上单调增,在(,)e +∞上单调减,从而1()=()g x g e e=极大. 又()g x 有且只有一个零点是1,且在0x →时,()g x →-∞,在x →+∞时,()0g x →, ……4分所以由()g x 的图象,要想函数ln ()xg x x=与函数2y a =-的图象在(0,)+∞上有两个不同交点,只需102a e <-<,即102a e<<- ……5分 (2)由(1)可知12,x x 分别是方程ln 0x ax -=的两个根,即11ln x ax =,22ln x ax =,设120x x >>,作差得,1122ln ()xa x x x =-,即1212lnx x a x x =-.原不等式212x x e >等价于12ln ln 2x x +>12()2a x x ⇔+>1122122()lnx x x x x x -⇔>+ ……7分 令12x t x =,则1t >,1122122()2(1)ln ln 1x x x t t x x x t -->⇔>++, ……9分 设2(1)()ln 1t g t t t -=-+,1t >,2'2(1)()0(1)t g t t t -=>+, ∴函数()g t 在(1,)+∞上单调递增,∴()(1)0g t g >=, 即不等式2(1)ln 1t t t ->+成立,故所证不等式212x x e >成立. ……12分 22、(1)对于C :由2224cos 4cos 4x y x ρθρρθ==∴+=得, ……2分对于:l有()112x t y t 为参数⎧=+⎪⎪⎨⎪=⎪⎩ ……4分 (2)设A,B 两点对应的参数分别为12,t t将直线l 的参数方程代入圆的直角坐标方程2240x y x +-=得2214104t ⎛⎫⎛⎫+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭化简得230t -= ……6分121212123t t t t MA MB t t t t ∴+==-∴+=+=-== ……10分。
-1012}012}01}-101}-1012} 23B.5A.4C.D.3[+高三年级第二次教学质量检测试题理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12个小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={-2,,,,,B={x|-2<x≤2},则A B=A.{-1,,,B.{-1,,C.{-2,,,D.{-2,,,,2.复数2-i1+i对应的点在A.第一象限B.第二象限C.第三象限D.第四象限3.已知向量a=(2,-1),b=(3,x),若a⋅b=3,则x=A.3B.4C.5D.64.已知双曲线x2y2-a b23=1的一条渐近线方程为y=x,则此双曲线的离心率为457445.已知条件p:x-4≤6;条件q:x≤1+m,若p是q的充分不必要条件,则m的取值范围是A.(-∞,-1]B.(-∞,9]C.1,9]D.[9,∞)6.运行如图所示的程序框图,输出的结果S=A.14B.30C.62D.1268.已知α,β是两个不同的平面,l,m,n是不同的直线,下列命题不正确的是A.πA.332D.27.(x-1)n的展开式中只有第5项的二项式系数最大,则展开式中含x2项的系数是xA.56B.35C.-56D.-35...A.若l⊥m,l⊥n,m⊂α,n⊂α,则l⊥αB.若l//m,l⊂/α,m⊂α,则l//αC.若α⊥β,αβ=l,m⊂α,m⊥l,则m⊥βD.若α⊥β,m⊥α,n⊥β,,则m⊥n9.已知f(x)=sin x+3cos x(x∈R),函数y=f(x+ϕ)的图象关于直线x=0对称,则ϕ的值可以是πππB.C.D.263410.男女生共8人,从中任选3人,出现2个男生,1个女生的概率为1528,则其中女生人数是A.2人B.3人C.2人或3人D.4人11.已知抛物线y2=4x,过焦点F作直线与抛物线交于点A,B(点A在x轴下方),点A与1点A关于x轴对称,若直线AB斜率为1,则直线A B的斜率为12B.3C.12.下列结论中,正确的有①不存在实数k,使得方程x ln x-1x2+k=0有两个不等实根;2②已知△ABC中,a,b,c分别为角A,B,C的对边,且a2+b2=2c2,则角C的最大值为π6;③函数y=ln与y=ln tan x2是同一函数;④在椭圆x2y2+a2b2=1(a>b>0),左右顶点分别为A,B,若P为椭圆上任意一点(不同于A,B),则直线PA与直线PB斜率之积为定值.A.①④B.①③C.①②D.②④13.已知等比数列{a}的前n项和为S,且a+a=5n2414.已知实数x、y满足约束条件⎨y≥2,则z=2x+4y的最大值为______.⎪x+y≤6②若a∈(0,1),则a<a1+11-x是奇函数(第Ⅱ卷(非选择题共90分)本卷包括必考题和选考题两部分.第13题~21题为必考题,每个试题考生都必须做答.第22题、第23题为选考题,考生根据要求做答.二.填空题:本大题共4小题;每小题5分,共20分.5,a+a=,则S=__________.n13246⎧x≥2⎪⎩15.一个几何体的三视图如图所示,则这个几何体的外接球的半径为__________.16.下列命题正确是.(写出所有正确命题的序号)①若奇函数f(x)的周期为4,则函数f(x)的图象关于(2,0)对称;③函数f(x)=ln;三.解答题:本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)在△ABC中,角A、B、C的对边分别为a,b,c,且a=3,b=4,B=A+高三理科数学试题和答案第3页共6页π2., 20 40 60 80 ,(1)求 cos B 的值;(2)求 sin 2 A + sin C 的值.18.(本小题满分 12 分)如图,三棱柱 ABC - A B C 中,侧棱 AA ⊥ 平面 ABC , ∆ABC 为等腰直角三角形,1 1 1 1∠BAC = 90 ,且 AA = AB , E , F 分别是 C C , BC 的中点.1 1(1)求证:平面 AB F ⊥ 平面 AEF ;1(2)求二面角 B - AE - F 的余弦值.119.(本小题满分 12 分)某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0 100],样本数据分组为第一组[0, ),第二组[20, ),第 三组 [40, ),第四组 [60, ),第五组 [80 100].(1)求直方图中 x 的值;(2)如果年上缴税收不少于 60 万元的企业可申请政策优惠,若共抽取企业 1200 家,试估计有多少企业可以申请政策优惠;(3)从所抽取的企业中任选 4 家,这 4 家企业年上缴税收少于 20 万元的家数记为 X ,求 X 的分布列和数学期望.(以直方图中的频率作为概率)= 1(a > b > 0) 经过点 P (2, 2) ,离心率 e = ,直线 l 的方程为 220.(本小题满分 12 分)已知椭圆 C : x 2 y 2+ a 2 b 22 2x = 4 .(1)求椭圆 C 的方程;(2)经过椭圆右焦点 F 的任一直线(不经过点 P )与椭圆交于两点 A , B ,设直线 AB 与l 相交于点 M ,记 P A , PB , PM 的斜率分别为 k , k , k ,问:是否存在常数 λ ,使得1 2 3k + k = λ k ?若存在,求出 λ 的值,若不存在,说明理由.12321.(本小题满分 12 分)已知函数 f ( x ) = ax + ln x ,其中 a 为常数,设 e 为自然对数的底数.(1)当 a = -1 时,求 f ( x ) 的最大值;(2)若 f ( x ) 在区间 (0, e ] 上的最大值为 -3 ,求 a 的值;(3)设 g ( x ) = xf ( x ), 若 a > 0, 对于任意的两个正实数 x , x ( x ≠ x ) ,1 2 1 2证明: 2 g ( x 1 + x 2) < g ( x ) + g ( x ) .1 2请考生在第 22、23 二题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用⎪⎪ 5⎩17.解:(1)∵ B = A + , ∴ A = B -, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 1 分 ==2B 铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分 10 分)选修 4-4:坐标系与参数方程⎧3 x =- t + 2 在直角坐标系 xOy 中,直线 l 的参数方程为 ⎨ ( t 为参数),以原点 O 为极点, x⎪ y = 4 t ⎪5轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为 ρ = a sin θ .(1)若 a = 2 ,求圆 C 的直角坐标方程与直线 l 的普通方程;(2)设直线 l 截圆 C 的弦长等于圆 C 的半径长的 3 倍,求 a 的值.23.(本小题满分 10 分)选修 4-5:不等式选讲已知函数 f ( x ) = 2x -1 + 2x + 5 ,且 f ( x ) ≥ m 恒成立.(1)求 m 的取值范围;(2)当 m 取最大值时,解关于 x 的不等式: x - 3 - 2x ≤ 2m - 8 .高三第二次质量检测理科数学答案一.ADABD CCABC CA二.13.631614.20 15. 61 16.①③ππ2 23 4 又 a = 3, b = 4 ,所以由正弦定理得 ,sin Asin B34所以, ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅3 分- cos B sin B所以 -3sin B = 4cos B ,两边平方得 9sin 2 B = 16cos 2 B ,3又 sin 2 B + cos 2 B = 1 ,所以 cos B = ± , ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分5π 3而 B > ,所以 cos B = - . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分2 53 4(2)∵ cos B = - ,∴ sin B = , ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分5 5∴面 ABC ⊥ 面 BB C C..........2 分+ = 则 F (0,0,0) , A ( 22 2 2 2 2 1 ∵ B = A +π2,∴ 2 A = 2 B - π ,∴ sin 2 A = sin(2 B - π ) = - sin 2 B ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分4 3 24= -2sin B cos B = -2 ⨯ ⨯ (- ) = ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分5 5 25又 A + B + C = π ,∴ C = 3π 2- 2 B ,7 24 7 31∴ sin C = - cos 2 B = 1 - cos 2 B = .∴ sin 2 A + sin C = . (12)25 25 25 25分18.解答: (1)证明:∵ F 是等腰直角三角形 ∆ABC 斜边 BC 的中点,∴ AF ⊥ BC .又∵侧棱 AA ⊥ 平面ABC ,11 1∴ AF ⊥ 面 BB 1C 1C , AF ⊥ B 1F .…3 分设 AB = AA = 1 ,则1,EF= , .∴ B F 2 + EF 2 = B E 2 ,∴ B F ⊥ EF ........... 4 分1 11又 AF ⋂ EF = F ,∴ B F ⊥平面 AEF .…1而 B F ⊂ 面 AB F ,故:平面 AB F ⊥ 平面 AEF . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅5 分1 11(2)解:以 F 为坐标原点, FA , FB 分别为 x , y 轴建立空间直角坐标系如图,设 AB = AA = 1 ,12 2 1,0,0) , B (0, - ,1) , E (0, - , ) ,12 2 1 2 2AE = (- , - , ) , AB = (- , ,1) .… ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分2 2 2 2 2由(1)知, B F ⊥平面 AEF ,取平面 AEF 的法向量:12m = FB = (0, ,1) . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分14 4 256 4 4 4 644 4 64 4 4 64设平面 B AE 的法向量为 n = ( x , y , z ) ,1由取 x = 3 ,得 n = (3, -1,2 2) (10),分设二面角 B - AE - F 的大小为θ ,1则 cos θ=|cos <>|=| |= .由图可知θ 为锐角,∴所求二面角 B - AE - F 的余弦值为.… ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12 分119.解答: 解:(I )由直方图可得: 20 ⨯ (x + 0.025 + 0.0065 + 0.003 ⨯ 2) = 1解得 x = 0.0125 .⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2 分(II )企业缴税收不少于 60 万元的频率 = 0.003 ⨯ 2 ⨯ 20 = 0.12 , ∴1200 ⨯ 0.12 = 144 .∴1200 个企业中有144 个企业可以申请政策优惠.⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分(III ) X 的可能取值为 0,1,2,3,4 .由(I )可得:某个企业缴税少于 20 万元的概率 = 0.0125 ⨯ 20 = 0.25 =分1 3 81 1 3 27P ( X = 0) = C 0 ( )0 ( )4 = P ( X = 1) = C 1 ( )1 ( )3 = 41 3 27 1 3 3P ( X = 2) = C 2 ( )2 ( )2 = P ( X = 3) = C 3 ( )3 ( )1 =4 4 14 (5)X0 1 2 3 44 4 256∴ E ( X ) = 0 ⨯ 81+ = 1 ① 又e = , 所以 = = 4, a = 8,b 1 + 2k 2 1 + 2k 2, x x = x - 2 x - 22, k = k = 2k - 2 4 - 2 2P8125627 64 27 64 3 64 1 2561 3 1P ( X = 4) = C 4 ( )4 ( )0 =4...................................... 10 分............. 11 分27 27 3 1+ 1⨯ + 2 ⨯ + 3 ⨯ + 4 ⨯= 1. ....12 分25664 64 64 25620.解:(1)由点 P (2, 2) 在椭圆上得, 4 2 2 c 2 a 2 b 2 2 a 2②由 ①②得 c 2 2 2 = 4 ,故椭圆 C 的方程为 x 2 y 2+ = 1 ……………………..4 分 8 4(2)假设存在常数 λ ,使得 k + k = λ k .1 23由题意可设 AB 的斜率为k , 则直线AB 的方程为 y = k ( x - 2) ③代入椭圆方程x 2 y 2+ = 1 并整理得 (1+ 2k 2 ) x 2 - 8k 2 x + 8k 2 - 8 = 0 8 48k 2 8k 2 - 8设 A ( x , y ), B ( x , y ) ,则有 x + x = ④ ……………6 分 1 1 2 2 1 2 1 2在方程③中,令 x = 4 得, M (4,2 k ) ,从而 k = y 1 - 2 y 2 - 21 2 1,3 2= k - .又因为 A 、F 、B 共线,则有 k = k AF = k BF ,即有y当 a = -1 时, f ( x ) = - x + ln x , f ' ( x ) = -1 + 1①若 a ≥ - ,则 f ' ( x ) ≥ 0 ,从而 f ( x ) 在 (0, e ] 上是增函数,y1=2= k ……………8 分x - 2x - 21 2所以 k + k = 1 2 y - 2 y - 2 1 + 2 x - 2 x - 21 2= y y 1 11 +2 - 2( + )x - 2 x - 2 x - 2 x - 2 1 2 1 2= 2k - 2x 1 + x 2 - 4x x - 2( x + x ) + 41 212⑤ ……………10 分将④代入⑤得 k + k = 2k - 2 1 2 8k 2- 41 + 2k2 8k 2 - 8 8k 2- 2 + 41 + 2k2 1 + 2k 2= 2k - 2 ,又 k = k - 32 2 ,所以 k + k = 2k 1 2 3 . 故存在常数 λ = 2 符合题意…………12 分21.【解答】解:(1)易知 f ( x ) 定义域为 (0, +∞) ,1 - x= ,x x令 f ' ( x ) = 0 ,得 x = 1 .当 0 < x < 1 时, f ' ( x ) > 0 ;当 x > 1 时, f ' ( x ) < 0 . (2)分∴ f ( x ) 在 (0,1) 上是增函数,在 (1,+∞) 上是减函数.f ( x )max= f (1) = -1.∴函数 f ( x ) 在 (0, +∞) 上的最大值为 -1 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分(2)∵ f '( x ) = a + 1 1 1, x ∈ (0, e ], ∈ [ , +∞) .x x e1e∴ f ( x )max= f (e ) = ae + 1 ≥ 0 ,不合题意. ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分11② 若 a < - ,则由 f ' ( x ) > 0 ⇒ a +ex> 0 ,即 0 < x < -1a11由 f ' ( x ) < 0 ⇒ a +< 0 ,即 - < x ≤ e . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分xa从而 f ( x ) 在 (0, - ) 上增函数,在 (- (3)法一:即证 2a ( x + x 2) + 2( 12 )ln( 222 2 x 2 x21 1a a, e ) 为减函数∴ f ( x ) max 1 1 = f (- ) = -1 + ln(- ) a a1 1令 -1 + ln(- ) = -3 ,则 ln(- ) = -2a a∴- 11= e -2 -e 2 < -a ,即 a = -e 2.∵ e ,∴ a = -e 2 为所求 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分1 1 x + x x + x2 2 22 ) ≤ ax 2 + ax 2 + x ln x + x ln x 1 2 1 1 222a ( x + x ( x + x )21 2 )2 - ax 2 - ax 2 = a ⋅[ 1 21 2- x 2 - x 2 ]1 2( x - x )2= -a 1 2 2< 0 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 9 分另一方面,不妨设 x < x ,构造函数1 2k ( x ) = ( x + x )ln(1x + x12) - x ln x - x ln x ( x > x )1 1 1x + xx + x则 k ( x ) = 0 ,而 k ' ( x ) = ln 1 - ln x = ln 1 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分1x + x由 0 < x < x 易知 0 < 11< 1 , 即 k ' ( x ) < 0 , k ( x ) 在 ( x , +∞) 上为单调递减且连续, 1x + x故 k ( x ) < 0 ,即 ( x + x )ln( 11) < x ln x + x ln x 1 1相加即得证⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 12 分1法二: g ' ( x ) = 2ax + 1 + ln x , g '' ( x ) = 2a + > 0.........9 分x故 g ' ( x ) 为增函数,不妨令 x > x 21令 h ( x ) = g ( x ) + g ( x ) - 2 g (1x + x12)( x > x )1h ' ( x ) = g '(x ) - g ' (x + x12) ......... 10 分易知 x > x + x x + x1 , 故h ' ( x ) = g '(x ) - g ' ( 12 2) > 0 (11)分而 h ( x ) = 0 , 知 x > x 时, h ( x ) > 0112(2)圆 C : x 2 + y - a ⎫2∴圆心 C 到直线的距离 d = 2- 8 得 a = 32 或 a = 32 ⎪ -4 x - 4, x < - 523.解 (1) f (x) = ⎨6, - 5⎩ 4 x + 4, x > 22 ≤ x ≤ ⎩3 - x - 2 x ≤4 ⎧ 3 ≤ x < 3 .所以,原不等式的解集为 ⎨⎧x x ≥ - ⎬ .故 h ( x ) > 0 , 即 2 g ( x 1 + x 2) < g ( x ) + g ( x )21 2 (12)分22.解 (1) a = 2 时,圆 C 的直角坐标方程为 x 2 + (y -1)2 = 1 ;直线 l 的普通方程为 4 x + 3 y - 8 = 0 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 4 分⎛⎪ = ⎝ 2 ⎭a 2 4 ,直线 l : 4 x + 3 y - 8 = 0 ,∵直线 l 截圆 C 的弦长等于圆 C 的半径长的 3 倍,3a1 a5 = 2 ⨯ 2 ,11 .⎧2 ⎪1 ⎪2 ≤ x ≤ 2 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 2 分⎪1 ⎪ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 7 分⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分当 - 5 12 时,函数有最小值 6 ,所以 m ≤ 6 . ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 5 分另解:∵ 2x -1 + 2x + 5 ≥ (2x -1) - (2x + 5) = -6 = 6 .∴ m ≤ 6 .(2)当 m 取最大值 6 时,原不等式等价于 x - 3 - 2x ≤ 4 ,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 6 分等价于 ⎨ x ≥ 3 ⎩ x - 3 - 2x ≤ 4 ⎧ x < 3 ,或 ⎨,⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 8 分可得 x ≥ 3 或 - 11 ⎫ ⎩ 3 ⎭⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 10 分。
河南省2017届高三下学期质量检测理科数学试卷一、选择题:共12题1.设集合{|(5)4}A x x x =->,{|}B x x a =≤,若A B B =,则 的值可以是( )A .B .C .D .2.已知复数32i 2ia z +=-,在复平面对应的点在第四象限,则实数 的取值范围是( )A .(,1)-∞-B .(4,)+∞C .(1,4)-D .(4,1)--3.为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有效果的图形是( )4.已知23cos tan 3θθ=+,且πk θ≠(k ∈Z ),则sin[2(π)]θ-等于( ) A .13-B .13C .23D .23-5.我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,请人取半,中人三分取一,后人四分取一,余米一斗五升,问,米几何?”右图是解决该问题的程序框图,执行该程序框图,若输出 1.5S =(单位:升),则输入 的值为( )+A .4.5B .C .7.5D .6.已知双曲线C :22221x y a b-=(0,0a b >>)过点,过点(0,2)-的直线 与双曲线 的一条渐近线平行,且这两条平行线间的距离为23,则双曲线 的实轴长为( )A .2B .C .4D .7.若()f x 为奇函数,且0x 是函数()e xy f x =-的一个零点,则下列函数中,0x -一定是其零点的函数是( )A .()e 1x y f x -=--B .()e 1x y f x -=+C .()e 1x y f x -=-D .()e 1x y f x -=-+8.某几何体的三视图如图所示,则该几何体的体积为( )A .103B .113C .4D .1439.在ABC △中,60BAC ∠=︒,5AB =,4AC =,D 是 上一点,且5AB CD =,则||BD 等于( ) A .B .C .D .10.已知椭圆C :22221x y a b+=(0a b >>)的右焦点为2F ,O 为坐标原点, 为 轴上一点,点 是直线 与椭圆 的一个交点,且2||||2||OA OF OM ==,则椭圆 的离心率为( )A .13B .25C D 11.如图,矩形 中,2AB AD = 为边 的中点,将ADE △沿直线DE 翻转成1A DE △ 平面),若 分别为线段 的中点,则在ADE △翻转过程中,下列说法错误的是( )A .与平面 垂直的直线必与直线 垂直B .异面直线 与 所成角是定值C .一定存在某个位置,使DE MO ⊥D .三棱锥1A ADE -外接球半径与棱 的长之比为定值 12.若曲线1()ln(1)f x a x =+(2e 1e 1x --<<)和32()g x x x =-+(0x <)上分别存在点 ,使得AOB△是以原点 为直角顶点的直角三角形,且斜边 的中点 轴上,则实数 的取值范围是( ) A .2(e,e )B .2(e e,2)C .2(1,e )D .[1,e)二、填空题:共4题13.已知实数 满足条件302403x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则22(1)z x y =++的最小值为________.14.把3男2女5名新生分配到甲、乙两个班,每个班分到的新生不少于2名,且甲班至少分配1名女生,则不同的分配方案种数为________.15.函数()()sin f x A x ωϕ=+(0ω>,π||2ϕ<)的部分图像如图所示,将函数()f x 的图像向右平移7π24个单位后得到函数()g x 的图像,若函数()g x 在区间[]π,3θ-(π3θ->)上的值域为[]1,2-,则θ=________.16.在ABC △中, 分别是角 的对边,ABC △的面积为S ,22()tan 8a b C S +=,且s i n c o s 2c o s s i A B A B =,则cos A =.________ 三、解答题:共7题17.已知等差数列{}n a 的前+()n n ∈N 项和为n S ,33a =,且1n n n S a a λ+=,在等比数列{}n b 中,12b λ=,3151b a =+.(1)求数列{}n a 及{}n b 的通项公式;(2)设数列{}n c 的前+()n n ∈N 项和为n T ,且()12n n nS c +=,求n T .18.某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标,现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标问题中随机抽取3个问题,已知6个招标问题中,甲公司可正确回答其中的4道题目,而乙公司能正确回答每道题目的概率均为23,甲、乙两家公司对每道题目的回答都是相互独立、互不影响的. (1)求甲、乙两家公司共答对2道题目的概率;(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?19.如图,四棱锥P ABCD -中,PA ⊥底面 ,底面 是直角梯形,90ADC ∠=︒,AD BC ∥,AB AC ⊥,AB AC == 在 上,且2AE ED =.(1)已知点 在 ,且2CF FB =,求证:平面PEF ⊥平面 ;(2)当二面角A PB E --的余弦值为多少时,直线 与平面 所成的角为45︒?20.已知 是抛物线24y x =上的一点,以点 和点(2,0)B 为直径两端点的圆 交直线1x =于 两点,直线 与 平行,且直线 交抛物线于 两点.(1)求线段 的长;(2)若3OP OQ =-,且直线 与圆 相交所得弦长与||MN 相等,求直线 的方程. 21.设函数2()e x f x =,()1()g x kx k =+∈R .(1)若直线()y g x =和函数()y f x =的图像相切,求 的值;(2)当0k >时,若存在正实数 ,使对任意(0,)x m ∈,都有|()()|2f x g x x ->恒成立,求 的取值范围.22.在直角坐标系 中,曲线 的参数方程为cos 2sin x a ty t =⎧⎨=⎩( 为参数,0a >),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知直线 的极坐标方程为πcos()4ρθ+=-. (1)设 是曲线 上的一个动点,当2a =时,求点 到直线 的距离的最小值; (2)若曲线 上的所有点均在直线 的右下方,求 的取值范围. 23.已知函数()|1||3|f x x x =++-,()|2|g x a x =--. (1)若关于 的不等式()()f x g x <有解,求实数的取值范围; (2)若关于 的不等式()()f x g x <的解集为()7,2b ,求a b +的值.河南省2017届高三下学期质量检测理科数学试卷答 案一、选择题:共12题1~5.DCDCB 6~10.ABACD 11~12.CB 二、填空题:共4题 13.5 14.16 15.π416三、解答题:共7题17.解:(1)1n n n S a a λ+=,33a =,所以112a a a λ=且()122323a a a a a λ+==,①所以2123,3a a a a λ=+==,②因为数列{}n a 是等差数列,所以1322a a a +=,即2123a a -=, 由①②得11a =,22a =,所以n a n =,2λ=, 所以14b =,316b =,则12n n b +=. (2)因为(1)2n n n S +=,所以2(2)n c n n =+,所以22222122435(1)(1)(2)n T n n n n =+++++⨯⨯⨯-++111111111132435112n n n n =-+-+-++-+--++ 2323232n n n +=-++. 18.解:(1)由题意可知,所求概率12211123424233366C C C C 2221C ()(1)(1)C 33C 315P =⨯-+⨯-=, (2)设甲公司正确完成面试的题数为 ,则 的取值分别为 ,124236C C 1(1)C 5P X ===,214236C C 3(2)C 5PX ===,304236C C 1(3)C 5P X ===,则 的分布列为:131()1232555E X =⨯+⨯+⨯=,2221312()(12)(22)(32)5555D X =-⨯+-⨯+-⨯=.设乙公司正确完成面试的题数为 ,则 取值分别为 ,1(0)27P Y ==,123212(1)C ()339P Y ==⨯⨯=,223214(2)C ()339P Y ==⨯⨯=, 328(3)()327P Y ===,则 的分布列为:所以1248()01232279927E Y =⨯+⨯+⨯+⨯=(或因为2(3,)3Y B ~,所以2()323E Y =⨯=), 222212482()(02)(12)(22)(32)2799273D Y =-⨯+-⨯+-⨯+-⨯=,由()()E X E Y =,()()D X D Y <可得,甲公司成功的可能性更大.19.证明:因为AB AC ⊥,AB AC =,所以90ACB ∠=︒, 因为底面 是直角梯形,90ADC ∠=︒,AD BC ∥, 所以45ACD ∠=︒,即AD CD =,所以2BC AD =,因为2AE ED =,2CF FB =,所以2D 3AE BF A ==. 所以四边形 是平行四边形,则AB EF ∥,所以AC EF ⊥,因为PA ⊥底面 ,所以PA EF ⊥, 因为PAAC A =,所以EF ⊥平面 ,因为EF ⊂平面 ,所以平面PEF ⊥平面 .(2)因为PA AC ⊥,AC AB ⊥,所以AC ⊥平面 ,则APC ∠为直线 与平面 所成的角,若 与平面 所成角为45︒,则tan 1ACAPC PA∠==,即PA AC == 取 的中点为 ,连接 ,则AG BC ⊥,以 坐标原点建立如图所示的空间直角坐标系A xyz -.则(1,1,0)B -,(1,1,0)C ,2(0,,0)3E,P ,所以(1,1,0)EB =-,2(0,3EP =-,设平面 的法向量(,,)x y z =n ,则0n EB n EP ⎧=⎪⎨=⎪⎩,即503203x y y ⎧-=⎪⎪⎨⎪-=⎪⎩,令3y =,则5x =,z =,=n ,因为(1,1,0)AC =是平面 的一个法向量,所以cos ,AC 〈〉==n ,即当二面角与平面 所成的角为45︒. 20.解:(1)设200(,)4y A y ,圆 的方程200(2)()()04y x x y y y --+-=,令1x =,得2200104y y y y -+-=,所以0M N y y y +=,214M N y y y =-,||||2M N MN y y =-=.(2)设直线 的方程为x my n =+,11(,)P x y ,22(),Q x y ,则由24x my n y x=+⎧⎨=⎩消去 ,得2440y my n --=. 124y y m +=,124y y n =-,因为3OPOQ =-,所以12123x x y y +=-,则21212()316y y y y +=-, 所以2430n n -+=,解得1n =或3n =, 当1n =或3n =时,点(2,0)B 到直线的距离为d =,因为圆心 到直线 的距离等于到直线1x =的距离,所以208y =, 又224y m y -=,消去 得4200646416y y +=,求得28y =,此时2024y m y -=,直线 的方程为3x =,综上,直线 的方程为1x =或3x =.21.解:(1)设切点的坐标为2(,e )t t ,由2()e x f x =,得22(e )x f x =', 所以切线方程为22e 2e ()t t y x t -=-,即222e (12)e t t y x t =+-,由已知222e (12)e x x y x t =+-和1y kx =+为同一条直线,所以22e t k =,2(12)e 1t k -=, 令()(1)e x h x x =-,则()e x h x x =-',当(,0)x ∈-∞时,()0h x '>,()h x 单调递增,当(0,)x ∈+∞时,()0h x '<,()h x 单调递减, 所以()(0)1h x h ≤=,当且仅当0x =时等号成立,所以0t =,2k =. (2)①当2k >时,有(1)结合函数的图像知: 存在00x >,使得对于任意0(0,)x x ∈,都有()()f x g x <,则不等式|()()|>2f x g x x -等价()()2g x f x x ->,即2(2)1e 0x k x -+->, 设2(2)1e x t k x =-+-,22()2e x t k =--',由0t '>得12ln 22k x -<,由0t '<得12ln 22k x ->, 若24k ≤<,12ln022k -≤,因为012(0,)(,ln )22k x ∞-⊆-,所以()t x 在12(0,ln )22k -上单调递减, 因为(0)0t =,所以任意12(0,ln)22k x -∈,()0t x >,与题意不符, 若4k >,12ln022k ->,1212(0,ln )(,ln )2222k k --⊆-∞,所以()t x 在12(0,ln )22k -上单调递增, 因为(0)0t = ,所以对任意12(0,ln)22k x -∈,()0t x >符合题意, 此时取120min{0,ln}22k m -<≤,可得对任意(0,)x m ∈,都有|()()|>2f x g x x -. ②当02k <≤时,有(1)结合函数的图像知()2e210(0)xx x -+≥>,所以22()()e 1e (21)(2)(2)0x x f x g x kx x k x k x -=--=-++-≥-≥对任意0x >都成立, 所以|()()|>2f x g x x -等价于2e (2)10x k x -+->, 设2()e (2)1x x k x ϕ=-+-,则2()=2e (2)x x k ϕ'-+,由()0x ϕ'>得12ln 22k x +>,()0x ϕ'<得,12ln 22k x +<, 所以()x ϕ在12(0,ln)22k -上单调递减,注意到(0)0ϕ=, 所以对任意12(0,ln)22k x -∈,()0x ϕ<,不符合题设, 综上所述, 的取值范围为()4,+∞.22.解:(1)由πcos()4ρθ+=-cos sin )ρθρθ-=-)x y -=-,即直线 的方程为40x y -+=, 依题意,设(2cos ,2sin )P t t ,则到直线的距离π|)4|π2co ()4s t d t ++==+, 当π2ππ4t k +=+,即3π2π4t k =+,k ∈Z时,min 1d =. (2)因为曲线 上的所有点均在直线 的右下方,所以对t ∀∈R ,有cos 2sin 40a t t -+>恒成立,)4t t ϕ+>-(其中2tan aϕ=)恒成立,4<,又0a >,解得0a << 故的取值范围为.23.解:(1)当2x =时,()|2|g x a x =--取得最大值为 ,因为()|1||3|4f x x x =++-≥,当且仅当13x -≤≤,()f x 取最小值4, 因为关于 的不等式()()f x g x <有解, 所以4a >,即实数 的取值范围是(4,)+∞.(2)当72x =时,()5f x =, 则77()2522g a =-++=,解得132a =,所以当2x <时,9()2g x x =+,令9()42g x x =+=,得1(1,3)2x =-∈-,所以12b =-,则6a b +=河南省2017届高三下学期质量检测理科数学试卷解析1.【解析】本题主要考查集合的关系与运算、解一元二次不等式.,若,则,.故选D.2.【解析】本题主要考查复数的运算和几何意义.,,解得.故选C.3.【解析】本题主要考查独立性检验.选项D中不服药与服药样本中患病的频率差距最大.故选D.4.【解析】本题主要考查同角三角函数的基本关系、倍角公式和诱导公式.由得,,即,则.故选C.5.【解析】本题主要考查程序框图和数学史.模拟程序运行,可得:,满足循环条件执行循环体,,,满足循环条件执行循环体,,,满足循环条件执行循环体,,,不满足循环条件结束循环,输出的值为,则,解得.故选B.6.【解析】本题主要考查双曲线的标准方程和性质、点到直线的距离.点到渐近线的距离为,,双曲线过点,,解得,则双曲线的实轴长为.故选A.7.【解析】本题主要考查函数的零点、奇函数的性质.是函数的一个零点,,即,又为奇函数,,当时,..故选B.8.【解析】本题主要考查三视图与体积.由三视图可知,该几何体是由一个四棱锥与一个三棱柱组合而成,其中四棱锥的底面与三棱柱的左侧面重合.则该几何体的体积为.故选A.9.【解析】本题主要考查平面向量的数量积和模.设,,,解得,则.故选C.10.【解析】本题主要考查椭圆的几何性质.由题知,在椭圆的短轴上.设椭圆的左焦点为,连结.,,即,,,,则椭圆的离心率为.故选D.11.【解析】本题主要考查空间线面的位置关系.取中点,连结,,则,,平面平面,平面,故A正确;取中点,连结,,则为平行四边形,则为异面直线与所成角,故B正确;点关于直线的对称点为,则平面,即过与垂直的直线在平面上,故C错误;三棱锥外接球半径为,故D正确.故选C.12.【解析】本题主要考查利用导数研究函数的单调性和最值.,函数在,上单调递减,.设,,由斜边的中点轴上可得,,,,即,,设,则,,,即实数的取值范围是.故选B.13.【解析】本题主要考查简单的线性规划及点到直线的距离.作出不等组表示的可行域,如图所示,的几何意义为可行域内的点到点,距离的平方.则的最小值为点,到直线距离的平方,.故答案为14.【解析】本题主要考查排列组合问题.把5名新生分配到甲、乙两个班,每个班分到的新生不少于2名,有种分配方案,其中甲班都是男生的分配方案有种,则不同的分配方案种数为.故答案为.15.【解析】本题主要考查函数的图象和性质.由图可得,,又,,又,,则.若函数在区间上的值域为,则,.故答案为.16.【解析】本题主要考查正弦定理、余弦定理、三角形面积公式.由得,即.由得,即.,,.故答案为.17.【解析】本题主要考查等差数列、等比数列,考查裂项求和.(1)在中,令,得到关系式,再由等差数列的性质可得,从而求得,再由等比数列的通项公式求得公比,进而得到;(2)由等差数列的前项和公式可得,代入求出,利用裂项求和可得.18.【解析】本题主要考查互斥事件、相互独立事件的概率,考查离散型随机变量的数学期望和方差.(1)根据互斥事件的概率加法公式和相互独立事件的概率可得结论;(2)分别列出两公司正确完成面试题数的所有取值,计算其相应的概率,得到分布列,代入公式求出期望和方差,比较它们的大小可得结论.19.【解析】本题主要考查线面垂直的判定与性质、用向量法求空间角的大小.(1)由平面几何知识易证是平行四边形,得,从而,由线面垂直的性质得,由线面垂直的判定可得平面,由面面垂直的判定可得结论;(2)易证平面,则为直线与平面所成的角.取的中点为,连接,则,以坐标原点建立空间直角坐标系.分别求出平面和平面的一个法向量,利用向量夹角公式可得结论.20.【解析】本题主要考查直线与抛物线的位置关系、数量积的坐标运算及点到直线的距离.(1)设出点坐标,由、点坐标可得圆的方程,直线方程联立,得关于的一元二次方程,利用韦达定理和弦长公式可得线段的长;(2)设出直线的方程,与抛物线方程联立,消去得关于的一元二次方程,利用韦达定理、数量积的坐标运算及点到直线的距离公式可求出的方程.21.【解析】本题主要考查导数的几何意义、利用导数研究函数的单调性、最值和不等式恒成立问题.(1)求导,根据导数的几何意义及直线的点斜式方程可得切线方程,与已知切线方程比较,构造函数,利用导数研究函数的单调性和最值,则可得值.(2)分和两种情况讨论.将不等式转化,利用导数研究函数的单调性和最值,则结论可得.22.【解析】本题主要考查将极坐标方程化成直角坐标方程,点到直线的距离及简单的线性规划的应用.(1)利用及两角和的余弦公式将的极坐标方程化成直角坐标方程,设出的参数坐标,由点到直线的距离公式及余弦函数的性质可得最值;(2)问题转化为对,恒成立.利用辅助角公式及余弦函数的值域可得结论.23.【解析】本题主要考查绝对值不等式的求解.(1)利用绝对值三角不等式可得的最小值,易得的最大值,问题转化为的最大值大于的最小值.(2)由题知,为方程的根,代入可求得;当时,由求出,验证可得,则可得。
2017年辽宁省大连市高三双基测试数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合A={x|x2﹣3x﹣10<0,x∈N*},B={2x<16},则A∩B=()A.{﹣1,0,1,2,3}B.{1,2,3,4}C.{1,2,3}D.{1}2.(5分)若i为复数单位,复数z=在复平面内对应的点在直线x+2y+5=0上,则实数a的值为()A.4 B.3 C.2 D.13.(5分)命题“∀x∈[1,2],x2﹣a≤0”为真命题的一个充分不必要条件是()A.a≥4 B.a≤4 C.a≥5 D.a≤54.(5分)已知函数f(x)=,则f(f(9))的值为()A.﹣ B.﹣9 C.D.95.(5分)在空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别是(1,0,2),(1,2,0),(1,2,1),(0,2,2),若正视图以yOz平面为投射面,则该四面体左(侧)视图面积为()A.B.1 C.2 D.46.(5分)若双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=1相切,则双曲线的离心率为()A.2 B.C.D.7.(5分)若实数x,y满足约束条件,则目标函数z=3x+y的最大值为()A.6 B.C.D.﹣18.(5分)(2x﹣)n的展开式的各个二项式系数之和为64,则在(2x﹣)n的展开式中,常数项为()A.﹣120 B.120 C.﹣60 D.609.(5分)若正整数N除以正整m后的余数为n,则记为N=n(modm),例如10=4(mod6).如图程序框图的算法源于我国古代《孙子算经》中的“孙子定律”的某一环节,执行该框图,输入a=2,b=3,c=5,则输出的N=()A.6 B.9 C.12 D.2110.(5分)已知过抛物线y2=4x焦点F的直线l交抛物线于A、B两点(点A在第一象限),若=3,则直线l的方程为()A.x﹣2y﹣1=0 B.2x﹣y﹣2=0 C.x﹣y﹣1=0 D.x﹣y﹣=0 11.(5分)已知等差数列{a n}的公差d≠0,且a3,a5,a15成等比数列,若a1=3,S n为数列a n的前n项和,则a n•S n的最小值为()A.0 B.﹣3 C.﹣20 D.912.(5分)已知函数f(x)=x2e2x+m|x|e x+1(m∈R)有四个零点,则m的取值范围为()A.(﹣∞,﹣e﹣)B.(﹣∞,e+)C.(﹣e﹣,﹣2)D.(﹣∞,﹣)二、填空题(本小题共4小题,每小题5分,共20分)13.(5分)等差数列{a n}的前n项和为S n,且满足a4+a10=20,则S13=.14.(5分)已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000颗黄豆,数得落在阴影部分的黄豆数为600颗,则可以估计出阴影部分的面积约为.15.(5分)已知平面内三个单位向量,,,<,>=60°,若=m+n,则m+n的最大值是.16.(5分)已知正方体ABCD﹣A1B1C1D1的棱长为1,过正方体ABCD﹣A1B1C1D1的对角线BD1的截面面积为S,则S的取值范围是.三、解答题(本题共70分)17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B ﹣cos2C﹣sin2A=sinAsinB.(1)求角C;(2)向量=(sinA,cosB),=(cosx,sinx),若函数f(x)=•的图象关于直线x=对称,求角A,B.18.(12分)为了增强中小学生运动健身意识,某校举办中小学生体育运动知识竞赛,学校根据男女比例从男生中随机抽取120人,女生中随机抽取100人,进行成绩统计分析,其中成绩在80分以上为优秀,根据样本统计数据分别制作了男生成绩频数分布表以及女生成绩频率分布直方图如图:男生成绩:女生成绩:(如图)(1)根据以上数据完成下列2×2列联表根据此数据你认为能否有99.9%以上的把握认为体育运动知识竞赛是否优秀与性别有关?参考公式:K2=,(n=a+b+c+d).(2)以样本中的频率作为概率,学校在全校成绩优秀的学生中随机抽取3人参加全市体育运动知识竞赛.(i)在其中2人为男生的条件下,求另1人为女生的概率;(ii)设3人中女生人数为随机变量X,求X的分布列与数学期望.19.(12分)如图,已知长方形ABCD中,AB=2AD,M为DC的中点,将△ADM 沿AM折起,使得平面ADM⊥平面ABCM.(1)求证:AD⊥BM;(2)若=2,求二面角E﹣AM﹣D的正弦值.20.(12分)已知函数f(x)=ln(x﹣1)+(a∈R).(1)若函数f(x)在区间(1,4)上单调递增,求a的取值范围;(2)若函数y=f(x)的图象与直线4x﹣3y﹣2=0相切,求a的值.21.(12分)已知椭圆E:+=1(a>b>0)的左焦点F1与抛物线y2=﹣4x 的焦点重合,椭圆E的离心率为,过点M(m,0)(m>)做斜率存在且不为0的直线l,交椭圆E于A,C两点,点P(,0),且•为定值.(1)求椭圆E的方程;(2)过点M且垂直于l的直线与椭圆E交于B,D两点,求四边形ABCD面积的最小值.[选修4-4:坐标系与参数方程选讲]22.(10分)在极坐标系下,点P是曲线ρ=2(0<θ<π)上的动点,A(2,0),线段AP的中点为Q,以极点为原点,极轴为x轴正半轴建立平面直角坐标系.(1)求点Q的轨迹C的直角坐标方程;(2)若轨迹C上的点M处的切线斜率的取值范围是[﹣,﹣],求点M横坐标的取值范围.[选修4-5:不等式选讲]23.设函数f(x)=|x+4|.(1)若y=f(2x+a)+f(2x﹣a)最小值为4,求a的值;(2)求不等式f(x)>1﹣x的解集.2017年辽宁省大连市高三双基测试数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合A={x|x2﹣3x﹣10<0,x∈N*},B={2x<16},则A∩B=()A.{﹣1,0,1,2,3}B.{1,2,3,4}C.{1,2,3}D.{1}【分析】求出集合A中的元素,求出A、B的交集即可.【解答】解:A={x|x2﹣3x﹣10<0,x∈N*}={x|﹣2<x<5,x∈N*}={1,2,3,4},B={2x<16}={x|x<4},则A∩B={1,2,3},故选:C.【点评】本题考查了集合的运算,考查解不等式问题,是一道基础题.2.(5分)若i为复数单位,复数z=在复平面内对应的点在直线x+2y+5=0上,则实数a的值为()A.4 B.3 C.2 D.1【分析】利用复数的运算法则、几何意义、直线的方程即可得出.【解答】解:复数z===﹣i﹣a在复平面内对应的点(﹣a,﹣1)在直线x+2y+5=0上,∴﹣a﹣2+5=0,解得a=3.故选:B.【点评】本题考查了复数的运算法则、几何意义、直线的方程,考查了推理能力与计算能力,属于基础题.3.(5分)命题“∀x∈[1,2],x2﹣a≤0”为真命题的一个充分不必要条件是()A.a≥4 B.a≤4 C.a≥5 D.a≤5【分析】本题先要找出命题为真命题的充要条件{a|a≥4},从集合的角度充分不必要条件应为{a|a≥4}的真子集,由选择项不难得出答案.【解答】解:命题“∀x∈[1,2],x2﹣a≤0”为真命题,可化为∀x∈[1,2],a ≥x2,恒成立即只需a≥(x2)max=4,即“∀x∈[1,2],x2﹣a≤0”为真命题的充要条件为a≥4,而要找的一个充分不必要条件即为集合{a|a≥4}的真子集,由选择项可知C符合题意.故选C【点评】本题为找命题一个充分不必要条件,还涉及恒成立问题,属基础题.4.(5分)已知函数f(x)=,则f(f(9))的值为()A.﹣ B.﹣9 C.D.9【分析】先求出f(9)=,从而f(f(9))=f()=,由此能求出结果.【解答】解:∵函数f(x)=,∴f(9)=,f(f(9))=f()==.故选:C.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.5.(5分)在空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别是(1,0,2),(1,2,0),(1,2,1),(0,2,2),若正视图以yOz平面为投射面,则该四面体左(侧)视图面积为()A.B.1 C.2 D.4【分析】若正视图以yOz平面为投射面,则该四面体左(侧)视图为三角形,底高分别为1,2,即可得出结论.【解答】解:若正视图以yOz平面为投射面,则该四面体左(侧)视图为三角形,底高分别为1,2,面积为1,故选C.【点评】本题考查三视图,考查学生的计算能力,确定该四面体左(侧)视图为三角形,底高分别为1,2是关键.6.(5分)若双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=1相切,则双曲线的离心率为()A.2 B.C.D.【分析】求出双曲线的渐近线方程,圆的圆心和半径,再由直线和圆相切的条件可得a=b,再由a,b,c的关系和离心率公式计算即可得到.【解答】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=x,圆(x﹣2)2+y2=1的圆心为(2,0),半径为1,则由圆心到直线的距离为1,可得=1,解得a=b,c===a,则有e==.故选C.【点评】本题考查双曲线的方程和性质,主要考查离心率的求法,运用直线和圆相切的条件是解题的关键.7.(5分)若实数x,y满足约束条件,则目标函数z=3x+y的最大值为()A.6 B.C.D.﹣1【分析】先画出约束条件的可行域,再求出可行域中各角点的坐标,将各点坐标代入目标函数的解析式,分析后易得目标函数z=3x+y的最大值.【解答】解:由约束条件得如图所示的三角形区域,三个顶点坐标为A(2,0),解得B(,),C(0,﹣1)将三个代入z=3x+y得z的值分别为6,,﹣1,直线z=3x+y过点A (2,0)时,z取得最大值为6;故选:A.【点评】在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.8.(5分)(2x﹣)n的展开式的各个二项式系数之和为64,则在(2x﹣)n的展开式中,常数项为()A.﹣120 B.120 C.﹣60 D.60【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.【解答】解:由题意可得2n=64,求得n=6,故(2x﹣)n展开式的通项公式=(﹣1)r•(2)6﹣r x6﹣r,为T r+1令6﹣r=0,求得r=4,得展开式的常数项为=60,故选:D.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.9.(5分)若正整数N除以正整m后的余数为n,则记为N=n(modm),例如10=4(mod6).如图程序框图的算法源于我国古代《孙子算经》中的“孙子定律”的某一环节,执行该框图,输入a=2,b=3,c=5,则输出的N=()A.6 B.9 C.12 D.21【分析】模拟运行程序,可得程序的作用是先求2,3的最小公倍数,再除以5,余数为1,即可得出结论.【解答】解:模拟运行程序,可得程序的作用是先求2,3的最小公倍数,再除以5,余数为1,故N=6,故选A.【点评】本题主要考查了循环结构的程序框图,正确理解每次循环得到的mod (n,i)的值是解题的关键.10.(5分)已知过抛物线y2=4x焦点F的直线l交抛物线于A、B两点(点A在第一象限),若=3,则直线l的方程为()A.x﹣2y﹣1=0 B.2x﹣y﹣2=0 C.x﹣y﹣1=0 D.x﹣y﹣=0【分析】作出抛物线的准线,设A、B在l上的射影分别是C、D,连接AC、BD,过B作BE⊥AC于E.由抛物线的定义结合题中的数据,可算出Rt△ABE中,cos∠BAE=,得∠BAE=60°,即直线AB的倾斜角为60°,从而得到直线AB的斜率k 值.【解答】解:作出抛物线的准线l:x=﹣1,设A、B在l上的射影分别是C、D,连接AC、BD,过B作BE⊥AC于E.∵=3,∴设AF=3m,BF=m,由点A、B分别在抛物线上,结合抛物线的定义,得AC=3m,BD=m.因此,Rt△ABE中,cos∠BAE=,得∠BAE=60°所以,直线AB的倾斜角∠AFx=60°,得直线AB的斜率k=tan60°=.则直线l的方程为:y=,即x﹣y﹣=0,故选:D.【点评】本题给出抛物线的焦点弦被焦点分成3:1的比,求直线的斜率k,着重考查了抛物线的定义和简单几何性质,直线的斜率等知识点,属于中档题.11.(5分)已知等差数列{a n}的公差d≠0,且a3,a5,a15成等比数列,若a1=3,S n为数列a n的前n项和,则a n•S n的最小值为()A.0 B.﹣3 C.﹣20 D.9【分析】由等差数列{a n}的通项公式及等比数列性质列出方程,求出d=﹣2或d=0,由此能求出a n•S n的最小值.【解答】解:∵等差数列{a n}的公差d≠0,且a3,a5,a15成等比数列,a1=3,∴(3+4d)2=(3+2d)(3+14d),解得d=﹣2或d=0,当d=0时,a n=3,S n=3n,a n S n=9n,当n=1时,a n•S n取最小值9;当d=﹣2时,a n=3+(n﹣1)(﹣2)=5﹣2n,S n=3n+=4n﹣n2,a n•S n=(5﹣2n)(4n﹣n2)=2n3﹣13n2+20n,设f(n)=2n3﹣13n2+20n,则f′(n)=6n2﹣26n+20=6(n﹣)2﹣,∴当n=3时,a n•S n取最小值:2×27﹣13×9+20×3=﹣3.综上,a n•S n取最小值为﹣3.故选:B.【点评】本题考查等差数列的第n项与前n项和的积的最小值的求法,是中档题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.12.(5分)已知函数f(x)=x2e2x+m|x|e x+1(m∈R)有四个零点,则m的取值范围为()A.(﹣∞,﹣e﹣)B.(﹣∞,e+)C.(﹣e﹣,﹣2)D.(﹣∞,﹣)【分析】令y=xe x,则y'=(1+x)e x,求出极值点,判断函数的单调性,作出y=xe x 图象,利用图象变换得f(x)=|xe x|图象,令f(x)=t,则关于t方程h(t)=t2+mt+1=0两根分别在,满足g(x)=﹣1的x有4个,列出不等式求解即可.【解答】解:令y=xe x,则y'=(1+x)e x,由y'=0,得x=﹣1,当x∈(﹣∞,﹣1)时,y'<0,函数y单调递减,当x∈(﹣1,+∞)时,y'>0,函数y单调递增.作出y=xe x图象,利用图象变换得f(x)=|xe x|图象(如图10),令f(x)=t,则关于t方程h(t)=t2+mt+1=0两根分别在时(如图11),满足g(x)=﹣1的x有4个,由,解得m<﹣e﹣.故选:A.【点评】本题考查函数的导数的应用,函数的单调性以及函数的极值,函数的图象的变换,函数零点个数,考查函数与方程的综合应用,数形结合思想以及转化思想的应用.二、填空题(本小题共4小题,每小题5分,共20分)13.(5分)等差数列{a n}的前n项和为S n,且满足a4+a10=20,则S13=130.【分析】S13=(a1+a13)=(a4+a10),由此能求出结果.【解答】解:∵等差数列{a n}的前n项和为S n,且满足a4+a10=20,∴S13=(a1+a13)=(a4+a10)==130.故答案为:130.【点评】本题考查等差数列的前13项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.14.(5分)已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000颗黄豆,数得落在阴影部分的黄豆数为600颗,则可以估计出阴影部分的面积约为36.【分析】设阴影部分的面积为S,由题意可得=,解之即可.【解答】解:设图中阴影部分的面积为S,由题意可得=,解得S=36故答案为:36【点评】本题考查几何概型的应用,属基础题.15.(5分)已知平面内三个单位向量,,,<,>=60°,若=m+n,则m+n的最大值是.【分析】将=m+n两边平方后整理得(m+n)2﹣1=mn,再由基本不等式可得x+y的最大值.【解答】解:由已知条件=m+n,两边平方可得1=m2+mn+n2=(m+n)2﹣mn,∴(m+n)2﹣1=mn,根据向量加法的平行四边形法则,判断出m,n>0,∴(m+n)2﹣1=mn≤(m+n)2,∴,则m+n≤,即m+n的最大值为.故答案为:【点评】本题考查的知识点是平面向量的基本定理,基本不等式,其中根据已知分析出(m+n)2﹣1=mn是解答的关键,属中档题.16.(5分)已知正方体ABCD﹣A1B1C1D1的棱长为1,过正方体ABCD﹣A1B1C1D1的对角线BD1的截面面积为S,则S的取值范围是[] .【分析】由题意画出图形,根据棱AA1上的点到对角线BD1的距离可得使截面面积取得最值的情形,则面积S的取值范围可求.【解答】解:由图可知,当M、N分别为AA1、CC1的中点时,截面面积最小为;当截面为ABC1D1时,截面面积最大为.∴S的取值范围是[].故答案为:[].【点评】本题考查棱柱的结构特征,考查数形结合的解题思想方法,属中档题.三、解答题(本题共70分)17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B ﹣cos2C﹣sin2A=sinAsinB.(1)求角C;(2)向量=(sinA,cosB),=(cosx,sinx),若函数f(x)=•的图象关于直线x=对称,求角A,B.【分析】(1)根据三角恒等变换和正弦、余弦定理化简等式,求出cosC的值,即得C的值;(2)由平面向量的数量积求出函数f(x),根据f(x)的图象关于直线x=对称,得出f(+x)=f(﹣x),利用三角恒等变换得出sinx(﹣sinAsin+cosBcos)=0;再由sinx≠0,A+B=,求出A、B的值.【解答】解:(1)△ABC中,cos2B﹣cos2C﹣sin2A=sinAsinB,∴(1﹣sin2B)﹣(1﹣sin2C)﹣sin2A=sinAsinB,∴sin2C﹣sin2B﹣sin2A=sinAsinB,∴c2﹣b2﹣a2=ab,∴cosC===﹣,又C∈(0,π),∴C=;(2)向量=(sinA,cosB),=(cosx,sinx),∴函数f(x)=•=sinAcosx+cosBsinx;又f(x)的图象关于直线x=对称,∴f(+x)=f(﹣x),∴sinAcos(+x)+cosBsin(+x)=sinAcos(﹣x)+cosBsin(﹣x),∴sinA[cos(+x)﹣cos(﹣x)]+cosB[sin(+x)﹣sin(﹣x)]=0,∴﹣2sinAsin sinx+2cosBcos sinx=0,∴2sinx(﹣sinAsin+cosBcos)=0;又sinx≠0,∴sinAsin﹣cosBcos=0,又B=﹣A,∴sinAsin﹣cos(﹣A)cos=0,∴sinA﹣cosA=0,∴sin(A﹣)=0,∴sin(A﹣)=0;又A∈(0,),∴A﹣∈(﹣,),∴A﹣=0,∴A=;∴B=﹣A=.【点评】本题考查了三角恒等变换和特殊角的三角函数值应用问题,也考查了三角函数的图象与性质的应用问题,是综合性题目.18.(12分)为了增强中小学生运动健身意识,某校举办中小学生体育运动知识竞赛,学校根据男女比例从男生中随机抽取120人,女生中随机抽取100人,进行成绩统计分析,其中成绩在80分以上为优秀,根据样本统计数据分别制作了男生成绩频数分布表以及女生成绩频率分布直方图如图:男生成绩:女生成绩:(如图)(1)根据以上数据完成下列2×2列联表根据此数据你认为能否有99.9%以上的把握认为体育运动知识竞赛是否优秀与性别有关?参考公式:K2=,(n=a+b+c+d).(2)以样本中的频率作为概率,学校在全校成绩优秀的学生中随机抽取3人参加全市体育运动知识竞赛.(i)在其中2人为男生的条件下,求另1人为女生的概率;(ii)设3人中女生人数为随机变量X,求X的分布列与数学期望.【分析】(1)由列联表数据代入公式求出K2,从而得到没有99.9%以上的把握认为体育运动知识竞赛是否优秀与性别有关.(2)①在其中2人为男生的条件下,另1人为女生的概率为.②由题意知,X服从二项分布B(3,).由此能求出X的分布列和数学期望.【解答】解:(1)由题意,K2=≈15.64>10.828,∴有99.9%以上的把握认为体育运动知识竞赛是否优秀与性别有关;(2)(i)在其中2人为男生的条件下,另1人为女生的概率为=(ii)设3人中女生人数为随机变量X,X=0,1,2,3,则因为所取总体数量较多,抽取3名学生可以看出3次独立重复实验,于是X服从二项分布B(3,).所以得分布列为:数学期望EX=3×=1.【点评】本题考查频率分布直方图的应用,考查概率的求法,考查二项分布的性质的合理运用,考查离散型随机变量的分布列和数学期望的求法,是中档题.19.(12分)如图,已知长方形ABCD中,AB=2AD,M为DC的中点,将△ADM 沿AM折起,使得平面ADM⊥平面ABCM.(1)求证:AD⊥BM;(2)若=2,求二面角E﹣AM﹣D的正弦值.【分析】(1)先证明BM⊥AM,再利用平面ADM⊥平面ABCM,证明BM⊥平面ADM,从而可得AD⊥BM.(2)建立直角坐标系,求出平面AMD、平面AME的一个法向量,利用向量的夹角公式,即可得出二面角E﹣AM﹣D的正弦值.【解答】证明:(1)长方形ABCD中,设AB=2,AD=1,M为DC的中点则AM=BM=,∴AM2+BM2=AB2,∴BM⊥AM∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM∴BM⊥平面ADM∵AD⊂平面ADM,∴AD⊥BM.解:(2)建立如图所示的直角坐标系,∵=2,设AB=2,AD=1,∴A(,0,0),M(﹣,0,0),B(﹣,,0),D(0,0,),则平面AMD的一个法向量=(0,1,0),=(,,),=(﹣,0,0),设AME的一个法向量=(x,y,z),则,取y=1,得=(0,1,﹣4),设二面角E﹣AM﹣D的平面角为θ,则cosθ==,sinθ==,∴二面角E﹣AM﹣D的正弦值为.【点评】本题考查线线垂直的证明,考查二面角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(12分)已知函数f(x)=ln(x﹣1)+(a∈R).(1)若函数f(x)在区间(1,4)上单调递增,求a的取值范围;(2)若函数y=f(x)的图象与直线4x﹣3y﹣2=0相切,求a的值.【分析】(1)求出原函数的导函数,由题意可得f′(x)≥对任意x∈(1,4)恒成立,分离参数a,可得a≥,利用导数求出函数g(x)=在(1,4)上的最大值得答案;(2)设出切点坐标,求出函数在切点处的导数,可得切线斜率,再由两函数在切点处的函数值相等求得a的值.【解答】解:(1)函数f(x)=ln(x﹣1)+,则f′(x)=,∵函数f(x)在区间(1,4)上单调递增,∴在x∈(1,4)上恒成立.即a≥在x∈(1,4)上恒成立.令g(x)=,则g′(x)=.当x∈(1,3)时,g′(x)>0,当x∈(3,4)时,g′(x)<0.∴g(x)在(1,3)上为增函数,在(3,4)上为减函数,∴g(x)max=g(3)=﹣8.则a≥﹣8;(2)设切点坐标为(x0,y0),则f′(x0)=,①则,②f(x0)=,③联立①,②,③得,即.令g(x)=,g′(x)=,令h(x)=8x2﹣19x+17,△<0,∴h(x)>0恒成立,∴g′(x)>0在(1,+∞)上恒成立,即g(x)在(1,+∞)上为增函数,∵g(2)=0,∴x0=2,a=3.【点评】本题考查利用导数研究函数的单调性,训练了恒成立问题的求解方法,考查计算能力,属中档题.21.(12分)已知椭圆E:+=1(a>b>0)的左焦点F1与抛物线y2=﹣4x 的焦点重合,椭圆E的离心率为,过点M(m,0)(m>)做斜率存在且不为0的直线l,交椭圆E于A,C两点,点P(,0),且•为定值.(1)求椭圆E的方程;(2)过点M且垂直于l的直线与椭圆E交于B,D两点,求四边形ABCD面积的最小值.【分析】(1)抛物线y2=﹣4x的焦点为(﹣1,0),可得c=1,又,a2=b2+c2,联立解出即可得出.(2)设直线l的方程为:ty+m=x,A(x1,y1),C(x2,y2).与椭圆方程联立化为:(t2+2)y2+2tmy+m2﹣2=0.把根与系数的关系代入•=+y1y2=(y1+y2)+(t2+1)y1•y2+=为定值.可得=,解得m=1.可得|AC|===|AC|•|BD|,把代换t可得:|BD|=.利用S四边形ABCD与二次函数的单调性即可得出.【解答】解:(1)抛物线y2=﹣4x的焦点为(﹣1,0),∴F1(1,0),∴c=1,又,a2=b2+c2,解得c=1=b,a2=2.∴椭圆E的方程为:+y2=1.(2)设直线l的方程为:ty+m=x,A(x1,y1),C(x2,y2).联立,化为:(t2+2)y2+2tmy+m2﹣2=0.△>0,∴y1+y2=,y1•y2=.•=+y1y2=+y1•y2=(y1+y2)+(t2+1)y1•y2+=+(t2+1)+=为定值.∴=,化为:3m2﹣5m+2=0,,解得m=1.∴M(1,0).∴y1+y2=,y1•y2=.∴|AC|===,把代换t可得:|BD|=.=|AC|•|BD|=××=,∴S四边形ABCD令t2+1=k>1,则f(k)====≥,当=,即k=2,t=±1时取等号.∴四边形ABCD面积的最小值为.【点评】本题考查了椭圆与抛物线的标准方程及其性质、直线与椭圆相交弦长问题、一元二次方程的根与系数的关系、数量积运算性质、四边形面积计算公式、二次函数的单调性、换元法,考查了推理能力与计算能力,属于难题.[选修4-4:坐标系与参数方程选讲]22.(10分)在极坐标系下,点P是曲线ρ=2(0<θ<π)上的动点,A(2,0),线段AP的中点为Q,以极点为原点,极轴为x轴正半轴建立平面直角坐标系.(1)求点Q的轨迹C的直角坐标方程;(2)若轨迹C上的点M处的切线斜率的取值范围是[﹣,﹣],求点M横坐标的取值范围.【分析】(1)曲线ρ=2(0<θ<π),即ρ2=4,(0<θ<π),化为直角坐标方程:x2+y2=4(0<y≤2).设线段AP的中点Q(x,y),A(x′,y′),则,y=,解得x′=2x﹣2,y′=2y.代入方程(x′)2+(y′)2=4,即可得出.(2)轨迹C的方程为:y==,设M(x0,y0).y′=,根据迹C上的点M处的切线斜率的取值范围是[﹣,﹣],可得≤≤,解出即可得出.【解答】解:(1)曲线ρ=2(0<θ<π),即ρ2=4,(0<θ<π),化为直角坐标方程:x2+y2=4(0<y≤2).设线段AP的中点Q(x,y),A(x′,y′),则,y=,解得x′=2x﹣2,y′=2y.∵(x′)2+(y′)2=4,∴(2x﹣2)2+(2y)2=4,化为:(x﹣1)2+y2=1.由y′∈(0,2],可得0<2y≤2,解得0<y≤1.∴点Q的轨迹C的直角坐标方程:(x﹣1)2+y2=1(0<y≤1).(2)轨迹C的方程为:y==,设M(x0,y0).y′==,∵迹C上的点M处的切线斜率的取值范围是[﹣,﹣],∴≤≤,解得:≤x0≤.∴点M横坐标的取值范围是.【点评】本题考查了极坐标方程化为直角坐标方程、利用导数研究曲线切线的斜率、坐标变换,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]23.设函数f(x)=|x+4|.(1)若y=f(2x+a)+f(2x﹣a)最小值为4,求a的值;(2)求不等式f(x)>1﹣x的解集.【分析】(1)求出y的解析式,利用绝对值不等式即可求解a的值.(2)函数含有绝对值,即可考虑到分类讨论去掉绝对值号,分别讨论当x=﹣4时,当x>﹣4时,当x<﹣4的情况,可得不同解析式求解不等式即可.【解答】解:(1)由题意,函数f(x)=|x+4|.那么y=f(2x+a)+f(2x﹣a)=|2x+a+4|+|2x﹣a+4|≥|2x+a﹣4﹣(2x﹣a+4)|=|2a|∵最小值为4,即|2a|=3,∴a=(2)函数f(x)=|x+4|=∴不等式f(x)>1﹣x等价于,解得:x>﹣2或x<﹣10故得不等式f(x)>1﹣x的解集为{x|x>﹣2或x<﹣10}.【点评】本题主要考查绝对值的意义,绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,属于基础题。