【三维设计】高考数学一轮复习 数学思想活用 巧得分系列五 函数思想在解三角形中的应用 新人教版
- 格式:doc
- 大小:97.00 KB
- 文档页数:2
2022高考数学一轮复习三维设计我来演练-三角函数、解三角形2第5节两角和与差的三角函数一、选择题1.(2020·成都联考)已知锐角α满足cos 2α=cos ⎝⎛⎭⎫π4-α,则sin 2α等于( )A.12 B .-12 C.22D .-22解析:由cos 2α=cos ⎝⎛⎭⎫π4-α得(cos α-sin α)(cos α+sin α)=22(cos α+sin α) 由α为锐角知cos α+sin α≠0.∴cos α-sin α=22,平方得1-sin 2α=12. ∴sin 2α=12. 答案:A2.(cos 15°-cos 75°)(sin 75°+sin 15°)=( ) A.12B.22C.32D .1解析:原式=(cos 15°-sin 15°)(cos 15°+sin 15°) =cos 215°-sin 215°=cos 30°=32.答案:C3.在△ABC 中,若cos 2B +3cos(A +C )+2=0,则sin B 的值是( ) A.12B.22C.32D .1解析:由cos 2B +3cos(A +C )+2=0,得2cos 2B -3cos B +1=0, 因此cos B =12或cos B =1(舍去). 答案:C4.已知sin α=55,sin(α-β)=-1010,α、β均为锐角,则β等于( ) A.5π12 B.π3 C.π4D.π6解析:∵α、β均为锐角,∴-π2<α-β<π2, ∵cos(α-β)=1-sin 2(α-β)=31010,sin α=55,∴cos α=1-⎝⎛⎭⎫552=255.∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=22. ∵0<β<π2,∴β=π4. 答案:C5.已知f (α)=1+cos 2α1tan α2-tan α2,α∈⎝⎛⎭⎫0,π2,则f (α)取得最大值时α的值是( )A.π6B.π4C.π3D.25π解析:f (α)=1+cos 2α1tan α2-tan α2=2cos 2αcos α2sin α2-sin α2cos α2=2cos 2αsin α2cos α2cos 2α2-sin 2α2=sin αcos 2αcos α=12sin 2α,当2α=π2,即α=π4时,函数f (α)取得最大值.答案:B 二、填空题6.(2011·江苏高考)已知tan ⎝⎛⎭⎫x +π4=2,则tan x tan 2x 的值为__________.解析:由tan ⎝⎛⎭⎫x +π4=tan x +tan π41-tan x tan π4=2,得tan x =13,tan 2x =2tan x 1-tan 2x =34,故tan x tan 2x =13×43=49.答案:497.(2020·嘉兴模拟)已知cos ⎝⎛⎭⎫α+π4=13,α∈⎝⎛⎭⎫0,π2,则cos α=________.解析:∵α∈⎝⎛⎭⎫0,π2,∴α+π4∈⎝⎛⎭⎫π4,3π4,∴sin ⎝⎛⎭⎫α+π4=223. 故cos α=cos[⎝⎛⎭⎫α+π4-π4]=cos ⎝⎛⎭⎫α+π4cos π4+sin ⎝⎛⎭⎫α+π4sin π4 =13×22+223×22=4+26. 答案:4+26 三、解答题8.已知cos α=-45,α∈⎝⎛⎭⎫π,32π,tan β=-13,β∈⎝⎛⎭⎫π2,π,求cos(α+β). 解:∵α∈⎝⎛⎭⎫π,32π,cos α=-45, ∴sin α=-35.∵β∈⎝⎛⎭⎫π2,π,tan β=-13, ∴cos β=-31010,sin β=1010.∴cos(α+β)=cos αcos β-sin αsin β=⎝⎛⎭⎫-45×⎝ ⎛⎭⎪⎫-31010-⎝⎛⎭⎫-35×1010=310109.(2020·衡阳模拟)函数f (x )=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2,x ∈R.(1)求f (x )的最小正周期;(2)若f (α)=2105,α∈⎝⎛⎭⎫0,π2,求tan ⎝⎛⎭⎫α+π4的值. 解:(1)f (x )=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2=sin x 2+cos x 2=2sin ⎝⎛⎭⎫x 2+π4∴f (x )的最小正周期T =2π12=4π.(2)由f (α)=2105, 得sin α2+cos α2=2105, ∴1+sin α=85.∴sin α=35.又α∈⎝⎛⎭⎫0,π2.∴cos α=1-sin 2α=1-925=45.∴tan α=sin αcos α=34.∴tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=34+11-34=7.10.(2020·济源质检)已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解:(1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12.又π2<α<π, 因此cos α=-32. (2)因为π2<α<π,π2<β<π,因此-π<-β<-π2,故-π2<α-β<π2. 由sin (α-β)=-35,得cos(α-β)=45. cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×(-35) =-43+310.第6节简单的三角恒等变换一、选择题1.sin (180°+2α)1+cos 2α·cos 2αcos (90°+α)等于( ) A .-sin α B .-cos α C .sin αD .cos α解析:原式=(-sin 2α)·cos 2α(1+cos 2α)·(-sin α) =2sin α·cos α·cos 2α2cos 2α·sin α=cos α. 答案:D2.(2011·福建高考)若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( ) A.22 B.33 C. 2D.3解析:由二倍角公式可得sin 2α+1-2sin 2α=14,sin 2α=34,又因为α∈⎝⎛⎭⎫0,π2,因此sinα=32.即α=π3,因此tan α=tan π3= 3. 答案:D3.若cos α=-45,α是第三象限的角,则1+tan α21-tan α2=( )A .-12 B.12 C .2D .-2解析:∵cos α=-45且α是第三象限的角, ∴sin α=-35.∴1+tan α21-tan α2=cos α2+sin α2cos α2cos α2-sin α2cos α2=cos α2+sin α2cos α2-sin α2=⎝⎛⎭⎫cos α2+sin α22⎝⎛⎭⎫cos α2-sin α2⎝⎛⎭⎫cos α2+sin α2 =1+sin αcos 2α2-sin 2α2=1+sin αcos α=1-35-45=-12.答案:A4.函数y =12sin 2x +3cos 2x -32的最小正周期等于( ) A .πB .2πC.π4D.π2解析:y =12sin 2x +32(1+cos 2x )-32=12sin 2x +32cos 2x =sin ⎝⎛⎭⎫2x +π3.因此T =π. 答案:A5.化简sin 235°-12cos 10°cos80°=( ) A .-2 B .-12 C .-1D .1解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°·sin 10°=-12cos 70°12sin 20°=-1. 答案:C 二、填空题6.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________. 解析:由(1+3tan α)(1+3tan β)=4,可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3. 又α+β∈(0,π),∴α+β=π3. 答案:π37.设sin α=35⎝⎛⎭⎫π2<α<π,tan(π-β)=12,则tan(α-2β)的值为________.解析:由sin α=35⎝⎛⎭⎫π2<α<π,得cos α=-45, ∴tan α=-34.又tan(π-β)=12,∴tan β=-12, 故tan 2β=2tan β1-tan 2β=-43, 因此tan(α-2β)=-34+431+34×43=724.答案:724 三、解答题8.已知A 、B 、C 三点的坐标分别为A (3, 0)、B (0,3)、C (cos α,sin α),α∈⎝⎛⎭⎫π2,3π2.若AC ·BC =-1,求2sin 2α+sin 2α1+tan α的值.解:AC =(cos α-3,sin α),BC = (cos α,sin α-3),由AC ·BC =-1,得(cos α-3)cos α+sin α(sin α-3)=-1, ∴sin α+cos α=23,2sin α·cos α=-59, 又2sin 2α+sin 2α1+tan α=2sin 2α+2sin αcos α1+sin αcos α=2sin αcos α=-59, 故所求的值为-59.9.已知sin(2α+β)=3sin β,设tan α=x ,tan β=y ,记y =f (x ). (1)求证:tan(α+β)=2tan α; (2)求f (x )的解析表达式.解:(1)证明:由sin(2α+β)=3sin β, 得sin[(α+β)+α]=3sin[(α+β)-α], 即sin(α+β)cos α+cos(α+β)sin α=3sin(α+β)cos α-3cos(α+β)sin α, ∴sin(α+β)cos α=2cos(α+β)sin α. ∴tan(α+β)=2tan α.(2)由(1)得tan α+tan β1-tan αtan β=2tan α,即x +y1-xy =2x , ∴y =x 1+2x 2,即f (x )=x1+2x 2.10.已知函数f (x )=sin(2x +π6)+sin(2x -π6)-cos2x (1)求函数f (x )的最小正周期和单调增区间;(2)若函数f (x )的图像向左平移m (m >0)个单位后,得到函数g (x )的图像关于y 轴对称,求实数m 的最小值.解:(1)f (x )=sin(2x +π6)+sin(2x -π6)-cos2x =3sin2x -cos2x =2sin(2x -π6), ∴f (x )的最小正周期为2π2=π. 当2k π-π2≤2x -π6≤2k π+π2(k ∈Z),即k π-π6≤x ≤k π+π3(k ∈Z)时,函数f (x )单调递增, 故所求区间为[k π-π6,k π+π3](k ∈Z).(2)函数f (x )的图像向左平移m (m >0)个单位后得g (x )=2sin[2(x +m )-π6], 要使g (x )的图像关于y 轴对称, 只需2m -π6=k π+π2(k ∈Z).即m =k π2+π3(k ∈Z).因此m 的最小值为π3.第7节正弦定理与余弦定理一、选择题1.在△ABC 中,a 、b 分别是角A 、B 所对的边,条件“a <b ”是使“cos A >cos B ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:a <b ⇔A <B ⇔cos A >cos B . 答案:C2.已知△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且A =π6,B =π6,则c a 的值为( )A .2 B. 3 C. 2D .1解析:由A =π6,B =π6可得C =π-π6-π6=2π3,由正弦定理可得c a =sin C sin A =sin 2π3sin π6= 3.答案:B3.已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .8 2 C. 2D.22解析:∵a sin A =b sin B =c sin C =2R =8,∴sin C =c8. ∴S △ABC =12ab sin C =116abc =116×162= 2. 答案:C4.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若C =120°,c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定解析:法一:由余弦定理得2a 2=a 2+b 2-2ab cos 120°,b 2+ab -a 2=0, 即⎝⎛⎭⎫b a 2+ba -1=0,b a =-1+52<1,故b <a . 法二:由c =2a ,得sin C =2sin A .即sin 120°=2sin A . ∴sin A =64>12.又0°<A <60°,∴A >30°. ∴A >B ,a >b . 答案:A5.△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于( ) A.32B.34C.32或 3D.32或34解析:∵sin C 3=sin B 1,∴sin C =3·sin 30°=32;∴C =60°或C =120°. 当C =60°时,A =90°,S △ABC =12×1×3=32;当C =120°时,A =30°,S △ABC =12×1×3sin 30°=34.即△ABC 的面积为32或34.答案:D二、填空题6.(2011·福建高考)若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.解析:由正弦定理可知:S △ABC =12BC ×CA ×sin60°= 3 ,又因为BC =2,因此CA =2,即BC =CA ,又∠ACB =60°,因此三角形ABC 是正三角形,因此AB =2.答案:27.(2011·吉林一模)在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,角C =________.解析:依照正弦定理,a sin A =c sin C ,由3a =2c sin A ,得a sin A =c 32,∴sin C =32,而角C 是锐角.∴角C =π3.答案:π3三、解答题8.在△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,B =2π3,b =13,a +c =4,求a .解:由余弦定理b 2=a 2+c 2-2ac cos B=a 2+c 2-2ac cos 2π3 =a 2+c 2+ac =(a +c )2-ac .又∵a +c =4,b =13,∴ac =3.联立⎩⎪⎨⎪⎧ a +c =4,ac =3, 解得a =1或a =3.9.(2011·茂名一模)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,若tan A =3,cos C =55.(1)求角B 的大小.(2)若c =4,求△ABC 的面积.解:(1)∵cos C =55,∴sin C =255,tan C =2.又∵tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C =-2+31-2×3=1且B <π,∴B =π4. (2)由正弦定理b sin B =c sin C 得b =c sin B sin C =10,由sin A =sin (B +C )=sin ⎝⎛⎭⎫π4+C得sin A =31010,∴△ABC 的面积S △ABC =12bc sin A =6.10.(2011·茂名期末)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判定△ABC 的形状.解:(1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C得a 2+b 2-ab =4.又∵△ABC 的面积为3,∴12ab sin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2. (2)由sin C +sin(B -A )=sin 2A ,得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0,当cos A =0时,∵0<A <π,∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A ,由正弦定理得a =b ,即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形.第8节正弦定理和余弦定理的应用一、选择题1.在某次测量中,在A 处测得同一平面方向的B 点的仰角是50°,且到A 的距离为2,C 点的俯角为70°,且到A 的距离为3,则B 、C 间的距离为( )A.16B.17C.18D. 19 解析:因∠BAC =120°,AB =2,AC =3.∴BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =4+9-2×2×3×cos 120°=19.∴BC =19.答案:D2.地上画了一个角∠BDA=60°,某人从角的顶点D动身,沿角的一边DA行走10米后,拐弯往另一边的方向行走14米正好到达∠BDA的另一边BD上的一点,我们将该点记为点N,则N与D之间的距离为()A.14米B.15米C.16米D.17米解析:如图,设DN=x m,则142=102+x2-2×10×x cos 60°,∴x2-10x-96=0,解得x=16或x=-6(舍).∴N与D之间的距离为16米.答案:C3.(2020·大连联考)如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是()A.10米B.102米C.103米D.106米解析:在△BCD中,CD=10,∠BDC=45°,∠BCD=15°+90°=105°,∠DBC=30°,BCsin 45°=CDsin 30°,BC=CD sin 45°sin 30°=10 2.在Rt△ABC中,tan 60°=ABBC,AB=BC tan 60°=10 6. 答案:D4.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是()A.50 m B.100 mC.120 m D.150 m解析:设水柱高度是h m,水柱底端为C,则在△ABC中,A=60°,AC=h,AB=100,BC=3h,依照余弦定理得,(3h)2=h2+1002-2·h·100·cos 60°,即h2+50h-5 000=0,即(h-50)(h +100)=0,即h =50,故水柱的高度是50 m.答案:A5.(2020·北师大附中模拟)一艘海轮从A 处动身,以每小时40海里的速度沿东偏南50°方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观看灯塔,其方向是东偏南20°,在B 处观看灯塔,其方向是北偏东65°,那么B 、C 两点间的距离是( )A .102海里B .103海里C .202海里D .203海里 解析:如图所示,由已知条件可得,∠CAB =30°,∠ABC =105°,即AB =40×12=20(海里).∴∠BCA =45°. 由正弦定理可得:AB sin 45°=BC sin 30°. ∴BC =20×1222=102(海里).答案:A二、填空题6.如图,在日本地震灾区的搜救现场,一条搜救狗从A 处沿正北方向行进x m 到达B 处发觉一个生命迹象,然后向右转105°,行进10 m到达C 处发觉另一生命迹象,这时它向右转135°后连续前行回到动身点,那么x =________.解析:由题知,∠CBA =75°,∠BCA =45°,∴∠BAC =180°-75°-45°=60°. 由x sin45°=10sin60°得x =1063.答案:10637.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到那个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.解析:如图所示,依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得60sin 45°=BM sin 30°, 解得BM =302(km).答案:30 2三、解答题8.如图,两座相距60 m 的建筑物AB 、CD 的高度分别为20 m 、50m ,BD 为水平面,求从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD的大小.解:因AD 2=602+202=4 000,AC 2=602+302=4 500,在△CAD 中,由余弦定理cos ∠CAD =AD 2+AC 2-CD 22AD ·AC =22, ∴∠CAD =45°. 9.(2020·泉州模拟)如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船赶忙前往救援,同时把消息告知在甲船的南偏西30°,相距10海里的C 处的乙船.(1)求处于C 处的乙船和遇险渔船间的距离;(2)设乙船沿直线CB 方向前往B 处救援,其方向与CA 成θ角,求f (x )=sin 2θsin x +34cos 2θcos x (x ∈R)的值域.解:(1)连接BC ,由余弦定理得BC 2=202+102-2×20×10cos 120°=700.∴BC =107,即所求距离为107海里.(2)∵sin θ20=sin 120°107,∴sin θ= 37.∵θ是锐角,∴cos θ=47. f (x )=sin 2θsin x +34cos 2θcos x =37sin x +37cos x=237sin ⎝⎛⎭⎫x +π6,∴f (x )的值域为⎣⎡⎦⎤-237,237. 10.(2020·兰州模拟)某单位在抗雪救灾中,需要在A ,B 两地之间架设高压电线,测量人员在相距6 km 的C ,D 两地测得∠ACD =45°,∠ADC =75°,∠BDC =15°,∠BCD =30°(如图,其中A ,B ,C ,D 在同一平面上),假如考虑到电线的自然下垂和施工损耗等缘故,实际所须电线长度大约应该是A ,B 之间距离的1.2倍,问施工单位至少应该预备多长的电线?解:在△ACD 中,∠ACD =45°,CD =6,∠ADC =75°,因此∠CAD =60°.因为CD sin ∠CAD =AD sin ∠ACD ,因此AD =CD ×sin ∠ACD sin ∠CAD =6×2232=2 6.在△BCD 中,∠BCD =30°,CD =6,∠BDC =15°,因此∠CBD =135°. 因为CD sin ∠CBD =BD sin ∠BCD ,因此BD =CD ×sin ∠BCD sin ∠CBD =6×1222=3 2.又因为在△ABD 中,∠BDA =∠BDC +∠ADC =90°,因此△ABD 是直角三角形.因此AB =AD 2+BD 2=(26)2+(32)2=42.因此电线长度至少为l =1.2×AB =6542(km)故施工单位至少应该预备长度为6542 km 的电线.。
第三章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数基础盘查一角的有关概念(一)循纲忆知了解任意角的概念(角的定义、分类、终边相同角).(二)小题查验1.判断正误(1)三角形的内角必是第一、二象限角( )(2)第一象限角必是锐角( )(3)不相等的角终边一定不相同( )(4)若β=α+k·720°(k∈Z),则α和β终边相同( )答案:(1)×(2)×(3)×(4)√2.(人教A版教材习题改编)3 900°是第________象限角,-1 000°是第________象限角.答案:四一3.若α=k·180°+45°(k∈Z),则α在第________象限.答案:一、三基础盘查二弧度的定义和公式(一)循纲忆知了解弧度制的概念,能进行弧度与角度的互化.(二)小题查验1.判断正误(1)终边落在x轴非正半轴上的角可表示为α=2πk+π(k∈Z)( )(2)一弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位( )答案:(1)×(2)√2.(人教A版教材练习改编)已知半径为120 mm的圆上,有一条弧的长是144 mm,则该弧所对的圆心角的弧度数为________.答案:1.2基础盘查三任意角的三角函数(一)循纲忆知理解任意角的三角函数(正弦、余弦、正切)的定义.(二)小题查验1.判断正误(1)三角函数线的长度等于三角函数值( )(2)三角函数线的方向表示三角函数值的正负( )(3)点P (tan α,cos α)在第三象限,则角α终边在第二象限( ) (4)α为第一象限角,则sin α+cos α>1( ) 答案:(1)× (2)√ (3)√ (4)√2.(人教A 版教材练习改编)已知角θ的终边经过点P (-12,5),则cos θ=________,sin θ=________,tan θ=________.答案:513 -1213 -1253.若角α终边上有一点P (x,5),且cos α=x13(x ≠0),则 sin α=________.答案:513对应学生用书P44考点一 角的集合表示及象限角的判定(基础送分型考点——自主练透)[必备知识]角的概念(1)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.[题组练透]1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个解析:选C -3π4是第三象限角,故①错误;4π3=π+π3,从而4π3是第三象限角,故②正确;-400°=-360°-40°,从而③正确;-315°=-360°+45°,从而④正确.2.设集合M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅解析:选B 法一:由于M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N .法二:由于M 中,x =k2·180°+45°=k ·90°+45°=45°·(2k +1),2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .3.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为: β=45°+k ×360°(k ∈Z ), 则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°. 答案:-675°或-315°[类题通法](1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.(2)利用终边相同的角的集合S ={β|β=2k π+α,k ∈Z }判断一个角β所在的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.考点二 三角函数的定义(题点多变型考点——全面发掘)[必备知识]任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)三角函数值在各象限内符号为正的口诀 一全正,二正弦,三正切,四余弦.(3)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.[提醒] 三角函数线是有向线段.[一题多变][典型母题]设角α终边上一点P (-4a,3a )(a <0),求 sin α的值.[解] 设P 与原点的距离为r , ∵P (-4a,3a ),a <0, ∴r =-4a2+3a2=|5a |=-5a .∴sin α=3a -5a =-35. [题点发散1] 若本例中“a <0”,改为“a ≠0”,求 sin α的值. 解:当a <0时,sin α=-35;当a >0时, r =5a, sin α=35.[题点发散2] 若本例中条件变为:已知角α的终边在直线3x +4y =0上,求sin α, cos α, tan α的值.解:设α终边上任一点为P (-4a,3a ),当a >0时,r =5a ,sin α=35,cos α=-45,tan α=-34;当a <0时,r =-5a ,sin α=-35,cos α=45,tan α=-34.[题点发散3] 若本例中条件变为:已知角α的终边上一点P (-3,m )(m ≠0), 且sin α=2m4,求cos α, tan α的值. 解:由题设知x =-3,y =m ,∴r 2=|OP |2=()-32+m 2(O 为原点),r =3+m 2.∴sin α=m r=2m 4=m 22, ∴r =3+m 2=22, 即3+m 2=8,解得m =± 5.当m =5时,r =22,x =-3,y =5, ∴cos α=-322=-64, tan α=-153;当m =-5时,r =22,x =-3,y =-5, ∴cos α=-322=-64, tan α=153.[类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.考点三 扇形的弧长及面积公式(题点多变型考点——全面发掘)[必备知识]弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r 2.[一题多变][典型母题][题点发散1] 去掉本例条件“面积是4”,问当它的半径和圆心角取何值时,才使扇形面积最大?解:设圆心角是θ,半径是r , 则2r +r θ=10.S =12θ·r 2=12r (10-2r )=r (5-r )=-⎝ ⎛⎭⎪⎫r -522+254≤254,当且仅当r =52时,S max =254,θ=2.所以当r =52,θ=2时,扇形面积最大.[题点发散2] 若本例中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.解析:设圆半径为r ,则圆内接正方形的对角线长为2r , ∴正方形边长为2r , ∴圆心角的弧度数是2rr= 2.答案: 2[题点发散3] 若本例条件变为:扇形的圆心角是α=120°,弦长AB =12 cm ,求弧长l .解:设扇形的半径为r cm ,如图.由sin 60°=6r,得r =4 3 cm ,∴l =|α|·r =2π3×43=833π cm.[类题通法]应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.对应A 本课时跟踪检测十七一、选择题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3 B.π6C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角. 故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3.故选A.3.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A. 3 B .± 3 C .- 2D .- 3解析:选D 依题意得cos α=x x 2+5=24x <0,由此解得x =-3,选D. 4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12 解析:选A 由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32. 5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C.35D.45解析:选B 取终边上一点(a,2a )(a ≠0),根据任意角的三角函数定义,可得cos θ=±55,故 cos 2θ=2cos 2θ-1=-35. 6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1. 二、填空题7.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________. 解析:2 010°=676π=12π-5π6,∴与2 010°终边相同的角中绝对值最小的角的弧度数为-5π6.答案:-5π68.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)9.已知角θ的终边上有一点(a ,a ),a ∈R 且a ≠0,则sin θ的值是________. 解析:由已知得r =a 2+a 2=2|a |,则sin θ=ar=a2|a |=⎩⎪⎨⎪⎧22,a >0,-22,a <0.所以sin θ的值是22或-22. 答案:22或-2210.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.解析:由α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z ),k π+π2<α2<k π+3π4(k∈Z ),知α2是第二或第四象限角,再由⎪⎪⎪⎪⎪⎪sin α2=-sin α2知sin α2<0,所以α2只能是第四象限角.答案:四 三、解答题11.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB . 解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr=6.(2)法一:∵2r +l =8 ∴S 扇=12lr =14l ·2r≤14⎝ ⎛⎭⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎫822=4, 当且仅当2r =l ,即α=lr=2时,扇形面积取得最大值4. ∴圆心角α=2,弦长AB =2sin 1×2=4sin 1. 法二:∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=l r=2时,扇形面积取得最大值4. ∴弦长AB =2sin 1×2=4sin 1. 12.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断 tan α2sin α2cos α2的符号.解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0, 知α在第一、三象限,故α角在第三象限,其集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π<α<2k π+3π2,k ∈Z . (2)由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2 sin α2 cos α2取正号;当α2在第四象限时, tan α2<0, sin α2<0, cos α2>0,所以 tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.第二节同角三角函数的基本关系与诱导公式对应学生用书P46基础盘查一 同角三角函数的基本关系 (一)循纲忆知理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α.(二)小题查验 1.判断正误(1)对任意角α,sin 23α+cos 23α=1都成立( ) (2)对任意角α,sinα2cosα2=tan α2都成立( )(3)对任意的角α,β有sin 2α+cos 2β=1( ) 答案:(1)√ (2)× (3)×2.(人教A 版教材例题改编)已知sin α=-35,则tan α=________.答案:34或-343.化简:2sin 2α-11-2cos 2α=________. 答案:1基础盘查二 三角函数的诱导公式 (一)循纲忆知能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.(二)小题查验 1.判断正误(1)六组诱导公式中的角α可以是任意角( )(2)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化( )(3)角π+α和α终边关于y 轴对称( ) 答案:(1)√ (2)√ (3)× 2.(人教A 版教材习题改编)(1)sin ⎝ ⎛⎭⎪⎫-31π4=________,(2)tan ⎝ ⎛⎭⎪⎫-263π=________. 答案:(1)22(2) 3对应学生用书P46考点一 三角函数的诱导公式(基础送分型考点——自主练透)[必备知识][提醒] 对于角“k π2±α”(k ∈Z )的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.[题组练透]1.已知sin ⎝⎛⎭⎪⎫5π2+α=15,那么cos α=( )A .-25B .-15C.15D.25解析:选C sin ⎝⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α=15.2.已知A =k π+αsin α+k π+αcos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}解析:选C 当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.3.sin 600°+tan 240°的值等于________.解析:sin 600°+tan 240°=sin(720°-120°)+tan(180°+60°)=-sin 120°+tan 60°=-32+3=32. 答案:324.已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫5π6+α=________. 解析:tan ⎝⎛⎭⎪⎫5π6+α=tan ⎝ ⎛⎭⎪⎫π-π6+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.答案:-335.化简:π-απ-α⎝ ⎛⎭⎪⎫-α+3π2-α-π-π-α.解:原式=-tan α·cos α-cos απ+α-π+α=tan α·cos α·cos α-cos α·sin α=sin αcos α·cos α-sin α=-1.考点二 同角三角函数的基本关系(题点多变型考点——全面发掘)[必备知识]同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1(α∈R ).(2)商数关系:tan α=sin αcos α⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z . [一题多变][典型母题]已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值. [解] (1)法一:联立方程⎩⎪⎨⎪⎧sin α+cos α=15, ①sin 2 α+cos 2 α=1, ②由①得 cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形内角, ∴⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.法二:∵sin α+cos α=15,∴(sin α+cos α)2=⎝ ⎛⎭⎪⎫152,即1+2sin αcos α=125,∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π,∴sin α>0, cos α<0, sin α-cos α >0. ∴sin α-cos α=75.由⎩⎨⎧sin α+cos α=15,α-cos α=75,得⎩⎨⎧sin α=45,α=-35,∴tan α=-43.(2)1cos 2α-sin 2α=sin 2α+cos 2αcos 2α-sin 2α =sin 2α+cos 2αcos 2αcos 2α-sin 2αcos 2α=tan 2α+11-tan 2α. ∵tan α=-43,∴1cos 2α-sin 2α=tan 2α+11-tan 2α=⎝ ⎛⎭⎪⎫-432+11-⎝ ⎛⎭⎪⎫-432=-257. [题点发散1] 若本例中的条件和结论互换:已知α是三角形的内角,且tan α=-13,求 sin α+cos α的值.解:法一:由tan α=-13,得sin α= -13cos α,将其代入 sin 2α+cos 2α=1,得109cos 2α=1,∴cos 2α=910,易知cos α<0, ∴cos α=-31010, sin α=1010,故 sin α+cos α=-105. 法二:∵α是三角形的内角且tan α=-13,∴α为第二象限角, ∴sin α=1010, cos α=-31010, ∴sin α+cos α=-105. [题点发散2] 保持本例条件不变, 求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值. 解:由例题可知: tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2 =-43-45×⎝ ⎛⎭⎪⎫-43+2=87.(2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825. [题点发散3] 若本例条件变为:sin α+3cos α3cos α-sin α=5, 求tan α的值.解:由sin α+3cos α3cos α-sin α=5, 得tan α+33-tan α=5,即tan α=2.[类题通法]1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.对应B 本课时跟踪检测十八一、选择题1.已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是( ) A .sin θ<0,cos θ>0 B .sin θ>0,cos θ<0 C .sin θ>0,cos θ>0D .sin θ<0,cos θ<0解析:选B ∵sin(θ+π)<0,∴-sin θ<0,sin θ>0. ∵cos(θ-π)>0,∴-cos θ>0,cos θ<0.2.(2015·成都外国语学校月考)已知tan(α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝⎛⎭⎪⎫α+π2=( )A.45 B .-45C.35D .-35解析:选B tan(α-π)=34⇒tan α=34.又因为α∈⎝ ⎛⎭⎪⎫π2,3π2,所以α为第三象限的角,所以sin ⎝ ⎛⎭⎪⎫α+π2=cos α=-45. 3.已知f (α)=π-απ-α-π-αα,则f ⎝ ⎛⎭⎪⎫-31π3的值为( ) A.12 B .-13C .-12D.13解析:选C ∵f (α)=sin α·cos α-cos α tan α=-cos α,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫10π+π3 =-cos π3=-12.4.(2015·福建泉州期末)若tan α=2,则2sin 2α+1sin 2α的值为( )A.53 B .-134C.135D.134解析:选D 法一:(切化弦的思想):因为tan α=2, 所以 sin α=2cos α, cos α=12sin α.又因为sin 2α+cos 2α=1, 所以解得 sin 2α=45.所以2sin 2α+1sin2α=2sin 2α+12sin α cos α=2sin 2α+1sin 2α=2×45+145=134.故选D. 法二:(弦化切的思想):因为2sin 2α+1sin 2α=3sin 2α+cos 2α2sin α cos α=3tan 2α+12tan α=3×22+12×2=134.故选D.5.(2015·湖北黄州联考)若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sinB -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B ∵△ABC 是锐角三角形,则A +B >π2,∴A >π2-B >0,B >π2-A >0,∴sin A >sin ⎝⎛⎭⎪⎫π2-B =cos B ,sin B >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,∴cos B -sin A <0, sin B -cos A >0, ∴点P 在第二象限,选B.6.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 015)的值为( )A .-1B .1C .3D .-3解析:选D ∵f (4)=a sin(4π+α)+b cos(4π+β) =a sin α+b cos β=3,∴f (2 015)=a sin(2 015π+α)+b cos(2 015π+β) =a sin(π+α)+b cos(π+β) =-a sin α-b cos β =-(a sin α+b cos β)=-3. 即f (2 015)=-3. 二、填空题7.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,则tan α=________.解析:∵α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α =-1-sin 2α=-35,∴tan α= sin αcos α=-43.答案:-438.化简:sin ⎝ ⎛⎭⎪⎫π2+α·cos ⎝ ⎛⎭⎪⎫π2-απ+α+π-α⎝ ⎛⎭⎪⎫π2+απ+α=________.解析:原式=cos α·sin α-cos α+sin α-sin α-sin α=-sin α+sin α=0. 答案:09.(2015·绍兴二模)若f (cos x )=cos 2x, 则f (sin 15°)=________. 解析:f (sin 15°)=f (cos 75°)=cos 150°=cos(180°-30°)=-cos 30°=-32. 答案:-3210.(2015·新疆阿勒泰二模)已知α为第二象限角, 则cos α1+tan 2α+sin α1+1tan 2α=________. 解析:原式=cos α sin 2α+cos 2αcos 2α+sin α sin 2α+cos 2αsin 2α=cos α1|cos α|+ sin α1|sin α|,因为α是第二象限角,所以sin α>0, cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0.答案:0 三、解答题11.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°·(-sin 1 050°)+tan 945° =-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45° =32×32+12×12+1=2. 12.已知sin(3π+α)=2sin ⎝ ⎛⎭⎪⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α.解:由已知得sin α=2cos α.(1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α =sin 2α+sin 2αsin 2α+14sin 2α=85.第三节三角函数的图象与性质对应学生用书P47基础盘查 正弦函数、余弦函数、正切函数的图象和性质 (一)循纲忆知1.能画出y =sin x, y =cos x, y =tan x 的图象,了解三角函数的周期性. 2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象与x轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性. (二)小题查验 1.判断正误(1)函数y =sin x 的图象介于直线y =1与y =-1之间( ) (2)将余弦曲线向右平移π2个单位就得到正弦曲线( )(3)函数y =sin ⎝⎛⎭⎪⎫2x +3π2是奇函数( ) (4)函数y =sin x 的对称轴方程为x =2k π+π2(k ∈Z )( )(5)正切函数在整个定义域内是增函数( ) 答案:(1)√ (2)√ (3)× (4)× (5)×2.(人教A 版教材习题改编)函数y =4sin x ,x ∈[-π,π]的单调性是( ) A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,在⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上都是减函数C .在[0,π]上是增函数,在[]-π,0上是减函数D .在⎣⎢⎡⎦⎥⎤π2,π和⎣⎢⎡⎦⎥⎤-π,-π2上是增函数,在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数 答案:B3.(2015·皖南八校模拟)函数f (x )=cos 2x +2sin x 的最大值与最小值的和是( ) A .-2 B .0 C .-32D .-12解析:选C f (x )=1-2sin 2x +2sin x =-2⎝ ⎛⎭⎪⎫sin x -122+32,所以函数f (x )的最大值是32,最小值是-3,所以最大值与最小值的和是-32,故选C. 4.(人教A 版教材习题改编)函数y =-tan ⎝⎛⎭⎪⎫x +π6+2的定义域为____________________.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π3,k ∈Z对应学生用书P48考点一 三角函数的定义域与值域(基础送分型考点——自主练透)[必备知识]正弦、余弦函数的定义域为R ,正切函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z;正弦、余弦函数的值域为[-1,1],正切函数的值域为R .[题组练透]1.函数y =2sin x -1的定义域为( ) A.⎣⎢⎡⎦⎥⎤π6,5π6B.⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z ) C.⎝⎛⎭⎪⎫2k π+π6,2k π+5π6(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π+π6,k π+5π6(k ∈Z ) 解析:选B 由2sin x -1≥0, 得sin x ≥12,所以2k π+π6≤x ≤2k π+5π6(k ∈Z ).2.函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为( ) A.⎣⎢⎡⎦⎥⎤-32,32B.⎣⎢⎡⎦⎥⎤-32,3C.⎣⎢⎡⎦⎥⎤-332,332D.⎣⎢⎡⎦⎥⎤-332,3 解析:选B 当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即此时函数f (x )的值域是⎣⎢⎡⎦⎥⎤-32,3.3.函数y =lg(sin 2x )+9-x 2的定义域为________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎢⎡⎭⎪⎫-3,π2∪⎝ ⎛⎭⎪⎫0,π2.答案:⎣⎢⎡⎭⎪⎫-3,π2∪⎝ ⎛⎭⎪⎫0,π24.求函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫|x |≤π4的最大值与最小值.解:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22. ∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎪⎫||x ≤π4的最大值为54,最小值为1-22.[类题通法]1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.考点二 三角函数的单调性(重点保分型考点——师生共研)[必备知识]正弦函数的单调递增区间是⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π(k ∈Z ),单调递减区间是⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π(k ∈Z );余弦函数的单调递增区间是[-π+2k π,2k π](k ∈Z ),单调递减区间是[2k π,2k π+π](k ∈Z );正切函数的单调递增区间是⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k∈Z ).[典题例析]写出下列函数的单调区间: (1)y =sin ⎝ ⎛⎭⎪⎫-2x +π3;(2)y =|tan x |.解:(1)y =sin ⎝ ⎛⎭⎪⎫-2x +π3=-sin ⎝ ⎛⎭⎪⎫2x -π3,它的递增区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的递减区间,它的递减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的递增区间. 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .由2k π+π2≤2x -π3≤2k π+3π2,k ∈Z ,得k π+5π12≤x ≤k π+11π12,k ∈Z .故所给函数的递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z ;递增区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12,k ∈Z .(2)观察图象(图略)可知,y =|tan x |的递增区间是⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z ,递减区间是⎝ ⎛⎦⎥⎤k π-π2,k π,k ∈Z . [类题通法]三角函数的单调区间的求法 (1)代换法:所谓代换法,就是将比较复杂的三角函数整理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图象法:函数的单调性表现在图象上是:从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.[提醒] 求解三角函数的单调区间时,若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域.[演练冲关]1.已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34 C.⎝ ⎛⎦⎥⎤0,12 D .(0,2)解析:选A 由π2<x <π,ω>0得,ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 在⎝ ⎛⎭⎪⎫π2,3π2上递减,所以⎩⎨⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54,故选A.2.函数y =cos ⎝ ⎛⎭⎪⎫2x +π6的单调递增区间为__________________________________.解析:函数y =cos x 的单调递增区间为[2k π-π,2k π],k ∈Z .由2k π-π≤2x +π6≤2k π,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z .答案:⎣⎢⎡⎦⎥⎤k π-7π12,k π-π12(k ∈Z ) 考点三 三角函数的奇偶性、周期性及对称性(常考常新型考点——多角探明)[必备知识]1.正弦、正切函数是奇函数,余弦函数是偶函数.2.正弦、余弦函数的最小正周期为T =2π,函数y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b 的周期是T =2π|ω|;正切函数的最小正周期为T =π,函数y =A tan(ωx +φ)+b的周期是T =π|ω|.3.正弦函数y =sin x 的对称轴是x =k π+π2,k ∈Z ,对称中心为(k π,0),k ∈Z .余弦函数y =cos x 的对称轴是x =k π,k ∈Z ,对称中心为⎝ ⎛⎭⎪⎫π2+k π,0,k ∈Z ,即弦函数的对称轴是过函数的最高点或最低点且垂直于x 轴的直线,对称中心是图象与x 轴的交点,即函数的零点;正切函数没有对称轴,其对称中心为⎝⎛⎭⎪⎫k π2,0,k ∈Z . [多角探明]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有:(1)三角函数的周期;(2)求三角函数的对称轴或对称中心; (3)三角函数对称性的应用. 角度一:三角函数的周期1.函数y =-2cos 2⎝ ⎛⎭⎪⎫π4+x +1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的非奇非偶函数解析:选A 因为y =-cos ⎝ ⎛⎭⎪⎫π2+2x =sin 2x ,所以是最小正周期为π的奇函数. 2.(2015·长沙一模)若函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3.答案:2或3角度二:求三角函数的对称轴或对称中心 3.(2015·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝⎛⎭⎪⎫3π4-x ( )A .是奇函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称解析:选C ∵当x =π4时,函数f (x )取得最小值,∴sin ⎝ ⎛⎭⎪⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ). ∴f (x )=sin ⎝ ⎛⎭⎪⎫x +2k π-3π4=sin ⎝ ⎛⎭⎪⎫x -3π4.∴y =f ⎝ ⎛⎭⎪⎫3π4-x =sin(-x )=-sin x .∴y =f ⎝⎛⎭⎪⎫3π4-x 是奇函数,且图象关于直线x =π2对称.角度三:三角函数对称性的应用4.(2015·辽宁五校联考)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为( )A .-34B .-14C .-12D.34解析:选D 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f ⎝ ⎛⎭⎪⎫16=12cos π6=34.5.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________. 解析:由题意,得y =cos(3x +φ)是奇函数,故φ=k π+π2(k ∈Z ).答案:k π+π2(k ∈Z )[类题通法]函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.对应A 本课时跟踪检测十九一、选择题 1.函数y =cos x -32的定义域为( ) A.⎣⎢⎡⎦⎥⎤-π6,π6 B.⎣⎢⎡⎦⎥⎤k π-π6,k π+π6(k ∈Z ) C.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6(k ∈Z ) D .R解析:选C ∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 2.(2015·石家庄一模)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B. 3.给定性质:①最小正周期为π;②图象关于直线x =π3对称,则下列四个函数中,同时具有性质①②的是( )A .y =sin ⎝ ⎛⎭⎪⎫x 2+π6 B .y =sin ⎝ ⎛⎭⎪⎫2x -π6C .y =sin ⎝⎛⎭⎪⎫2x +π6 D .y =sin|x |解析:选B 注意到函数y =sin ⎝⎛⎭⎪⎫2x -π6的最小正周期T =2π2=π,当x =π3时,y =sin ⎝⎛⎭⎪⎫2×π3-π6=1,因此该函数同时具有性质①②.4.(2015·沈阳质检)已知曲线f (x )=sin 2x +3cos 2x 关于点(x 0,0)成中心对称,若x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( ) A.π12 B.π6 C.π3D.5π12解析:选C 由题意可知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,其对称中心为(x 0,0),故2x 0+π3=k π(k ∈Z ),∴x 0=-π6+k π2(k ∈Z ),又x 0∈⎣⎢⎡⎦⎥⎤0,π2,∴k =1,x 0=π3,故选C. 5.若函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,且|φ|<π2在区间⎣⎢⎡⎦⎥⎤π6,2π3上是单调减函数,且函数值从1减少到-1,则f ⎝ ⎛⎭⎪⎫π4=( )A.12B.22C.32D .1解析:选C 由题意得函数f (x )的周期T =2⎝⎛⎭⎪⎫2π3-π6=π,所以ω=2,此时f (x )=sin(2x +φ),将点⎝ ⎛⎭⎪⎫π6,1代入上式得sin ⎝ ⎛⎭⎪⎫π3+φ=1⎝ ⎛⎭⎪⎫|φ|<π2,所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,于是f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π2+π6=cos π6=32.6.(2015·豫北六校联考)若函数f (x )=cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎪⎫x +π3为( )A .奇函数且在⎝ ⎛⎭⎪⎫0,π4上单调递增B .偶函数且在⎝ ⎛⎭⎪⎫0,π2上单调递增C .偶函数且在⎝ ⎛⎭⎪⎫0,π2上单调递减D .奇函数且在⎝⎛⎭⎪⎫0,π4上单调递减 解析:选D 因为函数f (x )=cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称,则8π3+φ=k π+π2,k ∈Z .即φ=k π-13π6,k ∈Z ,又-π2<φ<π2,则φ=-π6,则y =f ⎝ ⎛⎭⎪⎫x +π3=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3-π6=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,所以该函数为奇函数且在⎝ ⎛⎭⎪⎫0,π4上单调递减,故选D.二、填空题 7.函数y =cos ⎝⎛⎭⎪⎫π4-2x 的单调减区间为______________.解析:由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝ ⎛⎭⎪⎫2x -π4得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z )8.函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是________解析:由2x +π4=k π(k ∈Z )得,x =k π2-π8(k ∈Z ).∴函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是⎝ ⎛⎭⎪⎫k π2-π8,0,k ∈Z . 答案:⎝⎛⎭⎪⎫k π2-π8,0,k ∈Z 9.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝ ⎛⎭⎪⎫π6+x=f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6的值为________.解析:∵f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝ ⎛⎭⎪⎫π6=±2. 答案:2或-210.函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3-1,x ∈⎣⎢⎡⎦⎥⎤0,π3的值域为________,并且取最大值时x 的值为________.解析:∵0≤x ≤π3,∴π3≤2x +π3≤π,∴0≤sin ⎝⎛⎭⎪⎫2x +π3≤1, ∴-1≤2sin ⎝ ⎛⎭⎪⎫2x +π3-1≤1,即值域为[-1,1]; 且当sin ⎝ ⎛⎭⎪⎫2x +π3=1,即x =π12时,y 取最大值. 答案:[-1,1] π12三、解答题11.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫0<φ<2π3的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32,求f (x )的单调递增区间.解:∵由f (x )的最小正周期为π,则T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ), 展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32时,sin ⎝ ⎛⎭⎪⎫2×π6+φ=32,即sin ⎝⎛⎭⎪⎫π3+φ=32.又∵0<φ<2π3,∴π3<π3+φ<π.∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3.令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z .12.设函数f (x )=sin ⎝⎛⎭⎪⎫πx 3-π6-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx 3-1=3·sin ⎝ ⎛⎭⎪⎫πx 3-π3-1,所以y =f (x )的最小正周期T =2ππ3=6.由2k π-π2≤πx 3-π3≤2k π+π2,k ∈Z ,得6k -12≤x ≤6k +52,k ∈Z ,所以y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤6k -12,6k +52,k ∈Z .(2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈⎣⎢⎡⎦⎥⎤2π3,π,sin ⎝ ⎛⎭⎪⎫π3x -π3∈⎣⎢⎡⎦⎥⎤0,32,f (x )∈⎣⎢⎡⎦⎥⎤-1,12, 即当x ∈[0,1]时,函数y =g (x )的最大值为12.第四节函数y =A sin(ωx +φ)的图象及三角函数模型的简单应用对应学生用书P50基础盘查一 y =A sin(ωx +φ)的有关概念 (一)循纲忆知了解函数y =A sin(ωx +φ)的物理意义,能画出函数y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.(二)小题查验(人教A 版教材习题改编)函数y =23sin ⎝ ⎛⎭⎪⎫12x -π4的振幅为________,周期为________,初相为________.答案:23 4π -π4基础盘查二 “五点法”作函数y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤 (一)循纲忆知熟练运用“五点法”作函数y =A sin(ωx +φ)的图象. (二)小题查验(人教A 版教材例题改编)用“五点法”作函数y =2sin ⎝ ⎛⎭⎪⎫13x -π6的图象,试写出相应的五个点坐标.答案:⎝⎛⎭⎪⎫π2,0,(2π,2),⎝ ⎛⎭⎪⎫7π2,0,(5π,-2),⎝ ⎛⎭⎪⎫13π2,0基础盘查三 y =sin x 变换到y =A sin(ωx +φ)(A >0,ω>0)的图象的步骤 (一)循纲忆知了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题,并能进行图象变换.(二)小题查验1.判断正误(1)将函数y=sin ωx的图象向右平移φ(φ>0)个单位长度,得到函数y=sin(ωx-φ)的图象( )(2)要得到函数y =sin ωx (ω>0)的图象,只需将函数y =sin x 上所有点的横坐标变为原来的ω倍( )(3)将函数y =sin x 图象上各点的纵坐标变为原来的A (A >0)倍,便得到函数y =A sin x 的图象( )(4)函数f (x )=sin 2x 的最小正周期和最小值分别为π,0( )(5)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2( ) 答案:(1)× (2)× (3)√ (4)√ (5)√2.(人教A 版教材例题改编)如图是某简谐运动的图象,则这个简谐运动的函数表达式为________________.答案:y =2sin 5π2x ,x ∈[0,+∞)对应学生用书P50考点一 求函数y =Aωx +φ的解析式(基础送分型考点——自主练透)[必备知识]1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)+b ,求出需要确定的系数A ,ω,φ,b ,得到三角函数的解析式.[题组练透]1.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,||φ<π2的部分图象如图所示,则y =f ⎝⎛⎭⎪⎫x +π6取得最小值时x 的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π-π6,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =k π-π3,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k π-π6,k ∈ZD.⎩⎨⎧⎭⎬⎫x |x =2k π-π3,k ∈Z解析:选B 根据所给图象,周期T =4×⎝⎛⎭⎪⎫7π12-π3=π,故π=2πω,∴ω=2,因此f (x )=sin(2x +φ),另外图象经过⎝⎛⎭⎪⎫7π12,0,代入有2×7π12+φ=k π(k ∈Z ),再由|φ|<π2,得φ=-π6,∴f ⎝ ⎛⎭⎪⎫x +π6=sin ⎝⎛⎭⎪⎫2x +π6,当2x +π6=-π2+2k π(k ∈Z ),即x =-π3+k π(k ∈Z )时,y =f ⎝⎛⎭⎪⎫x +π6取得最小值.2.(2015·东北三校联考)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin ⎝ ⎛⎭⎪⎫4x +π6B .y =2sin ⎝ ⎛⎭⎪⎫2x +π3+2C .y =2sin ⎝⎛⎭⎪⎫4x +π3+2 D .y =2sin ⎝⎛⎭⎪⎫4x +π6+2 解析:选D 由函数y =A sin(ωx +φ)+b 的最大值为4,最小值为0,可知b =2,A =2.由函数的最小正周期为π2,可知2πω=π2,得ω=4.由直线x =π3是其图象的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-5π6,k ∈Z ,故满足题意的是y =2sin ⎝ ⎛⎭⎪⎫4x +π6+2.[类题通法]确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:。
三角函数与解三角形任意角和弧度制及任意角的三角函数
三角函数的图象与性质
三角恒等变换
解三角形
任意角分类:正角、负角、零角
终边相同的角:与终边相同的角可表示为
半径为圆心角为的扇形
弧度制:
弧长公式
面积公式
同角三角函数基本关系
诱导公式奇变偶不变,符号看象限
定义域;值域
最小正周期
奇函数
单调增区间;单调减区间
当时;当时
对称中心为;对称轴为直线
定义域;值域
最小正周期
单调增区间;单调减区间
当时;当时
对称中心为;对称轴为直线
定义域;值域
最小正周期
在上单调递增
对称中心为
偶函数
奇函数
和(差)角公式
二倍角公式
半角公式
辅助角公式
其中
正弦定理
余弦定理
面积公式
画出的图象
向左右平移个单位长度得到的图象
横坐标变为原来的倍得到的图象
纵坐标变为原来的倍得到的图象
为外接圆半径
的面积。
【三维设计】2013届高考数学一轮复习 热点难点突破 不拉分系列(五)运用逆向思维 巧用三角函数性质求解参数 新人教版含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质求解此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.下面就利用三角函数性质求解参数问题进行策略性的分类解析.1.根据三角函数的单调性求解参数[典例1] 已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ),单调递减区间为⎣⎢⎡⎦⎥⎤k π+π12,k π+7π12(k ∈Z ),则ω的值为________.[解析] 由题意,得⎝⎛⎭⎪⎫k π+7π12-⎝ ⎛⎭⎪⎫k π-5π12=π,即函数f (x )的周期为π,则ω=2.[答案] 2[题后悟道] 解答此类问题时要注意单调区间的给出方式,如“函数f (x )在⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z )上单调递增”与“函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z )”,二者是不相同的. 针对训练1.(2012·荆州模拟)若函数y =2cos ωx 在区间⎣⎢⎡⎦⎥⎤0,2π3上递减,且有最小值1,则ω的值可以是( )A .2 B.12 C .3 D.13解析:选B 由y =2cos ωx 在⎣⎢⎡⎦⎥⎤0,2π3上是递减的,且有最小值为1,则有f ⎝ ⎛⎭⎪⎫2π3=1,即2×cos ⎝⎛⎭⎪⎫ω×2π3=1, 即cos ⎝ ⎛⎭⎪⎫2π3ω=12,检验各选项,得出B 项符合. 2.根据三角函数的奇偶性求解参数[典例2] 已知f (x )=cos ()3x +φ-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6 D .-π3[解析] f (x )=2⎣⎢⎡⎦⎥⎤12cos 3x +φ-32sin 3x +φ=2cos ⎣⎢⎡⎦⎥⎤3x +φ+π3=2cos ⎣⎢⎡⎦⎥⎤3x +⎝⎛⎭⎪⎫φ+π3,由f (x )为偶函数,知φ+π3=k π(k ∈Z ),即φ=k π-π3(k ∈Z ),由所给选项知只有D 适合.[答案] D[题后悟道] 注意根据三角函数的奇偶性求解参数:函数y =A cos(ωx +φ)+B (A ≠0)为奇函数⇔φ=k π+π2(k ∈Z )且B =0,若其为偶函数⇔φ=k π(k ∈Z ). 针对训练2.使f (x )=sin(2x +y )+3cos(2x +y )为奇函数,且在⎣⎢⎡⎦⎥⎤0,π4上是减函数的y 的一个值是( )A.π3 B.5π3 C.4π3 D.2π3解析:选D ∵f (x )=sin(2x +y )+3cos(2x +y )=2sin ⎝⎛⎭⎪⎫2x +y +π3为奇函数, ∴f (0)=0,即sin y +3cos y =0,∴tan y =-3,故排除A 、C ;又函数f (x )在⎣⎢⎡⎦⎥⎤0,π4上是减函数,只有D选项满足.3.根据三角函数的周期性求解参数三角函数的参数问题,还可利用三角函数的周期,最值求解如本节以题试法3(2).就是利用周期求参数a,解题时要注意x的系数ω是否规定了符号,若无符号规定,利用周期公式时需加绝对值.。
第五单元三角函数及其恒等变换教材复习课“三角函数及其恒等变换”相关基础知识一课过1.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+2kπ,k∈Z}.2.弧长、扇形面积公式设扇形的弧长为l,圆心角大小为α(rad),半径为r,则l=|α|r,扇形的面积为S=12lr=12|α|·r2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cos α=x,tan α=yx(x≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP,OM,AT分别叫做角α的正弦线、余弦线和正切线.(3)三角函数值在各象限的符号规律:一全正、二正弦、三正切、四余弦.[小题速通]1.(2018·济南模拟)已知sin θ-cos θ>1,则角θ的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:选B由已知得(sin θ-cos θ)2>1,即1-2sin θcos θ>1,sin θcos θ<0,所以sinθ>0>cos θ,所以角θ的终边在第二象限.2.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x =( ) A. 3 B .±3 C .- 2D .- 3解析:选D 依题意得cos α=xx 2+5=24x <0,由此解得x =-3,选D. 3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α(0<α<π)的弧度数为( )A.π3B.π2C. 3D .2解析:选C 设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =αr ,故α= 3. 4.已知扇形的半径r =10 cm ,圆心角α为120°,则扇形的面积为________cm 2. 解析:因为120°=2π3,由扇形的面积公式可得S =12αr 2=12×2π3×102=1003π(cm 2).答案:1003π 5.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________. 解析:2 010°=676π=12π-5π6, ∴与2 010°终边相同的角中绝对值最小的角的弧度数为-5π6.答案:-5π6[清易错]1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况. 1.下列说法正确的是( )A .三角形的内角必是第一、二象限角B .第一象限角必是锐角C .不相等的角终边一定不相同D .若β=α+2k π(k ∈Z ),则α和β终边相同答案:D 2.已知点P ⎝⎛⎭⎫32,-12在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.5π6B.2π3 C.11π6D.5π3解析:选C 因为点P⎝⎛⎭⎫32,-12在角θ的终边上,所以角θ的终边在第四象限,且tan θ=-33. 又θ∈[0,2π),所以θ=11π6.3.已知角α的终边在直线3x +4y =0上,则sin α+cos α=________. 解析:设α终边上任一点为P (-4a,3a ), 当a >0时,r =5a ,sin α=35,cos α=-45;当a <0时,r =-5a ,sin α=-35,cos α=45.故sin α+cos α=15或-15.答案:±151.同角三角函数的基本关系式 (1)平方关系 sin 2α+cos 2α=1; (2)商数关系 tan α=sin αcos α.2.诱导公式3.两角和与差的正弦、余弦和正切公式 sin(α±β)=sin_αcos_β±cos_αsin_β; cos(α∓β)=cos_αcos_β±sin_αsin_β; tan(α±β)=tan α±tan β1∓tan αtan β.4.二倍角的正弦、余弦、正切公式 sin 2α=2sin_αcos_α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.[小题速通]1.已知α∈⎝⎛⎭⎫π2,3π2,tan(α-π)=-34,则sin α+cos α的值是( ) A .±15 B.15 C .-15 D .-75解析:选C 由α∈⎝⎛⎭⎫π2,3π2,tan(α-π)=tan α=-34<0,得α∈⎝⎛⎭⎫π2,π,sin α=-34cos α,代入sin 2α+cos 2α=1,解得sin α=35,cos α=-45,则sin α+cos α=-15.2.已知sin ⎝⎛⎭⎫π2-α=35,则cos(π-2α)的值为( ) A.2425 B.725 C .-725D .-2425解析:选B 由sin ⎝⎛⎭⎫π2-α=35,可得cos α=35,则cos(π-2α)=-cos 2α=1-2cos 2α=725. 3.已知cos ⎝⎛⎭⎫π6-α=33,则sin ⎝⎛⎭⎫π3+α=________. 解析:因为cos ⎝⎛⎭⎫π6-α=33,所以sin ⎝⎛⎭⎫π3+α=sin π2-⎝⎛⎭⎫π6-α=cos ⎝⎛⎭⎫π6-α=33. 答案:334.已知tan α=2,则sin α+cos α2sin α+cos α=________.解析:因为tan α=2,所以原式=sin α+cos α2sin α+cos α=tan α+12tan α+1=35.答案:355.计算:sin 250°1+sin 10°=________.解析:sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12.答案:12[清易错]1.利用平方关系解决问题时,要注意开方运算结果的符号,需要根据角的范围进行确定.2.在使用两角和与差的余弦或正切公式时运算符号易错. 1.已知α∈⎝⎛⎭⎫π2,π,sin α+cos α=33,则cos(2 018π-2α)=( ) A .±63B .-53C .-63D .±53解析:选B 将sin α+cos α=33两边平方,化简可得sin 2α=-23, 因为α∈⎝⎛⎭⎫π2,π,sin α+cos α=33>0, 所以α∈⎝⎛⎭⎫π2,3π4,2α∈⎝⎛⎭⎫π,3π2,所以cos 2α<0, 则cos(2 018π-2α)=cos 2α=-1-sin 22α=-53. 2.若cos ⎝⎛⎭⎫α+π4=13,α∈⎝⎛⎭⎫0,π2,则sin α的值为( ) A.4-26B.4+26C.718D.23解析:选A 由cos ⎝⎛⎭⎫α+π4=13,α∈⎝⎛⎭⎫0,π2,可得sin ⎝⎛⎭⎫α+π4=223,则sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π4-π4=223×22-13×22=4-26.正弦、余弦、正切函数的图象与性质1.函数y =1-2sin 22x 的最小正周期是( ) A.π4 B.π2 C.2π3D .π解析:选B 因为函数y =1-2sin 22x =cos 4x ,所以函数的最小正周期T =π2.2.若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值为1,则ω=( )A.14B.13C.12D.32解析:选C 因为x ∈⎣⎡⎦⎤0,π3,所以ωx ∈⎣⎡⎦⎤0,ωπ3,又因为函数f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值为1,所以ωπ3=π6,则ω=12. 3.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π,则f ⎝⎛⎭⎫π8=( ) A .1 B.12 C .-1D .-12解析:选A 由题设知2πω=π,所以ω=2,f (x )=sin ⎝⎛⎭⎫2x +π4,所以f ⎝⎛⎭⎫π8=sin ⎝⎛⎭⎫2×π8+π4=sin π2=1.4.(2018·杭州模拟)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3解析:选C 由已知f (x )=sin x +φ3是偶函数,可得φ3=k π+π2(k ∈Z),即φ=3k π+3π2(k ∈Z),又φ∈[0,2π],所以φ=3π2. 5.若函数f (x )=sin ω x (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( )A.23 B.32 C .2D .3解析:选B ∵f (x )=sin ω x (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增,在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,∴ω=32. [清易错]1.正切函数的图象是由直线x =k π+π2(k ∈Z)隔开的无穷多支曲线组成,单调增区间是⎝⎛⎭⎫-π2+k π,π2+k π,k ∈Z ,不能说它在整个定义域内是增函数,如π4<3π4,但是tan π4>tan 3π4,正切函数不存在减区间.2.三角函数存在多个单调区间时易错用“∪”联结.3.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件. 1.(2018·石家庄一模)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z) C.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z) D.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z). 2.函数f (x )=sin(-2x ),x ∈[0,2π]的单调递增区间是________________. 解析:f (x )=sin(-2x )=-sin 2x , 令2k π+π2≤2x ≤2k π+3π2,k ∈Z ,得k π+π4≤x ≤k π+3π4,k ∈Z ,所以函数f (x )在[0,2π]上的单调递增区间是⎣⎡⎦⎤π4,3π4,⎣⎡⎦⎤5π4,7π4. 答案:⎣⎡⎦⎤π4,3π4,⎣⎡⎦⎤5π4,7π4函数y =A sin(ωx +φ)的图象及应用1.用五点法画y =A sin(ωx +φ)一个周期内的简图用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示:法一 法二[小题速通]1.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图是( )解析:选A 令x =0,得y =sin ⎝⎛⎭⎫-π3=-32,排除B 、D.由f ⎝⎛⎭⎫-π3=0,f ⎝⎛⎭⎫π6=0,排除C ,故选A.2.将函数y =sin 2x 的图象先向左平移π6个单位长度,再向上平移1个单位长度,得到的函数解析式是( )A .y =sin ⎝⎛⎭⎫2x -π6+1 B .y =sin ⎝⎛⎭⎫2x +π3+1 C .y =sin ⎝⎛⎭⎫2x +π6+1 D .y =sin ⎝⎛⎭⎫2x -π3+1 解析:选B 由题意可得函数的解析式为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+1=sin ⎝⎛⎭⎫2x +π3+1.3.函数f (x )=33sin ωx (ω>0)的部分图象如图所示,点A ,B 是图象的最高点,点C 是图象的最低点,且△ABC 是正三角形,则f (1)+f (2)+f (3)的值为( )A.92B.932 C .93+1D.9(3+1)2解析:选D 因为△ABC 是正三角形, 所以△ABC 的高是63, 则△ABC 的边长是12,即函数f (x )=33sin ωx (ω>0)的周期为12, 所以ω=π6,f (x )=33sin π6x ,所以f (1)+f (2)+f (3)=33sin π6+33sin π3+33sin π2=9(3+1)2.4.如图是函数y =A sin(ωx +φ)⎝⎛⎭⎫x ∈R ,A >0,ω>0,0<φ<π2在区间⎣⎡⎦⎤-π6,5π6上的图象,为了得到这个函数的图象,只需将y =sin x (x ∈R)的图象上所有的点( )A .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变B .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变C .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变D .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变解析:选D 由图象可知,A =1,周期T =π,所以ω=2,又sin ⎝⎛⎭⎫2×π3+φ=0且0<φ<π2,所以φ=π3,则y =sin ⎝⎛⎭⎫2x +π3,由图象变换可知选D. [清易错]1.由y =A sin ωx 的图象得到y =A sin(ωx +φ)的图象时,需平移的单位数应为⎪⎪⎪⎪φω,而不是|φ|.2.要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数.1.要得到函数y =cos(2x +1)的图象,只要将函数y =cos 2x 的图象( ) A .向左平移1个单位 B .向右平移1个单位 C .向左平移12个单位D .向右平移12个单位解析:选C ∵y =cos(2x +1)=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +12, ∴只要将函数y =cos 2x 的图象向左平移12个单位即可.2.函数y =cos(2x +φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y =sin ⎝⎛⎭⎫2x +π3的图象重合,则φ=________.解析:将y =cos(2x +φ)的图象向右平移π2个单位后得到y =cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π2+φ的图象,化简得y =-cos(2x +φ),又可变形为y =sin ⎝⎛⎭⎫2x +φ-π2.由题意可知φ-π2=π3+2k π(k ∈Z),所以φ=5π6+2k π(k ∈Z),结合-π≤φ<π,知φ=5π6.答案:5π6一、选择题1.(2018·杭州模拟)如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ)解析:选A 由三角函数的定义知x P =cos θ,y P =sin θ,故选A.2.若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z),则角α与β的终边的位置关系是( ) A .重合 B .关于原点对称 C .关于x 轴对称D .关于y 轴对称解析:选C 角α与θ终边相同,β与-θ终边相同. 又角θ与-θ的终边关于x 轴对称. ∴角α与β的终边关于x 轴对称.3.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值是( ) A.12 B.23 C .-12D .1解析:选C 由已知得cos α=12,sin α=-32,∴cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 4.(2018·淄博调研)已知tan α=2,则sin 2α-sin αcos α的值是( ) A.25 B .-25C .-2D .2解析:选A sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1,把tan α=2代入,原式=25.5.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析:选B ∵f (x )=sin ⎝⎛⎭⎫2x -π2=-cos 2x ,∴f (x )是最小正周期为π的偶函数. 6.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ) A .关于直线x =π3对称B .关于点⎝⎛⎭⎫π3,0对称 C .关于直线x =-π6对称D .关于点⎝⎛⎭⎫π6,0对称解析:选B ∵f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,∴ω=2,即f (x )=sin ⎝⎛⎭⎫2x +π3. 经验证可知f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+π3=sin π=0, 即⎝⎛⎭⎫π3,0是函数f (x )的一个对称点.7.将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数( ) A .在区间⎣⎡⎦⎤π12,7π12上单调递减 B .在区间⎣⎡⎦⎤π12,7π12上单调递增 C .在区间⎣⎡⎦⎤-π6,π3上单调递减 D .在区间⎣⎡⎦⎤-π6,π3上单调递增 解析:选B 平移后的函数为y =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π2+π3=3sin ⎝⎛⎭⎫2x -2π3,增区间:-π2+2k π≤2x -2π3≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z ,令k =0时,π12≤x ≤7π12,故所得图象对应的函数在⎣⎡⎦⎤π12,7π12上单调递增,在⎣⎡⎦⎤-π6,π3上不单调,故选B.8.(2018·河北衡水中学调研)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0)的部分图象如图所示,下面结论错误的是( )A .函数f (x )的最小正周期为2π3B .函数f (x )的图象可由g (x )=A cos ωx 的图象向右平移π12个单位长度得到 C .函数f (x )的图象关于直线x =π12对称D .函数f (x )在区间⎝⎛⎭⎫π4,π2上单调递增解析:选D 函数的最小正周期T =2⎝⎛⎭⎫11π12-7π12=2π3,选项A 正确;由T =2π3得ω=3.又f ⎝⎛⎭⎫7π12=A cos ⎝⎛⎭⎫7π4+φ=0,所以φ=k π-5π4(k ∈Z).又f ⎝⎛⎭⎫π2=A cos ⎝⎛⎭⎫3π2+φ=A sin φ=-23,所以sin φ<0,φ=-π4+2k π(k ∈Z),即f (x )=A cos ⎝⎛⎭⎫3x -π4,函数g (x )=A cos 3x 的图象向右平移π12个单位长度得到的图象对应的函数的解析式为y =g ⎝⎛⎭⎫x -π12=A cos ⎣⎡⎦⎤3⎝⎛⎭⎫x -π12=A cos ⎝⎛⎭⎫3x -π4=f (x ),选项B 正确;当x =π12时,f (x )=A ,因此函数f (x )的图象关于直线x =π12对称,选项C 正确;当x ∈⎝⎛⎭⎫π4,π2时,3x -π4∈⎝⎛⎭⎫π2,5π4,故函数f (x )在⎝⎛⎭⎫π4,π2上不是单调递增的,选项D 错误.二、填空题9.函数f (x )=sin x -4sin 3x 2cos x2的最小正周期为________.解析:f (x )=sin x -2sin 2x 2sin x =sin x cos x =12sin 2x ,所以函数的最小正周期T =π.答案:π10.在平面直角坐标系xOy 中,以x 轴为始边作锐角α,它的终边与单位圆相交于点A ,且点A 的横坐标为513,则tan ⎝⎛⎭⎫π-α2的值为________. 解析:由题意知cos α=513,因为α为锐角,所以cos α2=1+cos α2=313, sin α2= 1-cos 2α2=213,所以tan ⎝⎛⎭⎫π-α2=-tan α2=-sinα2cos α2=-23. 答案:-2311.已知函数y =A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,则φ=________.解析:由图象知A =1,T =4⎝⎛⎭⎫7π12-π3=π, 故ω=2,再由2×π3+φ=π2,得φ=-π6.答案:-π612.函数f (x )=log 21+sin 2xsin x +cos x的最大值为________.解析:因为1+sin 2xsin x +cos x =(sin x +cos x )2sin x +cos x=sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈(0,2], 又因为函数y =log 2x 是增函数,所以,当1+sin 2xsin x +cos x =2时,函数f (x )=log 2 1+sin 2xsin x +cos x取得最大值为12.答案:12三、解答题13.设函数f (x )=3sin ⎝⎛⎭⎫ωx +π6()ω>0,x ∈R 的最小正周期为π2. (1)求f (x )的解析式;(2)利用“五点作图法”,画出f (x )在长度为一个周期的闭区间上的简图; (3)已知f ⎝⎛⎭⎫α4+π12=95,求cos α的值. 解:(1)∵T =2πω=π2⇒ω=4, ∴f (x )=3sin ⎝⎛⎭⎫4x +π6. (2)列表:图象如图所示:(3)∵f ⎝⎛⎭⎫α4+π12=3sin ⎣⎡⎦⎤4⎝⎛⎭⎫α4+π12+π6 =3sin ⎝⎛⎭⎫α+π2=3cos α=95,∴cos α=35. 14.已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x4,记f (x )=m ·n . (1)若f (x )=1,求cos ⎝⎛⎭⎫x +π3的值; (2)在锐角△ABC 中,(2a -c )cos B =b cos C ,求f (2A )的取值范围.解:(1)f (x )=m ·n =3sin x 4cos x 4+cos 2x 4=32sin x 2+12cos x 2+12=sin ⎝⎛⎭⎫x 2+π6+12, 由f (x )=1,得sin ⎝⎛⎭⎫x 2+π6=12,所以cos ⎝⎛⎭⎫x +π3=1-2sin 2⎝⎛⎭⎫x 2+π6=12. (2)因为(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B -sin C cos B =sin B cos C , 所以2sin A cos B =sin(B +C ),因为A +B +C =π, 所以sin(B +C )=sin A ,且sin A ≠0,所以cos B =12,又0<B <π2,所以B =π3.则A +C =2π3,A =2π3-C ,又0<C <π2,0<A <π2,则π6<A <π2,得π3<A +π6<2π3, 所以32<sin ⎝⎛⎭⎫A +π6≤1, 又因为f (2A )=sin ⎝⎛⎭⎫A +π6+12, 故函数f (2A )的取值范围是⎝⎛⎦⎥⎤3+12,32.15.(2018·青岛模拟)已知函数f (x )=4cos ωx ·sin ωx +π6+a (ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.(1)求a 和ω的值;(2)求函数f (x )在[0,π]上的单调递减区间. 解:(1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π6+a =4cos ωx ·32sin ωx +12cos ωx +a=23sin ωx cos ωx +2cos 2ωx -1+1+a =3sin 2ωx +cos 2ωx +1+a =2sin2ωx +π6+1+a .当sin ⎝⎛⎭⎫2ωx +π6=1时,f (x )取得最大值2+1+a =3+a , 又f (x )图象上最高点的纵坐标为2,∴3+a =2,∴a =-1.又f (x )图象上相邻两个最高点的距离为π,∴f (x )的最小正周期T =π,∴2ω=2πT =2,∴ω=1.(2)由(1)得f (x )=2sin ⎝⎛⎭⎫2x +π6, 由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z , 得π6+k π≤x ≤2π3+k π,k ∈Z. 令k =0,得π6≤x ≤2π3,∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤π6,2π3. 高考研究课(一)三角函数的3个基本考点——定义、公式和关系 [全国卷5年命题分析][典例] (1)点P 从(-1,0)出发,沿单位圆顺时针方向运动 8π3弧长到达点Q ,则点Q 的坐标为________.(2)已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m4,求cos α,tan α的值. [解析] (1)设点A (-1,0),点P 从(-1,0)出发,沿单位圆顺时针方向运动8π3弧长到达点Q ,则∠AOQ =8π3-2π=2π3(O 为坐标原点),所以∠xOQ =π3,cos π3=12,sin π3=32,所以点Q 的坐标为⎝⎛⎭⎫12,32.答案:⎝⎛⎭⎫12,32(2)由题设知x =-3,y =m ,∴r 2=|OP |2=()-32+m 2(O 为原点),r =3+m 2.∴sin α=m r =2m 4=m22,∴r =3+m 2=22,即3+m 2=8,解得m =±5.当m =5时,r =22,x =-3,y =5, ∴cos α=-322=-64, tan α=-153; 当m =-5时,r =22,x =-3,y =-5, ∴cos α=-322=-64, tan α=153. [方法技巧](1)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(2)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.[即时演练]1.已知角α终边与单位圆x 2+y 2=1的交点为P ⎝⎛⎭⎫12,y ,则sin ⎝⎛⎭⎫π2+2α=( ) A .-12B.12 C .-32D .1解析:选A 因为角α终边与单位圆x 2+y 2=1的交点为P ⎝⎛⎭⎫12,y ,所以cos α=12, 所以sin ⎝⎛⎭⎫π2+2α=cos 2α=2cos 2α-1=-12. 2.在平面直角坐标系中,点M (3,m )在角α的终边上,点N (2m ,4)在角α+π4的终边上,则m =( )A .-6或1B .-1或6C .6D .1解析:选A 由题意得,tan α=m 3,tan ⎝⎛⎭⎫α+π4=42m =2m ,∴2m =1+m 31-m 3,∴m =-6或1.诱导公式[典例] (1)(2018·淄博模拟)已知sin ⎝⎛⎭7π12+α=23,则cos ⎝⎭⎫α-11π12=________; (2)化简:1-2sin 40°cos 40°cos 40°-1-sin 250°=________.[解析] (1)cos ⎝⎛⎭⎫α-11π12=cos ⎝⎛⎭⎫11π12-α =cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π12+α=-cos ⎝⎛⎭⎫π12+α, 而sin ⎝⎛⎭⎫7π12+α=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π12+α =cos ⎝⎛⎭⎫π12+α=23, 所以cos ⎝⎛⎭⎫α-11π12=-23. (2)原式=sin 240°+cos 240°-2sin 40°cos 40°cos 40°-cos 250°=|sin 40°-cos 40°|cos 40°-cos 50°=cos 40°-sin 40°cos 40°-sin 40°=1.[答案] (1)-23 (2)1[方法技巧]利用诱导公式化简三角函数的思路和要求思路方法:(1)分析结构特点,选择恰当公式; (2)利用公式化成单角三角函数; (3)整理得最简形式. 化简要求:(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值. [即时演练]1.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 017)的值为( )A .-1B .1C .3D .-3解析:选D ∵f (4)=a sin(4π+α)+b cos(4π+β) =a sin α+b cos β=3,∴f (2 017)=a sin(2 017π+α)+b cos(2 017π+β) =a sin(π+α)+b cos(π+β) =-a sin α-b cos β =-(a sin α+b cos β)=-3. 即f (2 017)=-3.2.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin ⎝⎛⎭⎫-α-3π2cos ⎝⎛⎭⎫3π2-αcos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2+α·tan 2(π-α)=________.解析:∵方程5x 2-7x -6=0的根为-35或2,又α是第三象限角,∴sin α=-35,∴cos α=-1-sin 2α=-45,∴tan α=sin αcos α=34,∴原式=cos α(-sin α)sin αcos α·tan 2α=-tan 2α=-916.答案:-9161.已知cos α=k ,α∈⎝⎛⎭⎫π2,π,则sin(π+α)=( ) A .-1-k 2 B.1-k 2 C .±1-k 2D .-k解析:选A 由cos α=k ,α∈⎝⎛⎭⎫π2,π,得sin α=1-k 2,∴sin(π+α)=-sin α=-1-k 2,故选A.2.已知sin ⎝⎛⎭⎫α+π3=-12,α∈(0,π),则cos α=( ) A.12 B .-12C.32D .-32解析:选D 因为α∈(0,π),所以α+π3∈⎝⎛⎭⎫π3,4π3, 又因为sin ⎝⎛⎭⎫α+π3=-12,所以α+π3=7π6,即α=5π6, 则cos α=-32. 角度二:知切求弦问题3.已知tan(α-π)=34,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫α+π2=( ) A.45 B .-45C.35D .-35解析:选B 由tan(α-π)=34,得tan α=34,又因为α∈⎝⎛⎭⎫π2,3π2,所以α为第三象限角, 所以sin α=-35,cos α=-45.所以sin ⎝⎛⎭⎫α+π2=cos α=-45. 角度三:sin α±cos α,sin αcos α的关系应用问题4.(2018·揭阳模拟)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32B.32C .-34D.34解析:选B ∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|,∴cos α-sin α>0,又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32. 5.已知sin(π-α)-cos(π+α)=23⎝⎛⎭⎫π2<α<π,则sin α-cos α=________.解析:由sin (π-α)-cos(π+α)=23, 得sin α+cos α=23, 将式子两边平方得1+2sin αcos α=29,故2sin αcos α=-79.∴(sin α-cos α)2=1-2sin αcos α=1-⎝⎛⎭⎫-79=169. 又∵π2<α<π,∴sin α>0,cos α<0.∴sin α-cos α=43.答案:43角度四:已知tan α,求f (sin α,cos α)值问题6.已知α是三角形的内角,且tan α=-13, 则sin α+cos α=________.解析:由tan α=-13,得sin α= -13cos α,将其代入 sin 2α+cos 2α=1,得109cos 2α=1,∴cos 2α=910,易知cos α<0, ∴cos α=-31010, sin α=1010,故 sin α+cos α=-105. 答案:-1057.已知tan(α+β)=2,tan(α-β)=3,则sin 2αcos 2β的值为________.解析:sin 2αcos 2β=sin[(α+β)+(α-β)]cos[(α+β)-(α-β)]=sin (α+β)cos (α-β)+cos (α+β)sin (α-β)cos (α+β)cos (α-β)+sin (α+β)sin (α-β) =tan (α+β)+tan (α-β)1+tan (α+β)tan (α-β)=2+31+2×3=57.答案:57[方法技巧]同角三角函数基本关系式的应用技巧1.(2016·全国卷Ⅲ)若tan α=34,则cos 2α+2sin 2α=( )A.6425 B.4825 C .1D.1625解析:选A 因为tan α=34,所以cos 2α+2sin 2α=cos 2α+4sin αcos αsin 2α+cos 2α=1+4tan αtan 2α+1=1+4×34⎝⎛⎭⎫342+1=6425. 2.(2014·大纲卷)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35D .-45解析:选D 记P (-4,3),则x =-4,y =3,r =|OP |=(-4)2+32=5,故cos α=x r =-45=-45.3.(2014·全国卷Ⅰ)若tan α>0,则( ) A .sin 2α>0 B .cos α>0 C .sin α>0D .cos 2α>0解析:选A 由tan α>0,可得α的终边在第一象限或第三象限,此时sin α与cos α同号,sin 2α=2sin αcos α>0,故选A.4.(2016·全国卷Ⅰ)已知θ是第四象限角,且sin ⎝⎛⎭⎫θ+π4=35,则tan ⎝⎛⎭⎫θ-π4=________. 解析:由题意知sin ⎝⎛⎭⎫θ+π4=35,θ是第四象限角, 所以cos ⎝⎛⎭⎫θ+π4>0, 所以cos ⎝⎛⎭⎫θ+π4= 1-sin 2⎝⎛⎭⎫θ+π4=45. tan ⎝⎛⎭⎫θ-π4=tan ⎝⎛⎭⎫θ+π4-π2 =-sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π4cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫θ+π4=-cos ⎝⎛⎭⎫θ+π4sin ⎝⎛⎭⎫θ+π4=-45×53=-43.答案:-43一、选择题1.如图,圆O 与x 轴的正半轴的交点为A ,点B ,C 在圆O 上,且B ⎝⎛⎭⎫45,-35,点C 在第一象限,∠AOC =α,BC =1,则cos ⎝⎛⎭⎫5π6-α=( ) A .-45B .-35C.35D.45解析:选B 由已知可得OB =1,即圆O 的半径为1, 又因为BC =1,所以△OBC 是等边三角形, 所以cos ⎝⎛⎭⎫5π6-α=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫π3-α =-sin ⎝⎛⎭⎫π3-α=-sin ∠BOA =-35. 2.(2018·江西六校联考)点A (sin 2 018°,cos 2 018°)位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C 因为sin 2 018°=sin(11×180°+38°) =-sin 38°<0,cos 2 018°=cos(11×180°+38°) =-cos 38°<0,所以点A (sin 2 018°,cos 2 018°)位于第三象限. 3.若sin θcos θ=12,则tan θ+cos θsin θ的值是( )A .-2B .2C .±2D.12解析:选B tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1cos θsin θ=2.4.(2018·江西五校联考)cos 350°-2sin 160°sin (-190°)=( )A .- 3B .-32C.32D. 3解析:选D 原式=cos (360°-10°)-2sin (180°-20°)-sin (180°+10°)=cos 10°-2sin (30°-10°)-(-sin 10°)=cos 10°-2⎝⎛⎭⎫12cos 10°-32sin 10°sin 10°=3sin 10°sin 10°= 3.5.已知A (x A ,y A )是单位圆(圆心在坐标原点O )上任意一点,将射线OA 绕O 点逆时针旋转30°,交单位圆于点B (x B ,y B ),则x A -y B 的取值范围是( )A .[-2,2]B .[-2,2]C .[-1,1]D.⎣⎡⎦⎤-12,12 解析:选C 设沿x 轴正方向逆时针旋转到射线OA 的角为α,根据三角函数的定义得x A =cos α,y B =sin(α+30°),所以x A -y B =cos α-sin(α+30°)=-32sin α+12cos α=sin(α+150°)∈[-1,1].6.(2018·日照模拟)已知-π2<α<0,sin α+cos α=15,则1cos 2α-sin 2α的值为( )A.75 B.725 C.257D.2425解析:选C ∵sin α+cos α=15,∴1+sin 2α=125,即sin 2α=-2425,又∵-π2<α<0,∴cos α-sin α>0.∴cos α-sin α=1-sin 2α=75,∴1cos 2α-sin 2α=1(cos α+sin α)(cos α-sin α)=257. 二、填空题 7.若tan α=3,则sin (α-π)+cos (π-α)sin ⎝⎛⎭⎫π2-α+cos ⎝⎛⎭⎫π2+α=________.解析:因为tan α=3,所以sin (α-π)+cos (π-α)sin ⎝⎛⎭⎫π2-α+cos ⎝⎛⎭⎫π2+α=-sin α-cos αcos α-sin α=tan α+1tan α-1=2.答案:28.(2018·枣庄模拟)已知cos ⎝⎛⎭⎫π6-θ=a (|a |≤1),则cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ的值是________.解析:由题意知,cos ⎝⎛⎭⎫5π6+θ=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-θ =-cos ⎝⎛⎭⎫π6-θ=-a .sin ⎝⎛⎭⎫2π3-θ=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫π6-θ=cos ⎝⎛⎭⎫π6-θ=a , ∴cos ⎝⎛⎭⎫5π6+θ+sin ⎝⎛⎭⎫2π3-θ=0. 答案:09.(2018·成都一诊)在直角坐标系xOy 中,已知任意角θ以坐标原点O 为顶点,以x 轴的非负半轴为始边,若其终边经过点P (x 0,y 0),且OP =r (r >0),定义:sicos θ=y 0-x 0r,称“sicos θ”为“θ的正余弦函数”,若sicos θ=0,则sin ⎝⎛⎭⎫2θ-π3=________. 解析:因为sicos θ=0,所以y 0=x 0,所以θ的终边在直线y =x 上,所以当θ=2k π+π4,k ∈Z 时,sin ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫4k π+π2-π3=cos π3=12;当θ=2k π+5π4,k ∈Z 时,sin ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫4k π+5π2-π3=cos π3=12.综上得sin ⎝⎛⎭⎫2θ-π3=12. 答案:12三、解答题10.已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值. 解:设α终边上任一点为P (k ,-3k ), 则r =k 2+(-3k )2=10|k |.当k >0时,r =10k , ∴sin α=-3k10k =-310,1cos α=10k k =10,∴10sin α+3cos α=-310+310=0; 当k <0时,r =-10k ,∴sin α=-3k -10k=310,1cos α=-10k k =-10,∴10sin α+3cos α=310-310=0. 综上,10sin α+3cos α=0. 11.已知cos(α-7π)=-35,求sin(3π+α)·tan ⎝⎛⎭⎫α-7π2的值. 解:∵cos(α-7π)=cos(7π-α)=cos(π-α)=-cos α =-35,∴cos α=35.∴sin(3π+α)·tan ⎝⎛⎭⎫α-7π2 =sin(π+α)·⎣⎡⎦⎤-tan ⎝⎛⎭⎫7π2-α =sin α·tan ⎝⎛⎭⎫π2-α=sin α·sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α =sin α·cos αsin α=cos α=35.12.已知α为第三象限角,f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α.(2)∵cos ⎝⎛⎭⎫α-3π2=15,∴-sin α=15, 从而sin α=-15.又α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-cos α=265.1.若sin(α-β)cos α-cos(α-β)sin α=m ,且β为第三象限角,则cos β的值为( ) A.1-m 2 B .-1-m 2 C.m 2-1D .-m 2-1解析:选B 因为m =sin(α-β)cos α-cos(α-β)sin α=sin [(α-β)-α]=sin(-β),所以sin β=-m .因为β为第三象限角,所以cos β=-1-sin 2β=-1-m 2.2.化简cos 2(n π+x )·sin 2(n π-x )cos 2[(2n +1)π-x ](n ∈Z)的结果为________.解析:当n 为偶数,即n =2k (k ∈Z)时, 原式=cos 2(2k π+x )·sin 2(2k π-x )cos 2[(2×2k +1)π-x ]=cos 2x ·sin 2(-x )cos 2(π-x )=cos 2x ·(-sin x )2(-cos x )2=sin 2x ; 当n 为奇数,即n =2k +1(k ∈Z)时, 原式=cos 2[(2k +1)π+x ]·sin 2[(2k +1)π-x ]cos 2{[2×(2k +1)+1]π-x }=cos 2[2k π+(π+x )]·sin 2[2k π+(π-x )]cos 2[2×(2k +1)π+(π-x )] =cos 2(π+x )·sin 2(π-x )cos 2(π-x )=(-cos x )2sin 2x (-cos x )2=sin 2x ,故化简的结果为sin 2x . 答案:sin 2x 高考研究课(二)三角函数的1个常考点——图象与性质 [全国卷5年命题分析][典例] (1) (2)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为________.(3)函数f (x )=cos 2x +sin x ⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π4,π4的值域为________. [解析] (1)要使函数y =lg(2sin x -1)+1-2cos x 有意义,则⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12.解得2k π+π3≤x <2k π+5π6,k ∈Z.即函数的定义域为⎣⎡⎭⎫2k π+π3,2k π+5π6,k ∈Z. (2)∵0≤x ≤9, ∴-π3≤π6x -π3≤7π6,∴-32≤sin ⎝⎛⎭⎫π6x -π3≤1, 故-3≤2sin ⎝⎛⎭⎫π6x -π3≤2. 即函数y =2sin ⎝⎛⎭⎫π6x -π3(0≤x ≤9)的最大值为2,最小值为- 3.所以最大值与最小值的和为2- 3.(3)f (x )=cos 2x +sin x =-sin 2x +sin x +1 =-⎝⎛⎭⎫sin x -122+54, 又∵x ∈⎣⎡⎦⎤-π4,π4,∴sin x ∈⎣⎡⎦⎤-22,22, ∴f (x )∈⎣⎢⎡⎦⎥⎤1-22,54.[答案] (1)⎣⎡⎭⎫2k π+π3,2k π+5π6,k ∈Z (2)2- 3 (3)⎣⎢⎡⎦⎥⎤1-22,54[方法技巧]1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数图象来求解. 2.三角函数最值或值域的求法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x 、cos x 、sin x cos x 或sin x ±cos x 换成t ,转化为二次函数求值域. [即时演练]1.函数y =|sin x |+sin x 的值域为( ) A .[-1,1] B .[-2,2] C .[-2,0]D .[0,2]解析:选D ∵y =|sin x |+sin x=⎩⎪⎨⎪⎧2sin x ,sin x ≥0,0,sin x <0. 又∵-1≤sin x ≤1,∴y ∈[0,2], 即函数的值域为[0,2].2.在△ABC 中,sin A cos B =-(2sin C +sin B )cos A ,则函数f (x )=2sin 2x +sin(2x -A )在区间⎣⎡⎦⎤0,π4上的最大值为________. 解析:由sin A cos B =-(2sin C +sin B )cos A ,可得sin(A +B )=-2sin C cos A ,即sin C =-2sin C cos A .因为sin C ≠0,所以cos A =-12,则A =2π3,所以f (x )=2sin 2x +sin ⎝⎛⎭⎫2x -2π3=32sin 2x -32cos 2x =3sin ⎝⎛⎭⎫2x -π6. 因为x ∈⎣⎡⎦⎤0,π4,所以2x -π6∈⎣⎡⎦⎤-π6,π3, 所以f (x )max =f ⎝⎛⎭⎫π4=32. 答案:323.求函数y =sin x +cos x +3cos x sin x 的最值. 解:令t =sin x +cos x ,则t ∈[-2,2]. ∵(sin x +cos x )2-2sin x cos x =1, ∴sin x cos x =t 2-12,∴y =32t 2+t -32,t ∈[-2,2],∵对称轴t =-13∈[-2,2],∴y min =f ⎝⎛⎭⎫-13=32×19-13-32=-53, y max =f (2)=32+ 2.[典例] (2017·x (x ∈R). (1)求f ⎝⎛⎭⎫2π3的值;(2)求f (x )的最小正周期及单调递增区间.[思路点拨] (1)欲求f ⎝⎛⎭⎫2π3的值,把x =2π3直接代入f (x )的解析式求解; (2)欲求函数f (x )的性质问题,应把f (x )的解析式化为f (x )=A sin(ωx +φ)的形式,再求其最小正周期及单调增区间.[解] (1)由sin2π3=32,cos 2π3=-12, 得f ⎝⎛⎭⎫2π3=⎝⎛⎭⎫322-⎝⎛⎭⎫-122-23×32×⎝⎛⎭⎫-12=2.(2)由cos 2x =cos 2x -sin 2x 与sin 2x =2sin x cos x ,得 f (x )=-cos 2x -3sin 2x =-2sin ⎝⎛⎭⎫2x +π6. 所以f (x )的最小正周期是π. 由正弦函数的性质,令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z , 解得π6+k π≤x ≤2π3+k π,k ∈Z ,所以f (x )的单调递增区间是⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z). [方法技巧]1.求三角函数单调区间的2种方法2.1.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上是减函数,则ω的取值范围是________. 解析:由π2<x <π,得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎫π2ω+π4,πω+π4⊆π2+2k π,3π2+2k π(k ∈Z)且2πω≥2×⎝⎛⎭⎫π-π2,则⎩⎨⎧π2ω+π4≥π2+2k π,k ∈Z ,πω+π4≤3π2+2k π,k ∈Z ,且0<ω≤2,故12≤ω≤54. 答案:⎣⎡⎦⎤12,542.函数f (x )=sin x cos x +cos 2x 的递减区间是________.解析:f (x )=sin x cos x +cos 2x =12sin 2x +12(cos 2x +1)=22sin ⎝⎛⎭⎫2x +π4+12, 由2k π+π2≤2x +π4≤2k π+3π2,k ∈Z ,可得k π+π8≤x ≤k π+5π8,k ∈Z ,所以函数f (x )的递减区间是⎣⎡⎦⎤k π+π8,k π+5π8,k ∈Z. 答案:⎣⎡⎦⎤k π+π8,k π+5π8,k ∈Z1.(2016·山东高考)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( ) A.π2 B .π C.3π2D .2π解析:选B 法一:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =4⎝⎛⎭⎫32sin x +12cos x ⎝⎛⎭⎫32cos x -12sin x=4sin ⎝⎛⎭⎫x +π6cos ⎝⎛⎭⎫x +π6=2sin ⎝⎛⎭⎫2x +π3,∴T =2π2=π.法二:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =3sin x cos x +3cos 2x -3sin 2x -sin x cos x =sin 2x +3cos 2x =2sin ⎝⎛⎭⎫2x +π3, ∴T =2π2=π.故选B.2.已知函数f (x )=3sin ωx cos ωx -4cos 2ωx (ω>0)的最小正周期为π,且f (θ)=12,则f ⎝⎛⎭⎫θ+π2=( )A .-52B .-92C .-112D .-132解析:选B f (x )=32sin 2ωx -2cos 2ωx -2,因为函数f (x )的最小正周期为π,所以ω=1, 又f (θ)=32sin 2θ-2cos 2θ-2=12,即32sin 2θ-2cos 2θ=52, 则f ⎝⎛⎭⎫θ+π2=32sin(2θ+π)-2cos(2θ+π)-2=-32sin 2θ+2cos 2θ-2=-92. 角度二:三角函数的奇偶性3.已知函数f (x )=sin(x +θ)+ 3 cos(x +θ)⎝⎛⎭⎫θ∈⎣⎡⎦⎤-π2,π2是偶函数,则θ的值为( ) A .0 B.π6 C.π4D.π3解析:选B 据已知可得f (x )=2sin ⎝⎛⎭⎫x +θ+π3, 若函数为偶函数,则必有θ+π3=k π+π2(k ∈Z),又由于θ∈⎣⎡⎦⎤-π2,π2,故有θ+π3=π2,解得θ=π6,经代入检验符合题意. [方法技巧]若f (x )=A sin(ωx +φ)为偶函数,则φ=k π+π2(k ∈Z),同时,当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z),同时,当x =0时,f (x )=0.角度三:三角函数的对称性4.若函数f (x )=3sin(2x +θ)+cos(2x +θ)(0<θ<π)的图象关于⎝⎛⎭⎫π2,0对称,则函数f (x )在⎣⎡⎦⎤-π4,π6上的最小值是( ) A .-1 B .- 3 C .-12D .-32解析:选B f (x )=3sin(2x +θ)+cos(2x +θ)=2sin ⎝⎛⎭⎫2x +θ+π6,则由题意,知f ⎝⎛⎭⎫π2=2sin ⎝⎛⎭⎫π+θ+π6=0,又0<θ<π,所以θ=5π6,所以f (x )=-2sin 2x ,f (x )在⎣⎡⎦⎤-π4,π6上是减函数,所以函数f (x )在⎣⎡⎦⎤-π4,π6上的最小值为f ⎝⎛⎭⎫π6=-2sin π3=-3,故选B. 5.设函数f (x )=sin ⎝⎛⎭⎫ωx +π6-1(ω>0)的导数f ′(x )的最大值为3,则f (x )的图象的一条对称轴的方程是( )A .x =π9B .x =π6C .x =π3D .x =π2解析:选A f ′(x )=ωcos ⎝⎛⎭⎫ωx +π6,因为导数f ′(x )的最大值为3,所以ω=3,则f (x )=sin ⎝⎛⎭⎫3x +π6-1,令3x +π6=k π+π2,k ∈Z ,得x =k π3+π9,k ∈Z ,令k =0,可得x =π9,故选A.[方法技巧]对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.角度四:三角函数性质的综合应用6.已知函数f (x )=3cos ⎝⎛⎭⎫2x -π3(x ∈R),下列结论错误的是( )A .函数f (x )的最小正周期为πB .函数f (x )图象关于点⎝⎛⎭⎫5π12,0对称 C .函数f (x )在区间⎣⎡⎦⎤0,π2上是减函数 D .函数f (x )的图象关于直线x =π6对称解析:选C 函数f (x )=3cos ⎝⎛⎭⎫2x -π3的最小正周期为π,且f ⎝⎛⎭⎫5π12=0,f ⎝⎛⎭⎫π6=3,则函数f (x )图象关于点⎝⎛⎭⎫5π12,0对称,函数f (x )的图象关于直线x =π6对称,因此A 、B 、D 正确,令2k π≤2x -π3≤π+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z ,所以f (x )在区间⎣⎡⎦⎤0,π2上不单调,故C 错误.7.(2018·福建连城模拟)已知函数f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x . (1)求f (x )的最小正周期和单调递增区间;(2)若当x ∈⎣⎡⎦⎤π4,π2时,关于x 的方程f (x )-m =2有解,求实数m 的取值范围. 解:(1)f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos 2x =1-cos ⎝⎛⎭⎫π2+2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3+1, 则函数f (x )的最小正周期为π. 令2k π-π2≤2x -π3≤2k π+π2(k ∈Z),得k π-π12≤x ≤k π+5π12(k ∈Z), 所以f (x )的单调递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z). (2)当x ∈⎣⎡⎦⎤π4,π2时,2x -π3∈⎣⎡⎦⎤π6,2π3,sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤12,1,所以f (x )∈[2,3], 而f (x )=m +2,所以m +2∈[2,3],即m ∈[0,1].1.(2017·全国卷Ⅲ)设函数f (x )=cos ⎝⎛⎭⎫x +π3,则下列结论错误的是( ) A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称。
第三章 三角函数、解三角形第一节任意角和弧度制及任意角的三角函数1.角的概念(1)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(2)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k·360°,k ∈Z}. 2.弧度的定义和公式(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:①弧度与角度的换算:360°=2π弧度;180°=π弧度;②弧长公式:l =|α|r ;③扇形面积公式:S 扇形=12lr 和12|α|r2.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P(x ,y),则sin α=y ,cos α=x ,tan α=yx(x≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线.1.易混概念:第一象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.利用180°=π rad 进行互化时,易出现度量单位的混用.3.三角函数的定义中,当P(x ,y)是单位圆上的点时有sin α=y ,cos α=x ,tan α=yx,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=yx .[试一试]1.若α=k·180°+45°(k∈Z),则α是第______象限角. 答案: 一或三2.已知角α的终边经过点(3,-1),则sin α=________.答案: -121.三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦;2.对于利用三角函数定义解题的题目,如果含有参数,一定要考虑运用分类讨论,而在求解简单的三角不等式时,可利用单位圆及三角函数线,体现了数形结合的思想. [练一练]若sin α<0且tan α>0,则α是第______象限角. 解析:由sin α<0,知α在第三、第四象限或α终边在y 轴的负半轴上,由tan α>0,知α在第一或第三象限,因此α在第三象限. 答案: 三 对应学生用书P39角的集合表示及象限角的判定1.①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有______个.解析:-3π4是第三象限角,故①错误;4π3=π+π3,从而4π3是第三象限角,故②正确;-400°=-360°-40°,从而③正确;-315°=-360°+45°,从而④正确.答案:32.终边在直线y =3x 上的角的集合为________. 解析:终边在直线y =3x 上的角的集合为{α|α=k π+π3,k ∈Z}. 答案:{α|α=k π+π3,k ∈Z}3.在-720°~0°范围内找出所有与45°终边相同的角为________. 解析:所有与45°有相同终边的角可表示为: β=45°+k×360°(k∈Z),则令-720°≤45°+k×360°<0°,得-765°≤k×360°<-45°,解得-765360≤k<-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°.答案:-675°或-315°4.设集合M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z,那么集合M ,N 的关系是______. 解析: 法一:由于M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有法二:由于M 中,x =k2·180°+45°=k·90°+45°=45°·(2k+1),2k +1是奇数;而N 中,x =k4·180°+45°=k·45°+45°=(k +1)·45°,k +1是整数,因此必有答案:[备课札记] [类题通法] 1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如k α,π±α等形式的角终边的方法:先表示角α的范围,再写出k α,π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.三角函数的定义[典例] (1)已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为______.(2)已知α是第二象限角,其终边上一点P(x ,5),且cos α=24x ,则sin ⎝⎛⎭⎪⎫α+π2=________.[解析] (1)由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z),所以α的最小正值为11π6.(2)由题意得cos α=x5+x2=24x ,解得x =0或x =3或x =- 3. 又α是第二象限角,∴x =- 3.即cos α=-64,sin ⎝⎛⎭⎪⎫α+π2=cos α=-64. [答案] (1)11π6 (2)-64[备课札记] [类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题. [针对训练]已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值. 解:设α终边上任一点为P(k ,-3k), 则r =k2+-=10|k|. 当k>0时,r =10k , ∴sin α=-3k10k =-310,1cos α=10 k k =10,∴10sin α+3cos α=-310+310=0;当k<0时,r =-10k ,∴sin α=-3k -10k =310,1cos α=-10k k=-10, ∴10sin α+3cos α=310-310=0.综上,10sin α+3cos α=0.扇形的弧长及面积公式[典例] (1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大? [解] (1)设圆心角是θ,半径是r ,则⎩⎪⎨⎪⎧2r +r θ=1012θ·r2=4⇒⎩⎪⎨⎪⎧r =1,θ=8(舍),⎩⎪⎨⎪⎧r =4,θ=12,故扇形圆心角为12.(2)设圆心角是θ,半径是r , 则2r +r θ=40.S =12θ·r2=12r(40-2r)=r(20-r) =-(r -10)2+100≤100,当且仅当r =10时,Smax =100,θ=2. 所以当r =10,θ=2时,扇形面积最大.[备课札记]∴正方形边长为2r , ∴圆心角的弧度数是2rr= 2. 答案: 2 [类题通法]弧度制应用的关注点(1)弧度制下l =|α|·r,S =12lr ,此时α为弧度.在角度制下,弧长l =n πr180,扇形面积S =n πr2360,此时n 为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形. [针对训练]已知扇形的圆心角是α=120°,弦长AB =12 cm ,求弧长l. 解:设扇形的半径为r cm , 如图.由sin 60°=6r ,得r =4 3 cm ,∴l =|α|·r=2π3×43=833π(cm).对应学生用书P41[课堂练通考点]1.如图所示,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是________.解析:由三角函数的定义知P(cos θ,sin θ). 答案:(cos θ,sin θ)2.已知扇形的周长是6 cm ,面积是2 cm2,则扇形的圆心角的弧度数是________. 解析:设扇形的半径和弧长分别为r ,l , 则易得⎩⎪⎨⎪⎧l +2r =6,12lr =2,解得⎩⎪⎨⎪⎧l =4r =1或⎩⎪⎨⎪⎧l =2,r =2.故扇形的圆心角的弧度数是4或1.答案:1或43.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是________.解析:∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a≤3.答案:(-2,3]4.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________. 解析:2 010°=676π=12π-5π6,∴与2 010°终边相同的角中绝对值最小的角的弧度数为5π6.答案:5π65.(2014·南京期末)已知角α 的终边经过点P (x ,-6),且tan α=-35,则x 的值为________.解析:由三角函数的定义知 tan α=-6x ,于是-6x =-35,解得x =10.答案:106.(2014·扬州质检)已知sin α=13,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan α=______.解析:因为 sin α=13,且α∈⎝ ⎛⎭⎪⎫π2,π,所以 cos α=- 1-19=-223从而tan α=-24. 答案:-24[课下提升考能] 第Ⅰ组:全员必做题1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是______.解析:将表的分针拨快应按顺时针方向旋转,为负角.又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.答案:-π32.已知cos θ·tan θ<0,那么角θ是第________象限角.解析:易知sin θ<0,且cos θ≠0,∴θ是第三或第四象限角. 答案:三或四3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=______.解析:因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k ∈Z),又β=-π3,所以α=2k π+5π6(k ∈Z),即得sin α=12.答案:124.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.解析:由三角函数定义可知Q 点的坐标(x ,y)满足x =cos 2π3=-12,y =sin 2π3=32.答案:⎝ ⎛⎭⎪⎫-12,325.给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan17π9,其中符号为负的是________(填写序号). 解析:sin(-1 000°)=sin 80°>0;cos(-2 200°)=cos(-40°)=cos 40°>0; tan(-10)=tan(3π-10)<0;sin 7π10cos πtan 17π9=-sin7π10tan17π9,sin 7π10>0,tan 17π9<0,∴原式>0.答案:③6.在直角坐标系中,O 是原点,A(3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y),所以x =2cos 120°=-1,y =2sin 120°=3,即B(-1,3). 答案:(-1,3)7.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.解析:因为A 点纵坐标yA =45,且A 点在第二象限,又因为圆O 为单位圆,所以A 点横坐标xA =-35,由三角函数的定义可得cos α=-35.答案:-358.设角α是第三象限角,且⎪⎪⎪⎪⎪⎪sin α2=-sin α2,则角α2是第________象限角.解析:由α是第三象限角,知2k π+π<α<2k π+3π2(k ∈Z),k π+π2<α2<k π+3π4(k ∈Z),知α2是第二或第四象限角,再由⎪⎪⎪⎪⎪⎪sin α2=-sin α2知sin α2<0,所以α2只能是第四象限角.答案:四9.一个扇形OAB 的面积是1 cm2,它的周长是4 cm ,求圆心角的弧度数和弦长AB. 解:设圆的半径为r cm ,弧长为l cm , 则⎩⎪⎨⎪⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2.∴圆心角α=lr=2.如图,过O 作OH ⊥AB 于H. 则∠AOH =1弧度.∴AH =1·sin 1=sin 1(cm),∴AB =2sin 1(cm). 10.已知sin α<0,tan α>0. (1)求α角的集合; (2)求α2终边所在的象限;(3)试判断tan α2sin α2cos α2的符号.解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限, 故α角在第三象限,其集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪+π<α<2k π+3π2,k ∈Z. (2)由(2k +1)π<α<2k π+3π2, 得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0,cos α2<0,所以tan α2sin α2cos α2取正号;当α2在第四象限时,tan α2<0,sin α2<0,cos α2>0, 所以tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.第Ⅱ组:重点选做题1.满足cos α≤-12的角α的集合为________.解析:作直线x =-12交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z . 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z 2.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.解析:如图,连接AP ,分别过P ,A 作PC ,AB 垂直x 轴于C ,B 点,过A 作AD ⊥PC 于D 点.由题意知BP 的长为2. ∵圆的半径为1, ∴∠BAP =2, 故∠DAP =2-π2.∴DP =AP·sin ⎝ ⎛⎭⎪⎫2-π2=-cos 2,∴PC =1-cos 2,DA =APcos ⎝⎛⎭⎪⎫2-π2=sin 2.∴OC =2-sin 2.故OP =(2-sin 2,1-cos 2). 答案:(2-sin 2,1-cos 2)第二节同角三角函数的基本关系与诱导公式对应学生用书P411.同角三角函数的基本关系式(1)平方关系:sin2α+cos2α=1(α∈R).(2)商数关系:tan α=sin αcos α⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z . 2.六组诱导公式对于角“k π2±α”(k∈Z)的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.1.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. 2.注意求值与化简后的结果一般要尽可能有理化、整式化. [试一试]1.(2013·全国大纲卷改编)已知α是第二象限角,sin α=513,则cos α=______.解析:因为α是第二象限角, 所以cos α=- 1-⎝ ⎛⎭⎪⎫5132=-1213. 答案:-12132.计算:cos ⎝⎛⎭⎪⎫-20π3=______.答案:-121.诱导公式的应用原则负化正,大化小,化到锐角为终了. 2.三角函数求值与化简的常用方法(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (3)巧用“1”的变换:1=sin2θ+cos2θ=cos2θ(1+tan2θ)=tan π4=….[练一练]1.(2014·南京模拟)已知函数f(x)=2sin(2x +φ).若f ⎝ ⎛⎭⎪⎫π4= 3,则f ⎝ ⎛⎭⎪⎫13π4=______.解析:因为f(x +π)=2sin(2x +2π+φ)=2sin(2x +φ)=f(x),所以函数f(x)的周期为π, 所以f ⎝⎛⎭⎪⎫13π4=f ⎝⎛⎭⎪⎫3π+π4=f ⎝ ⎛⎭⎪⎫π4= 3.答案: 32.(2013·芜湖调研)若sin θ·cos θ=12,则tan θ+cos θsin θ的值是________.解析:tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1cos θsin θ=2.答案:2对应学生用书P42三角函数的诱导公式1.sin 600°+tan 240°的值等于________.解析:sin 600°+tan 240°=sin(720°-120°)+tan(180°+60°)=-sin 120°+tan 60°=-32+3=32. 答案:322.已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫56π+α=________.解析:tan ⎝ ⎛⎭⎪⎫56π+α=tan ⎝ ⎛⎭⎪⎫π-π6+α =tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.答案:-333.化简:π+απ+α⎝ ⎛⎭⎪⎫α-3π2-α-3π-3π-α=________.解析:原式=tan αcos αsin ⎣⎢⎡⎦⎥⎤-2π+⎝⎛⎭⎪⎫α+π2π+α-π+α=tan αcos αsin ⎝ ⎛⎭⎪⎫π2+α-cos αα=tan αcos αcos α-cos αα=-tan αcos αsin α=-sin αcos α·cos αsin α=-1.答案:-1 4.已知A =π+αsin α+π+αcos α(k ∈Z),则A 的值构成的集合是______.解析:当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.答案:{2,-2}[备课札记][类题通法]诱导公式应用的步骤任意负角的三角函数→任意正角的三角函数 ↓锐角三角函数←0~2π的角的三角函数同角三角函数的基本关系[典例] 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos2α-sin2α用tan α表示出来,并求其值.[解] (1)联立方程 错误!由①得cos α=15-sin α,将其代入②,整理得25sin2α-5sin α-12=0.∵α是三角形内角,∴⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.(2)1cos2α-sin2α=sin2α+cos2αcos2α-sin2α =sin2α+cos2αcos2αcos2α-sin2αcos2α=tan2α+11-tan2α∵tan α=-43,∴1cos2α-sin2α=tan2α+11-tan2α=⎝ ⎛⎭⎪⎫-432+11-⎝ ⎛⎭⎪⎫-432=-257. [备课札记]tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×⎝ ⎛⎭⎪⎫-43+2=87. (2)sin2α+2sin αcos α=sin2α+2sin αcos αsin2α+cos2α=tan2α+2tan α1+tan2α=169-831+169=-825.[类题通法]1.利用sin2α+cos2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二. 3.注意公式逆用及变形应用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α. [针对训练]已知sin α=2sin β,tan α=3tan β,求cos α. 解:∵sin α=2sin β,tan α=3tan β, ∴sin2α=4sin2β, ① tan2α=9tan2β. ②由①÷②得:9cos2α=4cos2β. ③ 由①+③得sin2α+9cos2α=4. 又sin2α+cos2α=1, ∴cos2α=38,∴cos α=±64.诱导公式在三角形中的应用[典例] -B),3cos π-B),求△ABC 的三个内角.[解] 由已知得sin A =2sin B ,3cos A =2cos B 两式平方相加得2cos2A =1, 即cos A =22或cos A =-22.(1)当cos A =22时,cos B =32,又角A 、B 是三角形的内角, ∴A =π4,B =π6,∴C =π-(A +B)=7π12.(2)当cos A =-22时,cos B =-32, 又角A 、B 是三角形的内角,∴A =3π4,B =5π6,不合题意.综上知,A =π4,B =π6,C =7π12.[备课札记][类题通法]1.诱导公式在三角形中经常使用,常用的角的变形有:A +B =π-C,2A +2B =2π-2C ,A2+B 2+C 2=π2等,于是可得sin(A +B)=sin C ,cos A +B 2=sin C 2等; 2.求角时,通常是先求出该角的某一个三角函数值,再结合其范围,确定该角的大小. [针对训练]在△ABC 中,sin A +cos A =2,3cos A =-2cos(π-B),求△ABC 的三个内角. 解:∵sin A +cos A =2,∴1+2sin Acos A =2,∴sin2A =1. ∵A 为△ABC 的内角, ∴2A =π2,∴A =π4.∵3cos A =-2cos(π-B), ∴3cos π4=2cos B ,∴cos B =32.∵0<B <π,∴B =π6.∵A +B +C =π,∴C =7π12.∴A =π4,B =π6,C =7π12.对应学生用书P43[课堂练通考点]1.(2013·苏州期中)已知tan θ=2,则sin ⎝ ⎛⎭⎪⎫π2+θ-π-θsin ⎝ ⎛⎭⎪⎫π2-θ-π-θ=______.解析:sin ⎝ ⎛⎭⎪⎫π2+θ-π-θsin ⎝ ⎛⎭⎪⎫π2-θ-π-θ=cos θ+cos θcos θ-sin θ=21-tan θ,又 tan θ=2,得sin ⎝ ⎛⎭⎪⎫π2+θ-π-θsin ⎝ ⎛⎭⎪⎫π2-θ-π-θ=-2.答案:-22.(2014·镇江统考)已知α为第四象限角,且 sin(π-α)=-13,则tan α=________.解析:由 sin(π-α)=-13得 sin α=-13.因为α在第四象限,所以 cos α=1-sin2α=1-⎝ ⎛⎭⎪⎫-132=223,则 tan α=sin αcos α=-13223=-24.答案:-243.若△ABC 的内角A 满足sin 2A =23,则sin A +cos A =________.解析:∵0<A<π,∴0<2A<2π.又∵sin 2A =23,即2sin Acos A =23,∴0<A<π2.∴(sin A +cos A)2=53,∴sin A +cos A =153.答案:1534.cos ⎝ ⎛⎭⎪⎫-17π4-sin ⎝ ⎛⎭⎪⎫-17π4的值是________. 解析:原式=cos 17π4+sin 17π4=cos π4+sin π4= 2.答案: 25.已知π<α<2π,cos(α-7π)=-35,求sin(3π+α)·tan ⎝ ⎛⎭⎪⎫α-7π2的值.解:∵cos(α-7π)=cos(7π-α) =cos(π-α)=-cos α=-35,∴cos α=35.∴sin(3π+α)·tan ⎝⎛⎭⎪⎫α-7π2=sin(π+α)·⎣⎢⎡⎦⎥⎤-tan ⎝ ⎛⎭⎪⎫7π2-α =sin α·tan ⎝ ⎛⎭⎪⎫π2-α=sin α·sin ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2-α =sin α·cos αsin α=cos α=35.[课下提升考能]第Ⅰ组:全员必做题1.(2014·南通调研)若sin ⎝ ⎛⎭⎪⎫α-π3=35,则cos ⎝ ⎛⎭⎪⎫α+π6=________. 解析:cos ⎝ ⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π3+π2 =-sin ⎝ ⎛⎭⎪⎫α-π3=-35.答案:-352.(2014·淮安模拟)若 tan α=3,则 sin2 α-2 sin αcos α+3 cos2 α=______. 解析:sin2 α-2 sin αcos α+3 cos2 α =sin2 α-2 sin αcos α+3 cos2 αsin2 α+cos2 α=tan2 α-2tan α+3tan2 α+1=12-610=35. 答案:353.已知cos ⎝ ⎛⎭⎪⎫π2-φ=32,且|φ|<π2,则tan φ=______.解析:cos ⎝ ⎛⎭⎪⎫π2-φ=sin φ=32, 又|φ|<π2,则cos φ=12,所以tan φ= 3.答案: 34.已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是______.解析:由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tan α=3,故sin α=31010.答案:310105.已知f(α)=π-απ-α-π-αα,则f ⎝ ⎛⎭⎪⎫-313π的值为________. 解析:∵f(α)=sin αcos α-cos αtan α=-cos α,∴f ⎝ ⎛⎭⎪⎫-313π=-cos ⎝ ⎛⎭⎪⎫-313π=-cos ⎝ ⎛⎭⎪⎫10π+π3 =-cos π3=-12.答案:-126.已知sin(π-α)=log814,且α∈⎝ ⎛⎭⎪⎫-π2,0,则tan(2π-α)的值为________. 解析:sin(π-α)=sin α=log814=-23,又α ∈⎝ ⎛⎭⎪⎫-π2,0,得cos α=1-sin2α=53, tan(2π-α)=tan(-α)=-tan α=-sin αcos α=255.答案:2557.化简sin ⎝ ⎛⎭⎪⎫π2+α·cos ⎝ ⎛⎭⎪⎫π2-απ+α+π-α⎝ ⎛⎭⎪⎫π2+απ+α=________.解析:原式=cos α·sin α-cos α+sin α-sin α-sin α=-sin α+sin α=0.答案:08.若sin θ+cos θsin θ-cos θ=2,则sin(θ-5π)sin ⎝ ⎛⎭⎪⎫3π2-θ=________. 解析:由sin θ+cos θsin θ-cos θ=2,得sin θ+cos θ=2(sin θ-cos θ),两边平方得:1+2sin θcos θ=4(1-2sin θcos θ), 故sin θcos θ=310,∴sin(θ-5π)sin ⎝ ⎛⎭⎪⎫3π2-θ=sin θcos θ=310.答案:3109.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°. 解:原式=-sin 1 200°·cos 1 290°+cos 1 020°·(-sin 1 050°)+tan 945° =-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225° =(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45°=32×32+12×12+1=2. 10.已知sin(3π+α)=2sin ⎝⎛⎭⎪⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin2α+sin 2α. 解:由已知得sin α=2cos α. (1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin2α+2sin αcos αsin2α+cos2α=sin2α+sin2αsin2α+14sin2α=85.第Ⅱ组:重点选做题1.若cos α+2sin α=-5,则tan α=______.解析:由cos α+2sin α=-5,可知cos α≠0,两边同除以cos α得,1+2tan α=-51cos α,两边平方得(1+2tan α)2=5cos2α=5(1+tan2α),∴tan2α-4tan α+4=0,解得tan α=2. 答案:22.(2014·无锡模拟)如图,A ,B 是单位圆上的两个质点,点B 坐标为(1,0),∠BOA =60°.质点A 以1 rad/s 的角速度按逆时针方向在单位圆上运动,质点B 以1 rad/s 的角速度按顺时针方向在单位圆上运动. (1)求经过1 s 后,∠BOA 的弧度;(2)求质点A ,B 在单位圆上第一次相遇所用的时间. 解:(1)经过1 s 后,∠BOA 的弧度为π3+2.(2)设经过t s 后质点A ,B 在单位圆上第一次相遇,则t(1+1)+π3=2π,所以t =5π6,即经过5π6s 后质点A ,B 在单位圆上第一次相遇.3.(2014·镇江统考)如图,单位圆(半径为1的圆)的圆心O 为坐标原点,单位圆与y 轴的正半轴交于点A ,与钝角α的终边OB 交于点B(xB ,yB),设∠BAO =β.(1)用β表示α;(2)如果 sin β=45,求点B(xB ,yB)坐标;(3)求xB -yB 的最小值.解:(1)因为∠AOB =α-π2=π-2β.所以α=3π2-2β.(2)由 sin α=yB r ,r =1,得yB =sin α=sin ⎝ ⎛⎭⎪⎫3π2-2β=-cos 2β=2 sin2β-1=2×⎝ ⎛⎭⎪⎫452-1=725.由 α为钝角,知xB =cos α=-1-sin2 α=-2425.所以B ⎝ ⎛⎭⎪⎫-2425,725. (3)法一:xB -yB =cos α-sin α= 2cos ⎝ ⎛⎭⎪⎫ α+π4. 又α ∈⎝ ⎛⎭⎪⎫π2,π,则α+π4∈⎝ ⎛⎭⎪⎫3π4,5π4,cos α+π4∈⎣⎢⎡⎭⎪⎫-1,-22.所以xB -yB 的最小值为- 2.法二:因为α为钝角,所以xB<0,yB>0,x2B +y2B =1,xB -yB =-(-xB +yB),(-xB +yB)2≤2(x 2B +y2B )=2, 所以xB -yB≥- 2.所以xB -yB的最小值为- 2.第三节三角函数图像与性质对应学生用书P43正弦、余弦、正切函数的图像与性质 (下表中k ∈Z).1.三角函数存在多个单调区间时易错用“∪”联结.2.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k∈Z”这一条件. [试一试] 1.函数y =tan ⎝⎛⎭⎪⎫π4-x 的定义域是________.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x≠k π+3π4,k ∈Z ,x ∈R2.(2013·南京三模)函数y =sin x ⎝ ⎛⎭⎪⎫-π4≤x≤3π4的值域是________.解析:因为-π4≤x≤3π4,由y =sin x 的图像知-22≤sin x≤1,故函数y 的值域为⎣⎢⎡⎦⎥⎤-22,1. 答案:⎣⎢⎡⎦⎥⎤-22,11.三角函数单调区间的求法先把函数式化成形如y =Asin(ωx +φ)(ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,考虑问题应在函数的定义域内考虑.注意区分下列两题的单调增区间的不同:(1)y =sin ⎝ ⎛⎭⎪⎫2x -π4;(2)y =sin ⎝ ⎛⎭⎪⎫π4-2x . 2.求三角函数值域(最值)的两种方法(1)将所给函数化为y =Asin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图像写出函数的值域;(2)换元法:把sin x(cos x)看作一个整体,化为二次函数来解决. [练一练]1.函数y =|sin x|的一个单调增区间是________.解析:作出函数y =|sin x|的图像观察可知,函数y =|sin x|在⎝ ⎛⎭⎪⎫π,3π2上递增. 答案:⎝⎛⎭⎪⎫π,3π22.(2013·天津高考)函数f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为________. 解析:由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π4上的最小值为-22. 答案:-22对应学生用书P44三角函数的定义域与值域1.函数f(x)=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________. 解析:当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, 故3sin ⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3, 即此时函数f(x)的值域是⎣⎢⎡⎦⎥⎤-32,3.答案:⎣⎢⎡⎦⎥⎤-32,3 2.(2014·湛江调研)函数y =lg(sin x)+ cos x -12的定义域为________.解析:要使函数有意义必须有 ⎩⎪⎨⎪⎧sin x>0,cos x -12≥0,即⎩⎪⎨⎪⎧ sin x>0,cos x≥12,解得⎩⎪⎨⎪⎧2k π<x<π+2k π,-π3+2k π≤x≤π3+2k π(k ∈Z),∴2k π<x≤π3+2k π,k ∈Z ,∴函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x≤π3+2k π,k ∈Z .答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x≤π3+2k π,k ∈Z3.(1)函数y =2cos2x +5sin x -4的值域为________.(2)当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sinx -2cos2x 的最小值是________,最大值是________.解析:(1)y =2cos2x +5sin x -4=2(1-sin2x)+5sin x -4 =-2sin2x +5sin x -2 =-2(sin x -54)2+98.故当sin x =1时,ymax =1,当sin x =-1时,ymin =-9,故y =2cos2x +5sin x -4的值域为[-9,1].(2)∵x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1.又y =3-sin x -2cos2x =3-sin x -2(1-sin2x)= 2⎝⎛⎭⎪⎫sin x -142+78. ∴当sin x =14时,ymin =78,当sin x =-12或sin x =1时,ymax =2.答案:(1)[-9,1] (2)782[备课札记] [类题通法]1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解.2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =Asin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域;(4)利用sin x±cos x 和sin xcos x 的关系转换成二次函数求值域.三角函数的单调性[典例] 求下列函数的单调递减区间:(1)y =2sin ⎝ ⎛⎭⎪⎫x -π4;(2)y =tan ⎝ ⎛⎭⎪⎫π3-2x .[解] (1)由2k π+π2≤x-π4≤2k π+3π2,k ∈Z ,得2k π+3π4≤x≤2k π+7π4,k ∈Z.故函数y =2sin ⎝⎛⎭⎪⎫x -π4的单调减区间为⎣⎢⎡⎦⎥⎤2k π+3π4,2k π+7π4(k ∈Z). (2)把函数y =tan ⎝ ⎛⎭⎪⎫π3-2x 变为y =-tan ⎝ ⎛⎭⎪⎫2x -π3.由k π-π2<2x -π3<k π+π2,k ∈Z ,得k π-π6<2x<k π+5π6,k ∈Z ,即k π2-π12<x<k π2+5π12,k ∈Z. 故函数y =tan ⎝ ⎛⎭⎪⎫π3-2x 的单调减区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z).[备课札记]解:画出函数y =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x -π4的图像,易知其单调递减区间为⎣⎢⎡⎦⎥⎤k π+3π4,k π+5π4(k ∈Z).[类题通法]三角函数的单调区间的求法 (1)代换法: 所谓代换法,就是将比较复杂的三角函数整理后的整体当作一个角u(或t),利用基本三角函数的单调性来求所要求的三角函数的单调区间. (2)图像法:函数的单调性表现在图像上是:从左到右,图像上升趋势的区间为单调递增区间,图像下降趋势的区间为单调递减区间,画出三角函数的图像,结合图像易求它的单调区间.提醒:求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域. [针对训练]1.(2013·盐城二模)函数f(x)=2sin ⎝⎛⎭⎪⎫x -π4,x ∈[-π,0]的单调增区间为________.解析:当x -π4∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2,k ∈Z 时,是f(x)的单调增区间.又因为x ∈[-π,0],故取k =0得x ∈⎣⎢⎡⎦⎥⎤-π4,0 答案:⎣⎢⎡⎦⎥⎤-π4,02.(2013·苏北四市联考)若函数f(x)=2sin ωx(ω>0)在⎣⎢⎡⎦⎥⎤-2π3,2π3上单调递增,则ω的最大值为______.解析:依题意可知12×T≥2×2π3,即12×2πω≥2×2π3,解得ω≤34,从而ω的最大值为34.答案:34三角函数的对称性与奇偶性正、余弦函数的图像既是中心对称图形,又是轴对称图形.正切函数的图像只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有:求三角函数的对称轴或对称中心;由三角函数的对称性求参数值; 三角函数对称性的应用.角度一 求三角函数的对称轴或对称中心1.(2013·扬州期末)已知函数f(x)=-2sin2x +23sin x· cos x +1.(1)求f(x)的最小正周期及对称中心;(2)当x ∈⎣⎢⎡⎦⎥⎤-π6,π3时,求f(x)的最大值和最小值. 解:(1)f(x)= 3 sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, 所以f(x)的最小正周期为T =2π2=π.令 sin ⎝ ⎛⎭⎪⎫2x +π6=0,得x =k π2-π12(k ∈Z), 所以f(x)的对称中心为⎝⎛⎭⎪⎫k π2-π12,0(k ∈Z).(2)因为x ∈⎣⎢⎡⎦⎥⎤-π6,π3,所以-π6≤2x+π6≤5π6, 所以-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1,所以-1≤f(x)≤2.所以当x =-π6时,f(x)的最小值为-1;当x =π6时,f(x)的最大值为2.角度二 由三角函数的对称性求参数值2.(2014·连云港期末)若函数y =3sin(2x +φ)(0<φ<π)的图像关于点⎝ ⎛⎭⎪⎫π3,0中心对称,则φ=________.解析:由题意得3sin ⎝ ⎛⎭⎪⎫23π+φ=0,所以23π+φ=k π(k ∈Z).又因为0<φ<π,所以φ=π3. 答案:π33.已知ω>0,函数f(x)=cos ⎝ ⎛⎭⎪⎫ωx +π3的一条对称轴为x =π3,一个对称中心为点⎝ ⎛⎭⎪⎫π12,0,则ω的最小值为______.解析:由题意知π3-π12≥T 4,T =2πω≤π,ω≥2.答案:2角度三 三角函数对称性的应用4.(2014·辽宁五校联考)设偶函数f(x)=Asin(ωx +φ)(A>0,ω>0,0<φ<π)的部分图像如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为______. 解析:由题意知,点M 到x 轴的距离是12,根据题意可设f(x)=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f(x)=12cos πx ,故f ⎝ ⎛⎭⎪⎫16=12cos π6=34.答案:34[备课札记] [类题通法]1.若f(x)=Asin(ωx +φ)为偶函数,则当x =0时,f(x)取得最大或最小值. 若f(x)=Asin(ωx +φ)为奇函数,则当x =0时,f(x)=0.2.对于函数y =Asin(ωx +φ),其对称轴一定经过图像的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x0或点(x0,0)是否是函数的对称轴或对称中心时,可通过检验f(x0)的值进行判断. 对应学生用书P46[课堂练通考点]1.(2014·常州统考)函数f(x)=sin ⎝ ⎛⎭⎪⎫2x +π4⎝ ⎛⎭⎪⎫0≤x≤π2的单调增区间是________. 解析:由0≤x≤π2,可知π4≤2x +π4≤5π4.又y =sin x 的单调增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2,k ∈Z ,从而π4≤2x+π4≤π2,即0≤x≤π8,所以函数f(x)的单调增区间为⎣⎢⎡⎦⎥⎤0,π8.答案:⎣⎢⎡⎦⎥⎤0,π82.已知函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx -π6(ω>0)的最小正周期为π,则f(x)的单调递增区间为________.解析: 根据已知得2πω=π,得ω=2.由不等式2k π-π2≤2x-π6≤2k π+π2(k ∈Z),解得k π-π6≤x≤k π+π3(k ∈Z),所以函数f(x)的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z).答案:⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z)3.函数y =cos ⎝⎛⎭⎪⎫π4-2x 的单调减区间为________.解析:由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝ ⎛⎭⎪⎫2x -π4得2k π≤2x-π4≤2k π+π(k ∈Z),解得k π+π8≤x≤k π+5π8(k ∈Z).所以函数的单调减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z).答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z)4.函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图像与x 轴交点的坐标是________.解析:由2x +π4=k π(k ∈Z)得,x =k π2-π8(k ∈Z).∴函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图像与x 轴交点的坐标是⎝ ⎛⎭⎪⎫k π2-π8,0.答案:⎝⎛⎭⎪⎫k π2-π8,0 5.(2013·南京二模)对函数f(x)=xsin x ,现有下列命题:(1)函数f(x)是偶函数;(2)函数f(x)的最小正周期是2π;(3)点(π,0)是函数f(x)的图像的一个对称中心;(4)函数f(x)在区间⎣⎢⎡⎦⎥⎤0,π2上单调递增,在区间⎣⎢⎡⎦⎥⎤-π2,0上单调递减.其中是真命题的是________(填序号).解析:由f(x)=x sin x 知其定义域为R ,对于(1),f(-x)=(-x)sin(-x)=xsin x =f(x), 所以f(x)是偶函数;对于(2),f ⎝ ⎛⎭⎪⎫2π+π2=⎝ ⎛⎭⎪⎫2π+π2sin ⎝ ⎛⎭⎪⎫2π+π2=5π2, 而f ⎝ ⎛⎭⎪⎫π2=π2,显然f ⎝ ⎛⎭⎪⎫2π+π2≠f ⎝ ⎛⎭⎪⎫π2;对于(3),f ⎝ ⎛⎭⎪⎫π-π2=π2,f ⎝ ⎛⎭⎪⎫π+π2=-3π2,显然f ⎝ ⎛⎭⎪⎫π-π2≠-f ⎝⎛⎭⎪⎫π+π2; 对于(4),f′(x)=sin x +xcos x ,易知f′(x)>0在⎝ ⎛⎭⎪⎫0,π2上恒成立,所以f(x)在⎣⎢⎡⎦⎥⎤0,π2上为增函数,由(1)知f(x)在⎣⎢⎡⎦⎥⎤-π2,0上为减函数.答案:(1) (4)[课下提升考能] 第Ⅰ组:全员必做题 1.函数y =cos x -32的定义域为________. 解析:∵cos x -32≥0,得cos x≥32, ∴2k π-π6≤x≤2k π+π6,k ∈Z.答案:⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6,k ∈Z2.(2013·洛阳统考)如果函数y =3sin(2x +φ)的图像关于直线x =π6对称,则|φ|的最小值为________.解析:依题意得,sin ⎝ ⎛⎭⎪⎫π3+φ=±1,则π3+φ=k π+π2(k ∈Z),即φ=k π+π6(k ∈Z),因此|φ|的最小值是π6.答案:π63.已知函数f(x)=2sin ωx(ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于________解析:∵ω>0,-π3≤x≤π4,∴-ωπ3≤ωx≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案:324.(2014·镇江期末)函数f(x)=2 cos2⎝ ⎛⎭⎪⎫12x -12-x x -1的对称中心坐标为________.解析:因为f(x)=2 cos2⎝ ⎛⎭⎪⎫x 2-12-x x -1=-+1-xx -1=---x -1(x≠1),所以f(x +1)+1=cos xx,所得函数f(x)的对称中心为(1,-1).答案:(1,-1)5.(2013·浙江高考改编)已知函数f(x)=Acos(ωx +φ)(A>0,ω>0,φ∈R),则“f (x)是奇函数”是“φ=π2”的________条件.解析:若f(x)是奇函数,则φ=π2+k π(k ∈Z);当φ=π2时,f(x)为奇函数.答案:必要不充分6.函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3-1,x ∈⎣⎢⎡⎦⎥⎤0,π3的值域为________,并且取最大值时x 的值为________.解析:∵0≤x≤π3,∴π3≤2x+π3≤π,∴0≤sin ⎝⎛⎭⎪⎫2x +π3≤1, ∴-1≤2sin ⎝ ⎛⎭⎪⎫2x +π3-1≤1,即值域为[-1,1]; 且当sin ⎝ ⎛⎭⎪⎫2x +π3=1,即x =π12时,y 取最大值. 答案:[-1,1]π127.设f(x)=1-2sin x. (1)求f(x)的定义域;(2)求f(x)的值域及取最大值时x 的值.解:(1)由1-2sin x≥0,根据正弦函数图像知:定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+56π≤x≤2k π+13π6,k ∈Z .(2)∵-1≤sin x≤1,∴-1≤1-2sin x≤3,∵1-2sin x≥0,∴0≤1-2sin x≤3, ∴f(x)的值域为[0,3],当x =2k π+3π2,k ∈Z 时,f(x)取得最大值.8.已知函数f(x)=sin(ωx +φ)⎝⎛⎭⎪⎫0<φ<2π3的最小正周期为π.(1)求当f(x)为偶函数时φ的值;(2)若f(x)的图像过点⎝ ⎛⎭⎪⎫π6,32,求f(x)的单调递增区间.解:∵由f(x)的最小正周期为π,则T =2πω=π,∴ω=2.∴f(x)=sin(2x +φ).(1)当f(x)为偶函数时,f(-x)=f(x). ∴sin(2x +φ)=sin(-2x +φ), 展开整理得sin 2xcos φ=0, 由已知上式对∀x ∈R 都成立, ∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f(x)的图像过点⎝ ⎛⎭⎪⎫π6,32时,sin ⎝ ⎛⎭⎪⎫2×π6+φ=32,即sin ⎝⎛⎭⎪⎫π3+φ=32.又∵0<φ<2π3,∴π3<π3+φ<π.∴π3+φ=2π3,φ=π3.∴f(x)=sin ⎝ ⎛⎭⎪⎫2x +π3.令2k π-π2≤2x+π3≤2k π+π2,k ∈Z ,得k π-5π12≤x≤k π+π12,k ∈Z.∴f(x)的递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z.第Ⅱ组:重点选做题1.(2014·福州质检)已知函数f(x)=sin x +cos x ,x ∈R.(1)求f ⎝ ⎛⎭⎪⎫π12的值; (2)试写出一个函数g(x),使得g(x)f(x)=cos 2x ,并求g(x)的单调区间.解:(1)因为f(x)=2sin ⎝⎛⎭⎪⎫x +π4,所以f ⎝ ⎛⎭⎪⎫π12=2sin ⎝ ⎛⎭⎪⎫π12+π4=2sin π3=62.(2)g(x)=cos x -sin x.理由如下:因为g(x)f(x)=(cos x -sin x)(sin x +cos x)=cos2x -sin2x =cos 2x , 所以g(x)=cos x -sin x 符合要求.又g(x)=cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π4,由2k π+π<x +π4<2k π+2π,得2k π+3π4<x<2k π+7π4,k ∈Z.所以g(x)的单调递增区间为⎝ ⎛⎭⎪⎫2k π+3π4,2k π+7π4,k ∈Z. 由2k π<x +π4<2k π+π,得2k π-π4<x<2k π+3π4,k ∈Z.所以g(x)的单调递减区间为⎝⎛⎭⎪⎫2k π-π4,2k π+3π4,k ∈Z.2.已知a>0,函数f(x)=-2asin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f(x)≤1.(1)求常数a ,b 的值;(2)设g(x)=f ⎝ ⎛⎭⎪⎫x +π2且lg g(x)>0,求g(x)的单调区间.解:(1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2, ∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2asin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a].∴f(x)∈[b,3a +b], 又∵-5≤f(x)≤1,∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得,f(x)=-4sin ⎝⎛⎭⎪⎫2x +π6-1, g(x)=f ⎝⎛⎭⎪⎫x +π2 =-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1 =4sin ⎝⎛⎭⎪⎫2x +π6-1, 又由lg g(x)>0,得g(x)>1, ∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g(x)单调递增,即k π<x≤k π+π6,k ∈Z , ∴g(x)的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z. 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g(x)单调递减,即k π+π6<x<k π+π3,k ∈Z.∴g(x)的单调减区间为⎝⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z.第四节函数y =Asin(ωx +φ)的图像及三角函数模型的简单应用对应学生用书P461.y =2.用五点法画y =Asin(ωx +φ)一个周期内的简图1.函数图像变换要明确,要弄清楚是平移哪个函数的图像,得到哪个函数的图像;2.要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;3.由y =Asin ωx 的图像得到y =Asin(ωx +φ)的图像时,需平移的单位数应为⎪⎪⎪⎪⎪⎪φω,而不是|φ|. [试一试]1.y =2sin ⎝ ⎛⎭⎪⎫2x -π4的振幅、频率和初相分别为__________. 答案:2,1π,-π42.把y =sin 12x 的图像上点的横坐标变为原来的2倍得到y =sin ωx 的图像,则ω 的值为________. 答案:141.由函数y =sin x 的图像变换得到y =Asin(ωx +φ)(A>0,ω>0)的图像的两种方法2.学会列表技巧表中“五点”相邻两点的横向距离均为T4,利用这一结论可以较快地写出“五点”的坐标.[练一练]1.用五点法作函数y =sin ⎝⎛⎭⎪⎫x -π6在一个周期内的图像时,主要确定的五个点是________、________、________、________、________. 答案:⎝⎛⎭⎪⎫π6,0⎝ ⎛⎭⎪⎫2π3,1⎝ ⎛⎭⎪⎫7π6,0⎝ ⎛⎭⎪⎫5π3,-1⎝ ⎛⎭⎪⎫13π6,02.要得到函数y =cos(2x +1)的图像,只要将函数y =cos 2x 的图像至少向左平移__________个单位.解析:∵y =cos(2x +1)=cos 2⎝ ⎛⎭⎪⎫x +12, ∴只要将函数y =cos 2x 的图像向左平移12个单位即可.答案:12对应学生用书P47的解析式1.(2013·四川高考改编)函数f(x)=2sin(ωx +φ)ω>0,-π2<φ<π2的部分图像如图所示,则ω+φ的值是________. 解析:由图知最小正周期T =211π12-5π12=π,∴ω=2,将图像最高点的坐标⎝⎛⎭⎪⎫5π12,2代入f(x)=2sin(2x +φ),得sin ⎝ ⎛⎭⎪⎫5π6+φ=1,φ=-π3.答案:2-π32.(2013·苏北四市三调)若函数f(x)=Asin(ωx +φ)(A>0,ω>0)的。
第一节任意角和弧度制及任意角的三角函数[知识能否忆起]1.任意角 (1)角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值l r与所取的r 的大小无关,仅与角的大小有关.④弧度与角度的换算:360°=2π弧度;180°=π弧度. ⑤弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数 (1)任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么角α的正弦、余弦、正切分别是:sin α=y ,cos α=x ,tan α=y x,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M .由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.[小题能否全取]1.-870°的终边在第几象限( ) A .一 B .二 C .三D .四解析:选C 因-870°=-2×360°-150°.-150°是第三象限角. 2.已知角α的终边经过点(3,-1),则角α的最小正值是( ) A.2π3 B.11π6 C.5π6D.3π4解析:选B ∵sin α=-12=-12,且α的终边在第四象限,∴α=116π.3.(教材习题改编)若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选C 由sin α<0,知α在第三、第四象限或α终边在y 轴的负半轴上,由tan α>0,知α在第一或第三象限,因此α在第三象限.4.若点P 在2π3角的终边上,且P 的坐标为(-1,y ),则y 等于________.解析:因tan 2π3=-3=-y ,∴y = 3.答案: 35.弧长为3π,圆心角为135°的扇形半径为________,面积为________. 解析:弧长l =3π,圆心角α=34π,由弧长公式l =α·r 得r =lα=3π34π=4,面积S =12lr =6π. 答案:4 6π1.对任意角的理解(1)“小于90°的角”不等同于“锐角”“0°~90°的角”不等同于“第一象限的角”.其实锐角的集合是{α|0°<α<90°},第一象限角的集合为{α|k ·360°<α<k ·360°+90°,k ∈Z }.(2)终边相同的角不一定相等,相等的角终边一定相同,终边相同的角的同一三角函数值相等.2.三角函数定义的理解三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α=x r ,tan α=y x.典题导入[例1] 已知角α=45°,(1)在-720°~0°范围内找出所有与角α终边相同的角β;(2)设集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k2×180°+45°,k ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4×180°+45°,k ∈Z ,判断两集合的关系.[自主解答] (1)所有与角α有相同终边的角可表示为: β=45°+k ×360°(k ∈Z ), 则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°.(2)因为M ={x |x =(2k +1)×45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合;而集合N ={x |x =(k +1)×45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,从而:MN .由题悟法1.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角.2.已知角α的终边位置,确定形如k α,π±α等形式的角终边的方法:先表示角α的范围,再写出k α、π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置.以题试法1.(1)给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四角限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个(2)如果角α是第二象限角,则π-α角的终边在第________象限.解析:(1)-3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.(2)由已知π2+2k π<α<π+2k π(k ∈Z ),则-π-2k π<-α<-π2-2k π(k ∈Z ),即-π+2k π<-α<-π2+2k π(k ∈Z ),故2k π<π-α<π2+2k π(k ∈Z ),所以π-α是第一象限角. 答案:(1)C (2)一典题导入[例2] (1)已知角α的终边上有一点P (t ,t 2+1)(t >0),则tan α的最小值为( ) A .1B .2C.12D. 2(2)(2012·大庆模拟)已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6 B.2π3 C.5π3D.11π6[自主解答] (1)根据已知条件得tan α=t 2+1t =t +1t≥2,当且仅当t =1时,tan α取得最小值2.(2)由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.[答案] (1)B (2)D由题悟法定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值.以题试法2.(1)(2012·东莞调研)已知角α的终边与单位圆的交点P ⎝ ⎛⎭⎪⎫x ,32,则tan α=( ) A. 3 B .± 3 C.33D .±33(2)(2012·潍坊质检)已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( )A .-114B.114C .-4D .4解析:(1)选B 由|OP |2=x 2+34=1,得x =±12,tan α=± 3.(2)选C 由题意可知,cos α=m m 2+9=-45, 又m <0,解得m =-4.典题导入[例3] (1)已知扇形周长为10,面积是4,求扇形的圆心角.(2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大? [自主解答] (1)设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=1012θ·r 2=4⇒⎩⎪⎨⎪⎧r =1,θ=8(舍),⎩⎪⎨⎪⎧r =4,θ=12,故扇形圆心角为12.(2)设圆心角是θ,半径是r , 则2r +r θ=40.S =12θ·r 2=12r (40-2r )=r (20-r )=-(r -10)2+100≤100, 当且仅当r =10时,S max =100.所以当r =10,θ=2时,扇形面积最大.若本例(1)中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.解析:设圆半径为R ,则圆内接正方形的对角线长为2R , ∴正方形边长为2R ,∴圆心角的弧度数是2RR= 2.答案: 2由题悟法1.在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷.2.记住下列公式:①l =αR ;②S =12lR ;③S =12αR 2.其中R 是扇形的半径,l 是弧长,α(0<α<2π)为圆心角,S 是扇形面积.以题试法3.若扇形的面积为定值,当扇形的圆心角为多少弧度时,该扇形的周长取到最小值? 解:设扇形的圆心角为α,半径为R ,弧长为l ,根据已知条件12lR =S 扇,则扇形的周长为:l +2R =2S 扇R +2R ≥4S 扇,当且仅当2S 扇R=2R ,即R =S 扇时等号成立,此时l =2S 扇,α=lR=2,因此当扇形的圆心角为2弧度时,扇形的周长取到最小值.1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( ) A.π3B.π6C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角. 故A 、B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1或4 B .1 C .4D .8解析:选A 设扇形的半径和弧长分别为r ,l ,则易得⎩⎪⎨⎪⎧l +2r =6,12lr =2,解得⎩⎪⎨⎪⎧l =4r =1或⎩⎪⎨⎪⎧l =2,r =2.故扇形的圆心角的弧度数是4或1.3.已知角α和角β的终边关于直线y =x 对称,且β=-π3,则sin α=( )A .-32B.32C .-12D.12解析:选D 因为角α和角β的终边关于直线y =x 对称,所以α+β=2k π+π2(k∈Z ),又β=-π3,所以α=2k π+5π6(k ∈Z ),即得sin α=12.4.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B ∵θ是第三象限角,∴θ2为第二或第四象限角.又∵⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2<0,知θ2为第二象限角.5.(2012·宜春模拟)给出下列各函数值:①sin(-1 000°);②cos(-2 200°);③tan(-10);④sin 7π10cos πtan17π9,其中符号为负的是( )A .①B .②C .③D .④解析:选C sin(-1 000°)=sin 80°>0;cos(-2 200°) =cos(-40°)=cos 40°>0;tan(-10)=tan(3π-10)<0; sin 7π10cos πtan 17π9=-sin7π10tan17π9,sin 7π10>0,tan 17π9<0,∴原式>0.6.已知sin θ-cos θ>1,则角θ的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由已知得(sin θ-cos θ)2>1,1-2sin θcos θ>1,sin θcos θ<0,且sin θ>cos θ,因此sin θ>0>cos θ,所以角θ的终边在第二象限.7.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)8.若β的终边所在直线经过点P ⎝ ⎛⎭⎪⎫cos 3π4,sin 3π4,则sin β=________,tan β=________.解析:因为β的终边所在直线经过点P ⎝⎛⎭⎪⎫cos 3π4,sin 3π4,所以β的终边所在直线为y =-x ,则β在第二或第四象限.所以sin β=22或-22,tan β=-1. 答案:22或-22-1 9.如图,角α的终边与单位圆(圆心在原点,半径为1)交于第二象限的点A ⎝⎛⎭⎪⎫cos α,35,则cos α-sin α=________.解析:由题图知sin α=35,又点A 在第二象限,故cos α=-45.∴cos α-sin α=-75.答案:-7510.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB . 解:设圆的半径为r cm ,弧长为l cm , 则⎩⎪⎨⎪⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2.∴圆心角α=lr=2.如图,过O 作OH ⊥AB 于H .则∠AOH =1弧度. ∴AH =1·sin 1=sin 1(cm), ∴AB =2sin 1(cm).11.如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴正半轴的交点,A 点的坐标为⎝ ⎛⎭⎪⎫35,45,△AOB 为正三角形.(1)求sin ∠COA ; (2)求cos ∠COB .解:(1)根据三角函数定义可知sin ∠COA =45.(2)∵△AOB 为正三角形,∴∠AOB =60°, 又sin ∠COA =45,cos ∠COA =35,∴cos ∠COB =cos(∠COA +60°) =cos ∠COA cos 60°-sin ∠COA sin 60° =35·12-45·32=3-4310. 12.(1)设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=24x ,求sin α与tan α的值;(2)已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ,cos θ. 解:(1)∵r =x 2+5,∴cos α=xx 2+5, 从而24x =xx 2+5, 解得x =0或x =± 3. ∵90°<α<180°, ∴x <0,因此x =- 3.故r =22,sin α=522=104,tan α=5-3=-153.(2)∵θ的终边过点(x ,-1), ∴tan θ=-1x,又tan θ=-x ,∴x 2=1,∴x =±1. 当x =1时,sin θ=-22,cos θ=22; 当x =-1时,sin θ=-22,cos θ=-22.1.(2013·聊城模拟)三角形ABC 是锐角三角形,若角θ终边上一点P 的坐标为(sin A-cos B ,cos A -sin C ),则sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值是( ) A .1B .-1C .3D .4解析:选B 因为三角形ABC 是锐角三角形,所以A +B >90°,即A >90°-B ,则sin A >sin(90°-B )=cos B ,sin A -cos B >0,同理cos A -sin C <0,所以点P 在第四象限,sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|=-1+1-1=-1. 2.(2012·山东高考)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为________.解析:设A (2,0),B (2,1),由题意知劣弧P A 长为2,∠ABP =21=2.设P (x ,y ),则x =2-1×cos ⎝⎛⎭⎪⎫2-π2=2-sin 2,y =1+1×sin ⎝⎛⎭⎪⎫2-π2=1-cos 2, ∴OP 的坐标为(2-sin 2,1-cos 2).答案:(2-sin 2,1-cos 2)3.(1)确定-cos 8·tan 5的符号; (2)已知α∈(0,π),且sin α+cos α=m (0<m <1),试判断式子sin α-cos α的符号.解:(1)∵-3,5,8分别是第三、第四、第二象限角,∴tan(-3)>0,tan 5<0,cos 8<0,∴原式大于0.(2)若0<α<π2,则如图所示,在单位圆中,OM =cos α,MP =sin α, ∴sin α+cos α=MP +OM >OP =1.若α=π2,则sin α+cos α=1. 由已知0<m <1,故α∈⎝ ⎛⎭⎪⎫π2,π. 于是有sin α-cos α>0.1.已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内,α的取值范围是( )A.⎝⎛⎭⎪⎫π2,3π4∪⎝ ⎛⎭⎪⎫π,5π4 B.⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π,5π4 C.⎝ ⎛⎭⎪⎫π2,3π4∪⎝ ⎛⎭⎪⎫5π4,3π2 D.⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫3π4,π 解析:选B 由已知sin α-cos α>0,tan α>0故⎝ ⎛⎭⎪⎫π4,π2∪⎝⎛⎭⎪⎫π,5π4. 2.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 解:∵角α的终边在直线3x +4y =0上,∴在角α的终边上任取一点P (4t ,-3t )(t ≠0),则x =4t ,y =-3t ,r =x 2+y 2=t 2+-3t 2=5|t |,当t >0时,r =5t ,sin α=y r =-3t 5t =-35, cos α=x r =4t 5t =45, tan α=y x =-3t 4t =-34; 当t <0时,r =-5t ,sin α=y r =-3t -5t =35, cos α=x r =4t -5t =-45, tan α=y x =-3t 4t =-34. 综上可知,sin α=-35,cos α=45,tan α=-34; 或sin α=35,cos α=-45,tan α=-34. 3.已知0<α<π2,求证: (1)sin α+cos α>1;(2)sin α<α<tan α.证明:如图,设α的终边与单位圆交于P 点,作PM ⊥x 轴,垂足为M ,过点A (1,0)作AT ⊥x 轴,交α的终边于T ,则sin α=MP ,cos α=OM ,tan α=AT .(1)在△OMP中,∵OM+MP>OP,∴cos α+sin α>1.(2)连接PA,则S△OPA<S扇形OPA<S△OTA,即12OA·MP<12OA·α<12OA·AT,即sin α<α<tan α.。
【三维设计】2013届高考数学一轮复习 数学思想活用 巧得分系列
五 函数思想在解三角形中的应用 新人教版
[典例] 某港口O 要将一件重要物品用小艇
送到一艘正在航行的轮船上.在小艇出发时,轮
船位于港口O 北偏西30°且与该港口相距20海里
的A 处,并正以30海里/小时的航行速度沿正东
方向匀速行驶.假设该小艇沿直线方向以v 海里/
小时的航行速度匀速行驶,经过t 小时与轮船相遇.
(1)若希望相遇时小艇的航行距离最小,则小
艇航行速度的大小应为多少?
(2)为保证小艇在30分钟内(含30分钟)能与轮
船相遇,试确定小艇航行速度的最小值.
[解] (1)设相遇时小艇航行的距离为S 海里,则
S =900t 2+400-2·30t
- =900t 2-600t +400
= 900⎝ ⎛⎭
⎪⎫t -132+300, 故当t =13时,S min =103,v =10313
=303, 即小艇以30 3 海里/小时的速度航行,相遇时小艇的航行距离最小.
(2)设小艇与轮船在B 处相遇,如图所示.由题意可得:(vt )
2=202+(30t )2-2·20·30t ·cos(90°-30°),化简得:
v 2=400t 2-600t +900=400⎝ ⎛⎭
⎪⎫1t -342+675. 由于0<t ≤12,即1t ≥2,所以当1t
=2时,v 取得最小值1013, 即小艇航行速度的最小值为1013 海里/小时.
[题后悟道] 解答本题利用了函数思想,求解时,把距离和速度分别表示为时间t 的函数,利用函数的性质求其最值,第二问应注意t 的范围.关于三角形中的最值问题,有时把所求问题表示关于角θ的三角函数,再利用三角函数的性质来求解.
针对训练
如图,在△ABC 中,已知B =π3
,AC =43,D 为BC 边上一点.若AB =AD ,则△ADC 的周长的最大值为________.
解析:∵AB =AD ,B =π3
,∴△ABD 为正三角形, 在△ADC 中,根据正弦定理,可得
AD
sin C =43sin 2π3=DC sin ⎝ ⎛⎭⎪⎫π3-C , ∴AD =8sin C ,DC =8 sin ⎝ ⎛⎭
⎪⎫π3-C , ∴△ADC 的周长为
AD +DC +AC =8 sin C +8sin ⎝ ⎛⎭⎪⎫π3-C +4 3 =8⎝ ⎛⎭
⎪⎫sin C +32cos C -12sin C +4 3 =8⎝ ⎛⎭
⎪⎫12sin C +32cos C +4 3 =8sin ⎝
⎛⎭⎪⎫C +π3+43, ∵∠ADC =2π3,∴0<C <π3,∴π3<C +π3<2π3
, ∴当C +π3=π2,即C =π6
时,△ADC 的周长的最大值为8+
4 3. 答案:8+4 3。