小学数学培优之行程问题基础
- 格式:doc
- 大小:771.50 KB
- 文档页数:8
小学数学中的行程问题公式及解析一、基本行程问题行程问题的三个基本量是距离、速度和时间,按所行方向的不同可分为三种:(1)相遇问题:(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度x时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和*时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差x时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关有助于迅速地找到解题思路。
(一)相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题相遇问题。
数量关系:路程÷速度和=相遇时间路程÷相遇时间=速度和速度和x相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。
(2)解题秘诀:(3)(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。
(4)(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。
(二)追及问题追及问题也是行程问题中的一种情况。
这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);迫及路程=路程差=两个物体之间相距的路程迫及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。
五年级数学培优:行程问题行程问题(一)【专题导引】行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
【典型例题】【例1】甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东、西两地相距多少千米?【试一试】1、小玲每分行100米,小平每分行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校至少年宫有多少米?2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米,甲、乙两地相距多少千米?【例2】快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?【试一试】1、兄、弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?2、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?【例3】甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东、西两村相距多少千米?【试一试】1、甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
甲到达B地后立即返回A地,在离B地3.2千米处与乙相遇。
A、B两地间的距离是多少千米?2、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。
30分钟后小平到家,到家后立即原路返回,在离家350米处遇到小红。
小红每分钟走多少千米?【例4】甲、乙两队学生从相距18千米的两地同时出发,相向而行。
培优---六年级行程问题1.上午10点,从一个港口开出一只货船,下午2点钟,又从这个港口开出一只客船,客船开出12小时追上货船,客船的速度是20千米/小时,求货船的速度。
2.两地相距900千米,甲车行全程需15小时,乙车行全程需12小时,甲车先出发2小时后,乙去追甲,问乙车要走多少千米才能追上甲车?3.甲乙两船同时从两个码头出发,方向相同,乙船在前,每小时行24千米,甲船在后,每小时行28千米,4小时后甲船追上乙船。
求两个码头相距多少千米?4.兄弟俩骑车郊游,弟弟先出发,速度是每分钟行200米,5分钟后,哥哥带一条狗出发,以每分钟250米的速度去追弟弟,而狗则以每分钟300米的速度向弟弟跑去,追上弟弟后又立即返回,遇到哥哥后又立即向弟弟追去,直到哥哥追上弟弟时狗跑了多少米?5.面包车的速度是每小时60千米,小轿车的速度是每小时84千米,面包车开出30分钟后,小轿车沿着同一路线去追赶面包车,多长时间能追上?6.两辆卡车为农场送化肥,第一辆卡车以每小时30千米的速度由仓库开往农场;第二辆卡车晚开12分钟,以每小时40千米的速度由仓库开往农场,结果两车同时到达农场。
求仓库到农场的路程有多远?7.一艘敌舰在离我海防哨所6千米处,以每分钟400米的速度逃走,我快艇立即从哨所出发,11分钟后在离敌舰500米处开炮击沉敌舰。
我快艇的速度是每分钟多少米?8.甲乙二人由A地B地,甲的速度是50米/分钟,乙的速度是45米/分钟,乙比甲早走4分钟,二人同时到达B地。
问A地到B地的距离是多少米?9.甲乙两车同时同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米。
途中甲车停车3小时,结果甲车比乙车迟1小时到达目的地。
问两地之间的距离是多少?10.张明、李军和赵琪三个人都要从甲地到乙地,早上六点钟,张、李两人一起从甲地出发,张明每小时走5千米,李军每小时走4千米。
赵琪上午八点才从甲地出发,傍晚六点,赵、张同时到达乙地。
四年级数学培优:行程问题比一比,画一画,做一做.1、相向而行:小明和小军同时从两地对面走来,小明每分走48米,小军每分走52米.经过15分钟两人相遇.两地相距多少米?2、背向而行:小明和小军同时从同一地点向相反方向行走,小明每分走48米,小军每分走52米.经过15分,两人相距多少米?3、同向而行:小明和小军同时从甲地走向乙地,小明每分走48米,小军每分走52米.经过15分钟,两人相距多少米?1、一辆汽车和一辆摩托车同时从A、B两地出发相向而行,汽车每小时行42千米,摩托车每小时行34千米,两车在离中点16千米处相遇.求A、B两地间的路程是多少千米?2、一辆公共汽车和一辆小桥车同时从相距450千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行50千米,问几小时后两车相距90千米?3、某县举行长跑比赛,运动员跑到离起点5000米处要返回到起跑点,领先的运动员每分跑320米,后面的运动员每分跑305米.起跑后多少分这两个运动员相遇?4、李强每分钟走40米,张明每分钟行60米,两人分别从A、B两地同时出发,相向而行,相遇后3分钟,李强到达B地.求A、B两地的距离.5、小明和小军在环形跑道上跑步,两人同时从同一地点出发,背向而行.小明每分走48米,小军每分走52米,经过15分钟两人相遇.操场的跑道长多少米?第一部分必做题1、(☆)甲、乙两辆汽车从A、B两地同时出发相向而行,甲车每小时行48千米,乙车每小时行42千米.两车在离中点21千米处相遇,求A、B两地相距多少千米?2、(☆)小军和小勇同时从相距2160米的两地出发相向而行,小勇每分钟走100米,小军走了12分钟和小勇相遇.小军每分钟走多少米?3、(☆☆)小强和小明两家相距2400米,两人同时从家中出发相向而行,小强每分钟走50米,小明每分钟走70米,3分钟后,他们还相距多远?30分钟后,他们相距多远?小强小明4、(☆)南北两村相距90千米,甲、乙两人分别从两村同时出发相向而行,甲比乙每小时多行2千米,5小时后两人相遇.两人的速度各是多少?5、(☆)甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?6、(☆☆)甲、乙两人沿一环形跑道同时同地相背而行,甲每分钟行60米,乙每分钟走70米,5分钟后两人相遇,这个环形跑道长多少米?如果甲乙两人同时同地相向而行,不停地走,他们两人经过多长时间会再次相遇?7、(☆)两地相距900米,甲、乙二人同时、同地向同一方向行走.甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,途中与甲相遇,问:从出发到相遇共经过多少分钟?第二部分选做题8、(☆☆)甲每小时行9千米,乙每小时比甲少行3千米,两人于相隔20千米的两地同时相背而行,几小时后两人相隔80千米?甲20千米乙9、(☆☆)甲车每小时行40千米,乙车每小时行60千米.两车分别从A、B两地同时出发,相向而行,相遇后3小时,甲车到达B地.求A、B两地间的距离.10、(☆☆) 甲、乙两个车队同时从相隔420千米的两地出发相向而行,甲车队每小时行60千米,乙车队每小时行80千米,一个人骑摩托车每小时行120千米,在两个车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?11、(☆☆☆)兄妹二人同时离家去上学.哥哥每分钟走90米,妹妹每分钟走60米.哥哥到校门口时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇.问他们家离校多远?12、(☆☆☆)有人沿公路走,对面来了一辆汽车,他问司机:“后面有自行车吗?”司机回答:“十分钟前我超过一辆自行车”,这人继续走了十分钟,遇到自行车.已知自行车速度是人步行速度的3倍,问汽车速度是人步行速度的几倍?。
知识点概述行程问题核心公式路程=速度×时间⇒s=v×t速度=路程÷时间⇒v=s÷t时间=路程÷速度⇒t=s÷v行程中的比例关系相遇问题路程和=速度和×相遇时间⇒S和=(v甲+v乙)×t 追及问题路程差=速度差×追及时间⇒S差=(v甲-v乙)×t 环形跑道问题行程入门之简单行程问题份数法解相遇与追及问题例1夏夏和冬冬同时从两地相向而行,夏夏每分钟行50米,冬冬每分钟行60米,两人在距两地中点50米处相遇,求两地的距离是多少米?例2有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走60米。
现在甲从A地,乙、丙两人从B地同时出发相向而行。
在途中甲与乙相遇6分钟后,甲又与丙相遇。
那么,A、B两地之间的距离是多少米?方程法解相遇与追及问题例3甲乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。
例4兄弟二人同时从家学校走,哥哥每分钟走90米,弟弟每分钟走70米,出发1分钟后,哥哥发现没有带铅笔盒,则原路返回,取后立即出发,结果与弟弟同时到校,求他们家离学校的距离。
环形跑道问题如图,有一个圆,两只小虫分别从直径的两端A与C同时出发,绕圆周相向而行。
它们第一次相遇在离A点8厘米处的B点,第二次相遇在离C点处6厘米的D点,问,这个圆周的长是多少?在300米的环形跑道上,田奇和王强同学同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?例5例6知识点总结。
知识要点解行程问题,要弄清行程关系,学会划行程图分析题意,并结合方程和比的知识灵活解题。
基本公式:路程=速度×时间公式变形:速度=路程÷时间时间=路程÷速度公式解读:①时间相同,速度之比等于路程之比;②路程相同,速度之比等于时间之反比。
追及问题:追及路程=速度差×追及时间(在追及时间内一方比另一方多走的路程)相遇问题:相遇路程=速度和×相遇时间(在相遇时间内两者走过的总路程)流水问题:顺水速度=船速+水流速度=顺水路程÷顺水时间逆水速度=船速-水流速度=逆水路程÷逆水时间船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2夯实基础1、小红乘船以6千米/时的速度从A到B,然后又乘船以12千米/时的速度沿原路返回,那么小红在乘船往返行程中,平均每小时行多少千米?2、甲、乙两辆汽车同时从南京开往上海,经过4小时后,甲车落后在乙车后面28千米。
甲车每小时行34千米,乙车每小时行多少千米?3、甲乙两地相距372千米,一辆货车从甲地开往乙地1.5小时后,一辆客车从乙地往甲地开出,货车每小时行40千米,客车每小时行38千米,客车行驶几小时后两车才能相遇?4、甲、乙两艘轮船同时从南通港向重庆港开去。
甲船每小时行28千米,乙船每小时36千米。
经过多少小时甲船落在乙船后面40千米?5、两地间的路程是210千米,甲、乙两辆汽车同时从两地相向开出,3.5小时相遇,甲车每小时行28千米。
乙车每小时行多少千米?例题剖析【例1】火车过桥①在一列火车经过一座桥梁,列车车速为20米/秒,全长180米,若桥梁长为3260米,那么列车通过桥梁需要多长时间?②一列火车车身长200米,用15秒开过每小时行4千米的同方向行走的步行人甲,而用12秒开过骑自行车的人乙,那么乙每小时行多少千米?【练习1】1、一列火车匀速行驶,经过一条长300m的隧道需要20秒的时间。
五年级数学培优:基本行程问题(含解析)知识概述一、相遇问题:1.相遇问题基本量:① 路程和:我们把同时出发时刻两人(或物体)间的距离称为路程和;② 相遇时间:从同时出发到两人(物体)相遇所用的时间称为相遇时间.2.相遇问题基本数量关系:相遇时间=路程和÷速度和二、追及问题:1.追及问题基本量:① 路程差:我们把同时移动时刻前后两人(或物体)间的距离称为路程差;② 追及时间:从开始追的时刻到追上前者所用的时间称为追及时间.2.追及问题基本数量关系:追及时间=路程差÷速度差三、火车过桥问题:3.火车通过大桥是指从车头上桥到车尾离桥.即当火车通过桥时,火车实际运动的路程就是火车的运动总路程,即车长与桥长的和.四、流水行船问题:船在江河里航行时,除了本身的前进速度外,还受到流水的推力或阻力,在这种情况下计算船只的航行速度、时间和所行的路程,称为流水问题.流水问题还有两个特殊的速度,即顺水速度=船速+水速逆水速度=船速-水速这里船速指的是船本身的速度,就是在静水中的速度.水速是指水流的速度.顺水速和逆水速分别指船在顺水航行时和逆水航行时的速度.历届杯赛考试中,行程问题是最大的难点之一,一般情况下每次比赛都会出现多次.行程问题首先考察学生对于题目的理解以及分析能力,其次考察学生转化题意变成数学语言的能力.并且行程问题的形式非常多样化,对于这类题目需要针对不同题型,具体问题具体分析.名师点题例1(第四届希望杯一试试题)甲乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇.如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后________秒相遇.【解析】原速度和:1500÷10=150(米/分)相遇时间:1500÷【150×(1+20%)】×60=500(秒)例2(第五届小机灵杯邀请赛试题)在同一高速公路上,乙车在甲车前面若干千米同向行驶,如果甲车的速度是65千米/时,它5小时可追上乙车;如果甲车的速度是75千米/时,它3小时可追上乙车.乙车的速度是()千米/时.【解析】解:设乙车的速度是x千米/时,依题意得5(65-x)=3(75-x)2x=100x=50答:乙车的速度是50千米/时.例3一列火车通过小明身边用了10秒钟,通过一座长486米的铁桥用了37秒,问这列火车多长?【解析】通过小明身边,可以看成火车通过它自己的身长所用的时间;过桥的时候,可以看成火车通过自己车长和桥一并所用的时间.486÷(37-10)=18(米/秒)18×10=180(米)答:这列火车长180米.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.【解析】顺水速:208÷8=26(千米/时)逆水速:208÷13=16(千米/时)静水速:(26+16)÷2=21(千米/时)水流速度:(26-16)÷2=5(千米/时)答:船在静水中的速度是21千米/时,水流速度是5千米/时.【巩固拓展】1.甲、乙两人分别从A、B 两地同时出发,相向而行.如果两人都按照原定速度行进,3小时可以相遇.现在甲比原计划每小时少走1千米,乙比原计划每小时少走0.5千米,结果两人用了4小时相遇. AB两地相距()千米.【解析】3×(1+0.5)÷(4-3)=4.5(千米/时)4.5×4=18(千米)答:AB两地相距18千米.2.早晨,小王骑车从甲地出发去乙地.中午12点,小李开车也从甲地出发前往乙地.下午1点30分时两人之间的距离是18千米,下午2点30分时两人之间的距离又是18千米.下午4点时小李到达乙地,晚上6点时小王到达乙地.小王是早晨()点出发的.【解析】速度差:(18+18)÷1=36(千米)小王速度:(36×1.5+36)÷(6-4)=45(千米/时)(18+36×1.5)÷45=1.6(小时)小王比小李提前出发1.6小时,所以小王是10点24分出发的.答:小王是早晨10点24分出发的.例43.一列火车通过一座长456米的巧需要80秒,用同样的速度通过一条长399米的隧道需要77秒.求这列火车的速度和长度.【解析】(456-399)÷(80-77)=19(米/秒)19×80-456=1064(米)答:火车的速度是每秒19米,火车的长度是1064米.4.甲、乙两港相距360千米,一轮船往返两港共需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?【解析】逆流时间:(35+5)÷2=20(小时)顺流时间:(35-5)÷2=15(小时)顺水速度:360÷15=24(千米/时)逆水速度:360÷20=18(千米/时)水速:(24-18)÷2=3(千米/时)往返时间:360÷(12+3)+360÷(12-3)=64(小时)答:这机帆船往返两港要64小时.例1(第六届小机灵杯邀请赛试题)甲乙两人的步行速度之比是5:3,两人分别从A、B两地同时出发,如果相向而行,1小时后相遇;如果分别从A、B两地同向而行,甲需要()小时才能追上乙.【解析】设甲车的速度是5a,乙车的速度是3a,则AB距离是(5a+3a)×1=8a,追及时间是,8a÷(5a-3a)=4(小时)例2(第四届希望杯二试试题)甲、乙两人同时从A地出发前往B地,甲每分钟走80米,乙每分钟走60米.甲到达B地后,休息了半个小时,然后返回A地,甲离开B地15分钟后与正向B地行走的乙相遇.A、B两地相距______米.【解析】甲乙相遇时,甲比乙行驶的时间少了30分钟,但行驶的路程多80×15×2=2400(千米).如果甲行驶的时间和乙一样多,则甲比乙多行驶:2400+80×30=4800(千米).乙行驶时间是:4800÷(80-60)=240(分钟)A、B两地距离是:80×(240-15-30)=15600(米)【巩固拓展】(第六届希望杯一试试题)北京、天津相距140千米,客车和货车同时从北京出发驶向天津.客车每小时行70干米,货车每小时行50千米,客车到达天津后停留15分钟,又以原速度返回北京.则两车首次相遇的地点距离北京______千米.(结果保留整数)【解析】首次相遇时,两车一共行驶了2×140=280千米,货车比客车多行驶了15分钟,货车行驶的时间是:(280+70×0.25)÷(50+70)货车行驶的路程是:(280+70×0.25)÷(50+70)×50≈124(千米)即两车首次相遇的地点距离北京124千米.(第九届中环杯初赛试题)A 、B 两地相距27 千米.甲、丙两人从A 地向B 地行走,乙从B 地向A 地行走.甲每小时行4 千米,乙每小时行3千米,丙每小时行2 千米.三人同时出发,问几小时后甲刚好走到乙、丙两人距离的中点?【解析】解:设x小时后甲刚好走到乙、丙两人距离的中点,依题意得4x+3x+(4x-2x)=279x=27x=3答:3小时后甲刚好走到乙、丙两人距离的中点.例3【巩固拓展】(第十届中环杯初赛试题)A、B两地相距1600米,甲、乙两人分别以每分钟140米和120米的速度同时从A地出发,前往B地.同时,丙以每分钟160米的速度从B地出发,前往A地.()分钟后,甲恰好位于乙丙两人的中间.【解析】解:设x小时后甲刚好走到乙、丙两人距离的中点,依题意得140x+160x+(140x-120x)=1600320x=1600x=5答:5分钟后,甲恰好位于乙丙两人的中间.(第六届中环杯复赛试题)一列客车以每小时90千米的速度从南往北行驶,车上一位乘客以每秒钟1米的速度向车尾行走.一列长156米的货车从北往南行驶,4秒钟后从乘客身边驶过.货车每小时行驶()千米.【解析】90千米/时=25米/秒156÷4-(25-1)=15(米/秒)15米/秒=54千米/时【巩固拓展】(第五届中环杯复赛试题)铁路与公路平行,公路上有一个人在行走,速度是每小时4千米.一列火车追上并超过这个人用了6秒;公路上还有一辆汽车行驶,速度是每小时67千米,火车追上并超过这辆汽车用了48秒,则火车速度是每小时多少千米?火车的长度为多少米?例4【解析】火车追上并超过人的过程中,火车6秒行驶了“火车长+人6秒行驶的路程”,火车追上并超过汽车的过程中,火车48秒行驶了“火车长+汽车48秒行驶的路程”,所以火车42秒行驶的路程是:汽车48秒行驶的路程减去人6秒行驶的路程.火车速度:(67÷3600×48-4÷3600×6)÷(48-6)×3600=76(千米/时)火车长度:76×1000÷3600×6-4×1000÷3600×6=120(米)答:火车速度是每小时76千米,火车的长度为120米.(第六届中环杯复赛试题)一艘客船在两个码头之间航行,顺水5小时行完全程,逆水7小时行完全程.水速每小时5千米,两个码头之间的距离是()千米.【解析】解:设客船静水的速度是x千米/时,依题意得5(x+5)=7(x-5)2x=60x=30(30+5)×5=175(千米)答:两个码头之间的距离是175千米.【巩固拓展】(第八届希望杯一试试题)一艘客轮在静水中的航行速度是26千米/时,往返于A、B两港之间,河水的流速是6千米/时.如果客轮在河中往返4趟共用13小时,那么A、B两港之间相距______千米.(客轮掉头时间不计)【解析】解:客轮往返一趟时间是13÷4=3.25(小时)设客轮顺水行完AB全程需要x小时,依题意得(26+6)x=(26-6)(3.25-x)52x=65x=1.25例51.25×(26+6)=40(千米)答:A、B两港之间相距40千米.例1(第五届希望杯一试试题)李经理的司机每天早上7点30分到达李经理家接他去公司.有一天李经理7点从家里出发步行去公司,路上遇到从公司按时接他的车,再乘车去公司,结果比平常早到5分钟.则李经理乘车的速度是步行速度的______倍.(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)【解析】早到的5分钟路程就是李经理家到相遇点路程的2倍,,所以相遇点到李经理家的路程开车只要2.5分,所以相遇时间为7点27分30秒开车2.5分的路程李经理走了27.5分,所以车速是步行速度的27.5÷2.5=11倍.例2(第九届中环杯初赛试题)甲、乙两人从A 、B 两地同时出发相向而行,甲每分钟行70 米,乙每分钟行50 米.出发一段时间后,两人在距中点100米处相遇.如果甲出发后在途中某地停留了一会儿,两人还将在距中点250米处相遇.那么甲在途中停留了_________分钟.【解析】第1次相遇:相遇时甲比乙多行了100×2=200(米)相遇时间:200÷(70-50)=10(分钟)A、B距离:(70+50)×10=1200(米)第2次相遇:相遇时乙比多甲行了250×2=500(米)乙和甲一共行了1200米,乙行的路程:(1200+500)÷2=850(米)甲行的路程:1200-850=350(米)850÷50-350÷70=12(分钟)答:甲在途中停留了12分钟.(第五届希望杯一试试题)A、B两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分.如果甲、乙从A地,丙从B地同时出发相向而行,那么,在______分钟或______分钟后,丙与乙的距离是丙与甲的距离的2倍.【解析】第一种情况:丙处于甲乙之间,如下图:设x分钟后,丙与乙的距离是丙与甲的距离的2倍,依题意得2(203-4x-5x)=6x+5x-20329x=609x=2121分钟后,丙与乙的距离是丙与甲的距离的2倍.第二种情况:丙处于甲的左侧,如下图:设x分钟后,丙与乙的距离是丙与甲的距离的2倍,依题意得2(4x+5x-203)=6x+5x-2037x=203x=2929分钟后,丙与乙的距离是丙与甲的距离的2倍.综上所述,在21分钟或29分钟后,丙与乙的距离是丙与甲的距离的2倍.例3一艘游艇装满油,能够航行180个小时,已知游艇在静水中的速度为每小时24千米,水速为每小时4千米,现在要求这艘游艇开出之后沿原路回港,而且途中没有油料补给,请问:这艘游艇最多能够开出多远?【解析】解:设这艘游艇能够开出最远的距离,顺水航行需要x小时,依题意得(24+4)x=(24-4)×(180-x)48x=3600x=75(24+4)×75=2100(千米)答:艘游艇最多能够开出2100千米.一艘轮船顺流航行140千米,逆流航行80千米,共用了15小时;顺流航行60千米,逆流航行120千米,也用了15小时.求水流的速度.【解析】第一次:顺流140千米,逆流80千米,15小时;第二次:顺流60千米,逆流120千米,15小时;等量代换,可知顺流80千米时间=逆流40千米时间.即顺流速度是逆流速度的2倍.由第1次,顺流140千米,逆流80千米,15小时可知,若全顺流可行140+80×2=300(千米),由此顺流速度:300÷15=20(千米/时),逆流速度:20÷2=10(千米/时)水流的速度:(20-10)÷2=5(千米/时)【练习1】甲乙两地方相距14850米,自行车队8点整从甲地出发到乙地去,前一半时间的平均速度是每分钟250米,后一半时间的平均速度是每分钟200米.那么,自行车队到达乙地的时间是()点()分.【解析】解:14850÷(250+200)×2=66(分)到达时间是9点6分.【练习2】甲乙两车同时同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米.途中甲车停车3小时,结果甲车比乙车迟到1小时到达目的地.那么,两地的距离是()千米.【解析】解:设乙行完全程要x小时,甲行完全程要(x-3+1)小时,根据题意列方程,得:40(x-3+1)=35x5x=80x=16两地距离:35×16=560(千米)【练习3】一艘轮船从A地出发去B地为顺流,需10小时.从B地返回A地为逆流,需15小时.水流速度为每小时10千米.那么A、B两地间的航程有()千米.【解析】逆水速:(10×2)×10÷(15-10)=40(千米/时)40×15=600(千米)答:A、B两地间的航程有600千米.【练习4】沿江有两个城市,相距600千米,甲船往返两城市需要35小时,其中顺水比逆水少用5小时,乙船的速度为每小时15千米,那么乙船往返两城市需要___________小时.【解析】甲顺水时间:(35+5)÷2=20(小时)甲逆水时间:35-20=15(小时)水速:(600÷15-600÷20)÷2=5(千米/时)乙顺水速:15+5=20(千米/时),乙逆水速:15-5=10(千米/时)600÷20+600÷10=90(小时)答:乙船往返两城市需要90小时.【练习5】小明站在一条直行的铁道旁,从远处向小明驶来的火车拉响汽笛,过了一会儿,小明听见了汽笛声,再过27秒,火车行驶到他面前.已知火车的速度是34米/秒,音速是340米/秒,那么火车拉响汽笛时距离小明多少米远?【解析】行驶同样多的路程——火车拉响汽笛时和小明的距离,火车需要的时间比声音需要的时间多27秒.声音需要的时间:34×27÷(340-34)=3(秒)3×340=1020(米)(本题亦可用方程求解,设火车拉响汽笛到小明听到汽笛需要x秒.)答:火车拉响汽笛时距离小明1020米远.【练习6】某船第一天顺流航行21千米,逆流航行4千米.第二天在同一河流中顺流航行12千米;逆流航行7千米.两次所用的时间相等.假设船本身速度及水流速度保持不变,顺水船速是逆水船速的()倍.【解析】顺流航行21-12=9千米的时间和逆流航行7-4=3千米的时间相同,9÷3=3顺水船速是逆水船速的3倍.【练习7】A、B两地相距27千米.甲、丙两人从A地向B地行走,乙从B向A地行走.甲每小时行4千米,乙每小时行3.5千米,丙每小时行2.5千米.三人同时出发,问几小时后甲刚好走到乙、丙两人距离的中点?【解析】解:设甲用x小时走到乙丙两人相距的中点,依题意得:4x+3.5x+(4x-2.5x)=279x=27x=3答:3小时后甲刚好走到乙、丙两人距离的中点.【练习8】一架飞机所带的燃料最多可以用9小时,飞机顺风,每小时可以飞1500千米,飞回时逆风,每小时可以飞1200千米,这架飞机最多飞出_________千米,就需往回飞?【解析】解:设这架飞机最多飞出的距离,顺风航行需要x小时,依题意得1500x=1200×(9-x)2700x=10800x=41500×4=6000(千米)答:这架飞机最多飞出6000千米,就需往回飞.。
第27讲火车行程问题清楚理解火车行程问题中的等量关系;能够透过分析实际问题,提炼出等量关系;培养分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力;一、基本公式路程=时间×速度时间=路程÷速度速度=路程÷时间二、火车行程问题有关火车过桥(隧道)、两列火车车头相遇到车尾相离等问题,是一种行程问题。
在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度。
如果遇到复杂的情况,可利用作图或演示的方法来帮助解题。
解答火车行程问题可记住以下几点:1、火车过桥(或隧道)所用的时间=[桥长(隧道长)+火车车长]÷火车的速度;2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和;3、两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差。
考点一:求时间知识梳理典例分析学习目标例1、一列火车长150米,每秒钟行19米。
全车通过长800米的大桥,需要多少时间?例2、一列火车长119米,它以每秒15米的速度行驶,小华以每秒2米的速度从对面走来,经过几秒钟后火车从小华身边通过?考点二:求隧道长例1、一列火车长200米,以每秒8米的速度通过一条隧道,从车头进洞到车尾离洞,一共用了40秒。
这条隧道长多少米?例2、一列火车长900米,从路旁的一棵大树旁通过用了1.5分钟,以同样的速度通过一座大桥用了3.5分钟。
求这座大桥的长度。
考点三:求车长例1、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。
求这列火车的速度是每秒多少米?车长多少米?例2、快车长210m,每秒钟行驶25m,慢车每秒钟行驶20m,连列车同方向行驶,从快车追上慢车到超过共用了80秒,求慢车的长度。
考点四:求车速例6、某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105米,每小时速度为28.8千米.求步行人每小时行多少千米?例7、一支队伍1200米长,以每分钟80米的速度行进。
第10讲行程问题【学习目标】1、掌握常见的几种行程问题模型;2、熟记常见模型的基本公式;3、会画线段图。
【知识梳理】1、相遇问题:①从两头往中间走;②从中间往两头走。
公式:总路程=速度和×相遇时间相遇时间=总路程÷速度和速度和=总路程÷相遇时间2、追及问题:①起点不同,终点相同(快追慢);②起点相同,终点不同(快超慢)。
公式:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间3、火车过桥:①火车过桥;②火车过隧道。
公式:总路程=桥长+车长=速度×时间4、流水行船问题:公式:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2船速=(顺水速度+逆水速度)÷25、环形行程问题:所有封闭路线问题都是环形问题。
(1)同向行驶就是追击问题:从同一地点出发,每追上一次就多跑一圈;(2)反向行驶就是相遇问题:从同一地点出发,每相遇一次合走一圈。
【典例精析】【例1】一辆卡车以每小时45千米的速度行驶,在其后2000米处,一辆轿车以每小时60千米的速度行驶,照此速度开下去,求在轿车追上卡车之前一分钟时,两车相距多少千米?【趁热打铁-1】春节期间,一名新手司机因错过高速出口而原地掉头逆行,行驶途中与一辆正常行驶的红色汽车相撞,已知新手司机的车速为每小时96km,红色汽车的车速为每小时120km,那么在他们相撞前一分钟,两车相距多少千米?【例2】甲乙两地相距840千米,两列火车分别从两地相对开出,4小时后相遇,快车每小时行125千米,慢车每小时行多少千米?【趁热打铁-2】客车和货车同时从相距550千米的甲乙两地相对开去,经过2.5小时两车相距200千米(未相遇),已知货车每小时行60千米,客车每小时行多少千米?【例3】小轿车每时行60千米,比客车每时多行5千米,两车同时从A、B两地相向而行,在距中点20千米处相遇,求A、B两地的路程?【趁热打铁-3】快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
五年级数学培优-行程问题【专题分析】我们把研究路程、速度、时间这三者之间关系的问题称为行程问题.行程问题主要包括相遇问题和追及问题.解答行程问题时,要理清路程、时间和速度之间的关系,紧扣基本数量关系:“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果.追及问题是指两个物体相向运动,后一个速度快的物体追前一个慢的物体的一种行程问题.它的基本特征是两个物体在相同时间内所走路程一个比另一个多.这其中运动时间相同是一个重要特征,一般我们从追及时间、速度差、路程差等环节入手,它们之间关系是:路程差÷速度差=追击时间.【名题精讲】例1、甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6 千米,乙每小时走4千米,两人几小时后相遇?分析:这是一道行程问题中的相遇问题,两人一小时一共走6+4=10米,20千米里有几个10千米就需要几小时.20÷(4+6)=2(小时)答:两人2小时后相遇.甲乙两车分别从相距480千米的A、B两城同时出发,相向而行.已知甲车从A城到B城需6小时,乙车从B城A到城需12小时,两车出发后多少小时相遇?例2、小明和小亮同时从相距2000米的两地相向而行,小明每分钟走110 米,小亮每分钟走90米,如果一只狗与小明同时同向而行,每分钟走500米,遇到小亮后,立即回头向小明跑,遇到小明后再跑向小亮,这样不断来回,直到两人相遇为止,狗共行了多少千米?分析:要求狗行的距离,就要知道狗的速度和所用的时间.因为狗与小明同时出发,相遇停止,所以狗所用的时间就是两人相遇所用的时间.即时2000÷(110+90)=10分钟,狗共行了500×10=5000米.2000÷(110+90)×500=2000÷200×500=10×500=5000(千米)答:狗共行了500千米.甲乙两队学生从相隔18千米的两地同时相向而行.一个同学骑自行车乙每小时15千米的速度在两队之间不停地往返联络.甲队每小时行5千米,乙队每小时行4千米,两队相通时,骑自行车的同学共行了多少千米?例3、甲乙两人在环形跑道上以各自不变速度跑步,如果两人同时从同地相背而行,乙跑4分钟后两人第一次相遇,甲跑一周要6分钟,乙跑一周要多少分钟?分析:甲、乙各跑4分钟后相遇,甲继续跑乙跑的4分钟路程只需6-4=2 分钟,花的时间是乙的一半,所以乙用的时间是甲的2倍.6×2=12分钟.4÷(6-4)×6=12(分钟)答:乙跑一周需要12分钟.甲、乙两车同时从A、B两地相对开出,6小时后相遇,甲车从A地到B地要9小时,乙车从A地到B地要几小时?例4、甲、乙两人骑车同时从东、西两地相向而行,8小时相遇.如果甲每小时少行1千米,乙每小时多行3千米,这样过7小时就可以相遇.东西两地相距多少千米?分析:由“甲每小时少行1千米,乙每小时多行3千米”,可知现在速度比原来快了3-1=2千米,现在7小时行完全程,7小时多行了14千米,所以少用了1小时,原来的速度为14千米/小时.两地距离为14×8=112千米.(3-1)×7÷(8-7)=14(千米/小时)14×8=112(千米)答:东西两地相距112千米.小军和小华分别从甲、乙两地同时出发,相向而行.如果按原定速度4小时相遇,如果两人各比原定速度每小时多走1千米,则3小时相遇.甲、乙两地相距多少千米?例5、货车和客车同时从东西两地相向而行,货车每小时48千米,客车每小时行42千米,两车在中点18千米处相遇,求东西两地相距多少千米?分析:由“货车每小时48千米,客车每小时行42千米”,可知货车和客车的速度和是48+42=90千米,由于货车比客车速度快,当货车过中点时,客车距中点还有18千米.因此,货车比客车多行18×2=36千米,因为货车每小时比客车多行48-42=6千米,这样货车多行36千米需要36÷6=6小时,即两车相遇的时间.所以,两地相距90×6=540千米.18×2÷(48-42)=6(小时)(48+42)×6=540(千米)答:东西两地相距540千米.甲、乙两辆汽车从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车距中点16千米相遇.求东西两城相距多少千米?例6、小华步行上学,每分钟行75千米,小华离家12分钟后,爸爸因为小华的书没有带,于是马上骑车去追,每分钟骑375米,问爸爸能在5分钟内追上小华吗?分析:要判断爸爸是否能追上小华,要把爸爸5分钟走的路程和小华12 分钟走的路程比较,小华比爸爸先走12分钟,这部分路程就是爸爸需要追及的路程.根据“路程差÷速度差=追及时间”可以判断是否需要5分钟.或者:算出爸爸5分钟所走路程,以及小华(12+5)分钟所走路程,进行比较,爸爸所走路程大于小华所走路程就能追上.12×75=900(千米) 900÷(375-75)=3(分钟)3分钟<5分钟答:爸爸能在5分钟内追上小华.甲以每小时8千米的速度步行去某地,乙比甲晚3小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙几小时能追上甲?【实战演练】1、两地相距220千米,两两辆汽车从两地相对开出,甲车先行1小时,甲车每小时行40千米,甲、乙两车2小时相遇,乙车每小时行多少千米?2、小东和小刚两人在环形跑道上以各自不变的速度跑步,如果两人同时相背而行,小刚跑6分钟后两人第一次相遇,小东跑一周需要8分钟,小刚跑一周需要几分钟?3、甲乙两个车队同时从相隔330千米的两地相向而行,甲每小时行60千米,乙每小时行50千米,一个人骑摩托车每小时行80千米在两车队中间往返联络.当两车队相遇是,摩托车行驶了多少千米?4、甲、乙两人从A、B两地相向而行,4小时相遇,如果每人各自比原定速度每小时少行1千米,则5小时相遇,,求A、B两地相距多少千米?5、兄弟两人同时从两地相向而行,哥哥每小时走15千米,弟弟每小时走12千米,两人在距中点3千米处相遇,两地相距多少千米?6、一条环形跑道长400米,甲、乙两名运动员同时顺时针从起跑线出发,甲每分钟跑400米,乙每分钟跑360米,多长时间两人再次相遇?(提示:甲追上乙说明甲比乙多跑了1圈.)。
专题08行程问题1.A 、B 两地相距330千米,一辆客车和货车同时分别从A 、B 两地相向出发,客车以60千米/时的速度行驶,货车以50千米/时的速度行驶,客车和货车行驶几小时后相遇?2.同方向行驶的火车,快车每秒行30米,慢车每秒行22米.如果从辆车头对齐开始算,则行24秒后快车超过慢车,如果从辆车尾对齐开始算,则行28秒后快车超过慢车.快车长多少米,慢车长多少米?3.现有速度不变的甲、乙两车,如果甲车以现在速度的2倍去追乙车,5小时后能追上,如果甲车以现在速度的3倍去追乙车,3小时后能追上.那么甲车以现在的速度去追,几小时后能追上乙车?4.货车和客车同时从两地相对开出,货车速度是68千米/时,客车速度是95千米/时,经过2.8小时相遇,两地相距多少千米?5.甲、乙两车从相距325千米的两地同时相向而行,2.5小时后还相距65千米,已知甲车每小时行45千米,乙车每小时行多少千米?6.兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇,问他们家离学校有多远?7.甲乙两地相距770千米,一列客车和一列货车同时从甲乙两地相对开出,货车每小时行50千米,客车的速度是货车的1.2倍,两车开出后几小时相遇?8.甲、乙两车同时从A 、B 两地出发相向而行,4小时相遇后又相距9千米,已知甲车行完全程要7小时,乙车每小时行27千米,AB 两地间的路程是多少千米?9.学校组织学生步行去野外实习,每分钟走80米,出发9分钟后,班长发现有重要东西还在学校,就以原速度返回,找到东西再出发时发现又耽搁了18分钟,为了在到达目的地之前赶上队伍他改骑自行车,速度为260米/分,当他追上学生队伍时距目的地还有120米.求走完全程学生队伍步行需多长时间?10.甲、乙两人分别从相距 35.8千米的两地出发,相向而行.甲每小时行 4 千米,但每行 30 分钟就休息 5 分钟;乙每小时行 12 千米,则经过多少时间两人相遇?19.A、B两地相距960km。
小升初培优专题五环形线路问题行程问题篇在小学奥数的行程问题中,环形线路问题是一个比较有挑战性的专题。
今天,我们就来深入探讨一下环形线路中的行程问题。
首先,我们来了解一下环形线路的基本概念。
环形线路,简单来说,就是一个封闭的曲线形状的道路,比如圆形跑道、环形公园小路等。
在环形线路上运动,物体的运动方向可以是同向的,也可以是反向的。
我们先来看同向运动的情况。
假设甲和乙在环形跑道上同时同地出发,甲的速度比乙快。
由于甲的速度快,所以甲会逐渐追上乙。
当甲第一次追上乙时,甲比乙多跑了一圈。
举个例子,环形跑道的周长是 400 米,甲的速度是每分钟 250 米,乙的速度是每分钟 200 米。
那么甲每分钟比乙多跑 250 200 = 50 米。
甲第一次追上乙所用的时间就是跑道的周长除以甲每分钟比乙多跑的距离,即 400 ÷ 50 = 8 分钟。
接下来,我们再看反向运动的情况。
还是在同样的环形跑道上,甲和乙同时同地出发,方向相反。
那么两人相遇时,他们所跑的路程之和就是跑道的周长。
比如说,跑道周长依然是 400 米,甲的速度是每分钟 250 米,乙的速度是每分钟 200 米。
两人的速度之和就是 250 + 200 = 450 米/分钟。
所以他们相遇所用的时间就是 400 ÷ 450 = 8/9 分钟。
下面我们来看一些稍微复杂一点的环形线路行程问题。
例 1:在一个周长为 600 米的环形跑道上,甲、乙两人同时从同一地点按顺时针方向跑步,甲的速度是每分钟 300 米,乙的速度是每分钟 250 米。
问经过多少分钟甲第一次追上乙?思路:甲要追上乙,就要比乙多跑一圈,也就是 600 米。
甲每分钟比乙多跑 300 250 = 50 米,所以追上乙所用的时间就是 600 ÷ 50 = 12 分钟。
例 2:在周长为 400 米的圆形操场上,小明和小红同时从 A 点出发,小明逆时针跑步,速度是每分钟 200 米,小红顺时针跑步,速度是每分钟 150 米。
1. 行程的基本概念,会解一些简单的行程题.2. 掌握单个变量的平均速度问题及其三种基本解题方法:“特殊值法”、“设而不求法”、“设单位1法”3. 利用对比分析法解终(中)点问题一、s 、v 、t 探源我们经常在解决行程问题的过程中用到s 、v 、t 三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t ,这个字母t 代表英文单词time ,翻译过来就是时间的意思。
表示速度的字母v ,对应的单词同学们可能不太熟悉,这个单词是velocity ,而不是我们常用来表示速度的speed 。
velocity 表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance ,但这个单词并不是以字母s 开头的。
关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v 和代表时间的t 在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s 来表示速度。
二、关于s 、v 、t 三者的基本关系速度×时间=路程 可简记为:s vt = 路程÷速度=时间 可简记为:t s v =÷ 路程÷时间=速度 可简记为:v s t =÷三、平均速度平均速度的基本关系式为: 平均速度=总路程÷总时间; 总时间=总路程÷平均速度; 总路程=平均速度⨯总时间。
板块一、简单行程公式解题【例 1】 韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【考点】行程问题 【难度】2星 【题型】解答 【解析】 原来韩雪到校所用的时间为20分钟,速度为:4802024÷=(米/分),现在每分钟比原来多走16米,即现在的速度为241640+=(米/分),那么现在上学所用的时间为:4804012÷=(分钟),7点40分从家出发,12分钟后,即7点52分可到学校.【答案】7点52分【巩固】 小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?【考点】行程问题 【难度】2星 【题型】解答 【解析】 从家到学校的路程:15230⨯=(千米),回来的时间 30103÷=(小时). 【答案】3小时【例 2】 甲、乙两地相距100千米。
第二十讲行程问题例1:某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?例2:一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?例3:小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?例4:列车通过250米的隧道用25秒,通过210米长的隧道用23秒.又知列车的前方有一辆与它同向行驶的货车,货车车身长320米,速度为每秒17米.列车与货车从相遇到相离需要多少秒?例5:乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?例6:船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。
由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?例7:现在是10点,再过多长时间,时针与分针将第一次在一条直线上?例8:有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?5.甲、乙两艘游艇,静水中甲艇每小时行A1.某人沿着电车道旁的便道以每小时4.5千米的速度步行,每7.2分钟有一辆电车迎面开过,每12分钟有一辆电车从后面追过,如果电车按相等的时间间隔以同一速度不停地往返运行.问:电车的速度是多少?电车之间的时间间隔是多少?2.某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?3.小李在铁路旁边沿铁路方向的公路上散步,他散步的速度是1.5米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用了20秒.已知火车全长390米,求火车的速度.4.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?112千米,乙艇每小时行54千米.现在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.水流速度是每小时千米.6.一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。
一元一次方程【一元一次方程应用题】➢行程问题【基础练习】1.甲、乙两人分别从相距1500米的A、B两地出发,相向而行,3分钟相遇,已知乙的速度是5米/秒,求甲的速度?2.甲乙两地相距210千米,李叔叔每小时行11千米,张叔叔每小时行9千米,问:他们多久之后相遇?3.甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米。
几小时后甲可以追上乙?4.敌我两军相距25千米,敌军以5千米/时的速度逃跑,我军同时以8千米/时的速度追击,并在相距一千米处发生战斗,问战斗是在开始追击几小时发生的?5.甲、乙两辆旅游车同时从A、B两地出发,4小时相遇。
相遇后甲车继续行驶了3小时到达B地,乙车每小时行24千米。
问A、B两地相距多少千米。
6.甲、乙两人从A、B同时相向而行,6分钟相遇,相遇后继续走4分钟到达B地,乙每分钟行40米。
问:甲、乙两地相距多少千米?7.甲乙两人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,六分钟可相遇,已知乙每分钟行50米。
求AB两地间的距离。
8.一架飞机飞行于甲、乙两城之间,顺风时需要5小时30分钟,逆风时需要6小时,若风速是每小时24公里,求两城之间的距离.9.(2005•黑龙江)A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10 C.10或12.5 D.2或12.510.(2008•南宁)小李骑自行车从A地到B地,小明骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间的路程.11.甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?12.两地相距380千米。
五年级数学培优:火车行程问题【专题导引】有关火车过桥、火车过遂道、两列火车车头相遇到车尾相离等问题,也是一种行程问题.在考虑速度、时间和路程三种数量关系时,必须考虑到火车本身的长度.如果有些问题不容易一下子看出运动过程中的数量关系,可以利用作图或演示的方法来帮助解题.解答火车行程问题可记住以下几点:1、火车过桥(或隧道)所用的时间[桥(隧道长)+火车身长]÷火车的速度.2、两列火车相向而行,从相遇到相离所用的时间=两火车车身长度和÷两车速度和.3、两车同向而行,快车从追上到超过慢车所用的时间=两车车身长度和÷两车速度差.【预备思考题1】一列火车车长180米,每秒行20米,这列火车通过320米长的大桥,需要多少时间?【预备思考题2】一列火车通过一座长456米的桥需要80秒,用同样的速度通过一条399米的隧道要77秒.求这列火车的速度.【典型例题】【例1】甲火车长210米,每秒行18米,乙火车长140米,每秒行13米.乙火车在前,两火车在双轨车道上行驶.求甲火车从后面追上到完全超过乙火车要用多少秒?【试一试】1、一列快车长150米,每秒行22米,一列慢车长100米,每秒行14米.快车从后面追上慢车到超过慢车,共需多少秒钟?2、小明以每秒2米的速度沿铁路旁的人行道跑步,身后开来一列长188米的火车,火车每秒行18米,问:火车追上小明到完全超过小明共用了多少秒钟?【例2】一列火车长180米,每秒钟行25米.全车通过一条120米的山洞,需要多少时间?【试一试】1、一列火车长360米,每秒行18米.全车通过一座长90米的大桥,从车头上桥到车尾离开共用3.1分钟,这列火车长多少米?2、一座大桥长2100米.一列火车以每分钟800米的速度通过这座大桥,从车上桥到车尾离开共用3、1分钟,这列火车长多少米?【例3】有两列火车,一车长130米,每秒行23米,另一车长250米,每秒行15米,现在两车相向而行,问从相遇到离开需要几秒钟?【试一试】1、有两列火车,一车长360米,每秒行18米,另一车长216米,每秒行30米,现在两车相向而行,问从相遇到离开一共需要几秒钟?2、有两列火车,一列长220米,每秒行22米,另一列长200米迎面开来,两车从相遇到离开共用了10秒钟,求另一列火车的速度?【例4】一列火车通过2400米的大桥需要3分钟,用同样的速度从路边的一根电线杆旁边通过,只用了1分钟.求这列火车的速度.【试一试】1、一列火车从小明身旁通过用了15秒,用同样的速度通过一座长100米的桥用了20秒.这列火车的速度是多少?2、一列火车长900米,从路边的一棵大树旁通过用了1.5分钟,以同样的速度通过一座大桥用了3.5分钟.求这座大桥的长度.【﹡例5】甲列车每秒行20米,乙列车每秒行14米,若两列车齐头并进,则甲车行40秒超过乙车,若两列车齐尾并进,则甲车行30秒超过乙,求甲列车和乙列车各长多少米?【﹡试一试】1、一列快车长200米,每22米,一列慢车长160米,每秒行17米,两列车齐头并进,快车超过慢车要多少秒?若齐尾并进,快车超过慢车要多少秒?2、快车每秒行18米,慢车每秒行10米.两列火车同时同方向齐头并进,行10秒钟后快车超过慢车;如果两列火车齐尾并进,则7秒钟后快车超过慢车.求两列火车的车长.课外作业家长签名:1、一列火车车长400米,以每分800米的速度通过一条长2800米长的隧道,需要多少时间?2、一列火车经过一根有信号灯的电线杆用了9秒,通过一座468米长的铁桥用了35秒,这列车长多少米?3、A火车长180米,每秒行18米,B火车每秒行15米,两火车同方向行驶,A 火车从追上B火车到超过它共用了100秒钟,求B火车长多少米?4、五年级384个同学排成两路纵队郊游,每两个同学相隔0.5米,队伍以每分钟61米的速度通过一座长207米的大桥,一共需要多少时间?5、有两列火车,一车长320米,每秒行18米,另一列火车以每秒22米的速度迎面开来,两车从相遇到离开共用了15秒,求另一列火车的车长.6、一列火车通过200米的大桥需要80秒,同样的速度通过144米长的隧道需要72秒.求火车的速度和车长.7、王叔叔沿铁路边散步,他每分钟走50米,迎面驶来一列长280米的列车,他与列车车头相遇到车尾相离共用了半分钟,求这列火车的速度.。
1. 行程的基本概念,会解一些简单的行程题.
2. 掌握单个变量的平均速度问题及其三种基本解题方法:“特殊值法”、“设而不求法”、
“设单位1法”
3. 利用对比分析法解终(中)点问题
一、s 、v 、t 探源 我们经常在解决行程问题的过程中用到s 、v 、t 三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t ,这个字母t 代表英文单词time ,翻译过来就是时间的意思。
表示速度的字母v ,对应的单词同学们可能不太熟悉,这个单词是velocity ,而不是我们常用来表示速度的speed 。
velocity 表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance ,但这个单词并不是以字母s 开头的。
关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v 和代表时间的t 在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s 来表示速度。
二、关于s 、v 、t 三者的基本关系
速度×时间=路程 可简记为:s vt =
路程÷速度=时间 可简记为:t s v =÷
路程÷时间=速度 可简记为:v s t =÷
三、平均速度
平均速度的基本关系式为:
平均速度=总路程÷总时间;
总时间=总路程÷平均速度;
总路程=平均速度⨯总时间。
板块一、简单行程公式解题
【例 1】 韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不
过每分钟比原来多走16米,那么韩雪几点就可到校?
【巩固】 小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多
少时间?
知识精讲
教学目标
行程问题基础
【例2】甲、乙两地相距100千米。
下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行
驶多少千米?.
【巩固】两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。
客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时?
【例3】一天,梨和桃约好在天安门见面,梨每小时走200千米,桃每小时走150千米,他们同时出发2小时后还相距500千米,则梨和桃之间的距离是多少千米?
【巩固】两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?
【例4】甲、乙两辆汽车分别从A、B两地出发相向而行,甲车先行三小时后乙车从B地出发,乙车出发5 小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A、B
两地间相距多少千米?
【例5】小燕上学时骑车,回家时步行,路上共用50分。
如果往返都步行,则全程需要70分。
求往返都骑车所需的时间。
【例6】骑自行车从甲地到乙地,以10千米/时的速度行进,下午1时到;以15千米/时的速度行进,上午11时到。
如果希望中午12时到,那么应以怎样的速度行进?
【例7】从家里骑摩托车到火车站赶乘火车。
若每时行30千米,则早到15分;若每时行20千米,则迟到5分。
如果打算提前5分到,那么摩托车的速度应是多少?
【巩固】小红从家到火车站赶乘火车,如果每时行4千米,那么火车开时她还离车站1千米;如果每时行5千米,那么她就早到车站12分。
小红家离火车站多少千米?
【例8】一艘轮船在离港口20海里处船底破损,每分进水1.4吨,这艘轮船进水70吨后就会沉没。
问:这艘轮船要在沉没前返回港口,它的时速至少达到多少海里?
【例9】解放军某部开往边境,原计划需要行军18天,实际平均每天比原计划多行12千米,结果提前3天到达,这次共行军多少千米?
【巩固】某人要到60千米外的农场去,开始他以6千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了6小时.问:他步行了多远?
【巩固】(第六届《小数报》数学竞赛初赛题第1题)小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往
常多走25米才能按老师的要求准时到校。
问:小明家到学校多远?
模块二、平均速度问题
【例10】甲、乙两地相距60千米,自行车队8点整从甲地出发到乙地去,前一半时间平均每分钟行1千米,后一半时间平均每分钟行0.8千米。
自行车队到达乙地的时间是几点几分几秒?
【例11】如图,从A到B是12千米下坡路,从B到C是8千米平路,从C到D是4千米上坡路.小张步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问小
张从A到D的平均速度是多少?
A
D
C
B
【巩固】如图,从A到B是6千米下坡路,从B到C是4千米平路,从C到D是4千米上坡路.小张步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问从A 到D的平均速度是多少?
D
A
C
B
【巩固】一个运动员进行爬山训练.从A地出发,上山路长30千米,每小时行3千米.爬到山顶后,沿原路下山,下山每小时行6千米.求这位运动员上山、下山的平均速度.
【例12】摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.
【巩固】甲乙两地相距200千米,小强去时的速度是10千米/小时,回来的速度是40千米/小时,求小强往返的平均速度.
【例13】飞机以720千米/时的速度从甲地到乙地,到达后立即以480千米/时的速度返回甲地.求该车的平均速度.
【巩固】一个人从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行到乙地. 骑车时每小时行12千米,步行时每小时4千米,这个人走完全程的平均速度是多少?【巩固】从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上山以30千米/时的速度,到达山顶后以60千米/时的速度下山.求该车的平均速度.
【巩固】某人上山速度为每小时8千米,下山的速度为每小时12千米,问此人上下山的平均速度是多少?
【例14】一辆汽车从甲地出发到300千米外的乙地去,前120千米的平均速度为40千米/时,要想使这辆汽车从甲地到乙地的平均速度为50千米/时,剩下的路程应以什么速度行驶?
【巩固】汽车往返于A,B两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?
【巩固】王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?
【巩固】王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时55千米.如果他想按时返回甲地,他应以多大的速度往回开?
【例15】小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时。
小明往返一趟共行了多少千米?
【巩固】小明上午九点上山,每小时3千米,在山顶休息1小时候开始下山,每小时4千米,下午一点半到达山下,问他共走了多少千米.
【巩固】小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了5小时.小明去时用了多长时间?
【巩固】小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了15小时.小明去时用了多长时间?
【例16】小王每天用每小时15千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每小时10千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同
【例17】有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。
某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥
的平均速度。
【巩固】有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度.
【巩固】一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?
【例18】赵伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,
他共行走多少千米?
【例19】张师傅开汽车从A到B为平地(见下图),车速是36千米/时;从B到C为上山路,车速是28千米/时;从C到D为下山路,车速是42千米/时. 已知下山路是上山路的2倍,从A到
D全程为72千米,张师傅开车从A到D共需要多少时间?
【巩固】老王开汽车从A到B为平地(见右图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A到D 全程为72千米,老王开车从A到D共需要多少时间?
【例20】小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路.小明上学走两条路所用的时间一样多.已知下坡的速度是平路的2倍,那么平路的速度是上坡的多少
倍?。