6算法分析与设计 第六讲 分治法总结
- 格式:pdf
- 大小:90.24 KB
- 文档页数:14
第一章算法概述1.算法:解决问题的一种方法或过程;由若干条指令组成的有穷指令。
2.算法的性质:1)输入:有零个或多个输入2)输出:有至少一个输出3)确定性:每条指令是清晰的、无歧义的4)有限性:每条指令的执行次数和时间都是有限的3.算法与程序的区别➢程序是算法用某种程序设计语言的具体实现➢程序可以不满足算法的有限性4.算法复杂性分析1)算法的复杂性是算法运行所需要的计算机资源的量,需要时间资源的量称为时间复杂性,需要空间资源的量称为空间复杂性2)三种时间复杂性:最坏情况、最好情况、平均情况3)可操作性最好且最有实际价值的是最坏情况下的时间复杂性第二章递归与分支策略1.递归概念:直接或间接调用自身的算法2.递归函数:用函数自身给出定义的函数3.递归要素:边界条件、递归方程4.递归的应用✧汉诺塔问题void Hanuo(int n,int a,int b,int c){if(n==1) return;Hanuo(n-1,a,c,b);move(a,b)Hanuo(n-1,c,b,a);}✧全排列问题void Perm(Type list[],int k,int m){ //产生list[k,m]的所有排列if(k == m){for(int i = 0;I <= m;i++) cout<<list[i];cout<<endl;}else{for(int i = j; i<=m;i++){Swap(list[k],list[i]);Perm(list,k+1;m);Swap(list[k],list[i])}}}5.分治法的基本思想:将一个规模较大的问题分成若干个规模较小的子问题,这些子问题互相独立且与原问题相同。
6.分治法的使用条件:✓问题的规模缩小到一定程度可以容易地解决✓问题可以分解为若干个规模较小的相同问题✓利用原问题分解出的子问题的解可以合并为原问题的解✓各个子问题是相互独立的7.分治法的时间复杂度8.分治法的应用二分搜索1)时间复杂度 O(logn)2)参考算法快速排序1)快排的运行时间与划分是否对称有关2)时间复杂度O(nlogn)合并排序1)基本思想:将待排元素分成大小大致相同的两个子集合,分别对两个子集合进行排序,最总将排序好的子集合合并成所要求的排序好的集合。
分治法是一种算法设计策略,它将问题划分为较小的子问题,然后通过解决子问题来解决原始问题。
个人总结如下:
分解问题:分治法首先将原始问题分解为规模较小的子问题。
这可以通过递归地将问题划分为更小的部分来实现。
分解问题的关键是确保每个子问题都是原始问题的规模的一个子集。
解决子问题:每个子问题都可以通过相同的算法来解决。
递归地应用相同的算法,直到达到基本情况,也就是子问题可以直接解决的规模。
合并解决方案:一旦解决了子问题,就将它们的解合并起来,形成原始问题的解。
这通常涉及对子问题的解进行组合,以获得原始问题的最终解。
适用性:分治法适用于那些可以自然地分解为子问题的问题。
它在解决许多常见问题时非常有效,如排序、搜索、计算最大值和最小值、归并等。
时间复杂度:分治法通常在每个子问题上执行相同的操作,并且子问题的数量通常是对数级别的。
因此,分治算法的时间复杂度通常可以表示为递归深度的多项式。
常见的时间复杂度包括O(nlogn)和O(n^2)。
并行化:由于分治法的子问题通常是相互独立的,因此它很适合并行化处理。
可以同时处理多个子问题,然后将它们的解合并起来。
这使得分治法在并行计算中具有较好的可扩展性。
总的来说,分治法是一种强大的算法设计策略,它通过将问题分解为子问题并递归地解决它们,然后将子问题的解合并起来,从而解决了许多复杂的问题。
它在算法设计和并行计算中都具有广泛的应用。
分治算法知识点总结一、基本概念分治算法是一种递归的算法,其基本思想就是将原问题分解成多个相互独立的子问题,然后分别解决这些子问题,最后将子问题的解合并得到原问题的解。
分治算法的核心思想可以用一句话概括:分而治之,分即是将原问题分解成若干个规模较小的子问题,治即是解决这些子问题,然后将子问题的解合并起来得到原问题的解。
分治算法通常包括三个步骤:(1)分解:将原问题分解成若干个规模较小的子问题;(2)解决:递归地解决这些子问题;(3)合并:将子问题的解合并起来得到原问题的解。
分治算法的典型特征包括递归和合并。
递归指的是将原问题分解成若干个规模较小的子问题,然后递归地解决这些子问题;合并指的是将子问题的解合并得到原问题的解。
通常来说,分治算法的递归实现方式很容易编写,但有时可能会面临大量的重复计算,因此需要合并操作来避免这种情况。
二、原理分治算法的原理可以通过一个简单的例子来说明。
我们以计算数组中的最大值为例,具体的步骤如下:(1)分解:将数组分解成两个规模相等的子数组;(2)解决:递归地在这两个子数组中分别找到最大值;(3)合并:比较这两个子数组的最大值,得到原数组的最大值。
从这个例子可以看出,分治算法将原问题分解成两个子问题:分别在左边子数组和右边子数组中找到最大值,然后将这两个子问题的解合并起来得到原数组的最大值。
这种将问题分解成若干个规模较小的子问题,然后合并子问题的解得到原问题的解的方法正是分治算法的核心原理。
分治算法的优势在于它可以将原问题分解成多个规模较小的子问题,然后并行地解决这些子问题,最后合并子问题的解得到原问题的解。
这种并行的设计思路使得分治算法非常适合于并行计算,能够有效地提高计算效率。
三、应用分治算法在计算机科学领域有着广泛的应用,包括排序、搜索、图论、动态规划等多个方面。
下面我们将以排序算法和搜索算法为例,来介绍分治算法在实际应用中的具体情况。
1. 排序算法排序算法是计算机科学领域中一个重要的问题,分治算法在排序算法中有着广泛的应用。
总结分治法引言分治法(Divide and Conquer)是一种很重要的算法设计策略,常用于解决那些可以被划分为更小规模的子问题的问题。
该算法将问题划分为多个独立且相似的子问题,逐个解决子问题,最终将所有子问题的解合并得到原问题的解。
分治法在计算机科学领域有着广泛的应用,尤其在排序、搜索和优化问题中被广泛使用。
分治法的基本思想分治法的基本思想是将一个大问题划分为多个规模较小、相互独立且同原问题结构相似的子问题。
然后,对这些子问题进行求解,并将子问题的解合并,即可得到原问题的解。
分治法通常包括三个步骤:1.分解(Divide):将原问题划分为多个规模较小、相互独立的子问题。
2.解决(Conquer):递归地求解子问题,如果子问题规模足够小,则直接求解。
3.合并(Combine):将子问题的解合并成原问题的解。
分治法适用于满足以下条件的问题:1.原问题可以划分为规模较小的子问题。
2.子问题的结构和原问题一样,只是规模较小。
3.子问题的解容易合并成原问题的解。
分治法的应用排序算法经典的排序算法中,归并排序和快速排序就是基于分治法的思想。
这两种算法都将排序问题划分为多个较小的子问题,并递归地解决这些子问题,最后通过合并或交换操作将子问题的解合并成原问题的解。
以归并排序为例,其基本思想是将一个无序序列划分为两个规模相同(或接近)的子问题,分别对两个子问题排序,最后将两个有序的子序列合并成一个有序序列。
搜索算法分治法在搜索算法中也有着广泛的应用。
例如,在快速查找算法中,通过将问题划分为多个子问题,可以利用分治法快速定位目标元素。
另外,二分查找也是分治法的一种特殊形式,其每次将问题的规模减半,直到找到目标元素或确定目标元素不存在。
优化问题在优化问题中,分治法可以用来寻找最优解。
例如,在最大子数组问题中,可以将问题划分为多个规模较小的子问题,分别求解每个子问题的最大子数组和,然后再将这些最大子数组和合并得到原问题的最大子数组和。
算法设计与分析典型算法概述▌分治法与贪心法▌拾光工作室分治法分治算法也叫分治策略,把输入分为若干个部分,递归的解每一个问题,最后将这些子问题合并成为一个全局解。
如果子问题较大,可以再次使用分治策略。
由此可以得到分治策略解决的问题特点:1.该问题的规模缩小到一定的程度就可以容易地解决;2.该问题可以分解为若干个规模较小的相同问题;3.分解出的子问题的解可以合并为原问题的解;4.分解出的各个子问题是相互独立的。
分治法的应用——二叉查找设a[i](1<=i<=n)是一个数组,其中的元素以非降序排列.考虑判断一个元素x是否在数组中的问题。
确定一个j,使得a[j]=x。
如果x在数组中返回j,否则,返回0。
分析该问题符合分治法策略解决问题的特点,可以用分治法解决:如果n=1,直接判断a[n]是否与x相等。
如果n>1,可以把问题分解如下新的问题:选择一个下标q(范围[i,l]中),比较x与a[q],则有三种情况:1.x=a[q].得到解。
2.x>a[q].问题范围转换为(l-q,a[q+1], (x)3.x<a[q].问题范围转换为(q-i,a[i], (x)转换的子问题可以继续分解。
二叉查找的递归算法int BinSrch(Type a[],int i,int n,Type x)//a[i..n]是非递减排列且 1<=i<=n;{if(n==i) { if(x==a[i]) return i;else return 0; }else{int mid=(i+n)/2;if(x==a[mid]) return mid;else if(x<a[mid]) return BinSrh(a,i,mid-1,x);else if(x>a[mid]) return BinSrh(a,mid+1,n,x);}}分治法的应用——查找最大值与最小值在n个元素中找出最大值和最小值首先看下简单的查找算法:void MaxMin(Type a[],int n,Type &max,Type &min){max=min =a[0];for(int i=1;i<n;i++){ if(a[i]>max) max=a[i];if(a[i]<min) min=a[i];}}算法的时间复杂度体现在比较的次数上,当a[n]中的元素是多项式,矢量及非常大的数时或字符串,元素的比较代价就比其他操作代价高的很。
分治法实验总结
分治法是一种常用的算法设计策略,它将问题分解成若干个子问题,然后递归地解决这些子问题,最后将子问题的解合并成原问题的解。
在本次实验中,我们通过实现归并排序和快速排序两个算法,深入理解了分治法的思想和实现方式。
我们实现了归并排序算法。
归并排序的基本思想是将待排序的序列分成若干个子序列,每个子序列都是有序的,然后再将子序列合并成一个有序的序列。
在实现过程中,我们采用了递归的方式,将序列不断地分成两半,直到每个子序列只有一个元素,然后再将这些子序列两两合并,直到最终得到一个有序的序列。
归并排序的时间复杂度为O(nlogn),是一种稳定的排序算法。
接着,我们实现了快速排序算法。
快速排序的基本思想是选择一个基准元素,将序列分成两个部分,一部分比基准元素小,一部分比基准元素大,然后递归地对这两个部分进行排序。
在实现过程中,我们选择了序列的第一个元素作为基准元素,然后使用两个指针分别从序列的两端开始扫描,将比基准元素小的元素放在左边,将比基准元素大的元素放在右边,最后将基准元素放在中间,然后递归地对左右两个部分进行排序。
快速排序的时间复杂度为O(nlogn),但是在最坏情况下,时间复杂度会退化为O(n^2)。
通过实现归并排序和快速排序两个算法,我们深入理解了分治法的
思想和实现方式。
分治法是一种非常重要的算法设计策略,可以用来解决很多复杂的问题,比如最近点对问题、矩阵乘法问题等。
在实际应用中,我们可以根据具体问题的特点选择合适的分治算法,以提高算法的效率和准确性。
算法分析——分治法分治算法⼩组的汇报内容:⼀、分治算法的基本概念 (2)⼆、分治算法的基本思想及策略 (2)三、分治法适⽤的情况 (3)四、分治法的基本步骤 (3)五、分治法的复杂性分析 (4)六、快速傅⾥叶变换 (5)七、可使⽤分治法求解的⼀些经典问题 (9)⼋、依据分治法设计程序时的思维过程 (9)九、分治法与其它常见算法的⽐较 (9)⼩组的分⼯情况:彭勇讲前五个部分,天西⼭讲第六个部分,胡化腾讲最后三个部分,吕璐负责汇报的资料收集,⼩组分⼯以及最后的资料整理。
三、分治法适⽤的情况分治法所能解决的问题⼀般具有以下⼏个特征:1) 该问题的规模缩⼩到⼀定的程度就可以容易地解决2) 该问题可以分解为若⼲个规模较⼩的相同问题,即该问题具有最优⼦结构性质。
3) 利⽤该问题分解出的⼦问题的解可以合并为该问题的解;4) 该问题所分解出的各个⼦问题是相互独⽴的,即⼦问题之间不包含公共的⼦⼦问题。
第⼀条特征是绝⼤多数问题都可以满⾜的,因为问题的计算复杂性⼀般是随着问题规模的增加⽽增加;第⼆条特征是应⽤分治法的前提它也是⼤多数问题可以满⾜的,此特征反映了递归思想的应⽤;、第三条特征是关键,能否利⽤分治法完全取决于问题是否具有第三条特征,如果具备了第⼀条和第⼆条特征,⽽不具备第三条特征,则可以考虑⽤贪⼼法或动态规划法。
第四条特征涉及到分治法的效率,如果各⼦问题是不独⽴的则分治法要做许多不必要的⼯作,重复地解公共的⼦问题,此时虽然可⽤分治法,但⼀般⽤动态规划法较好。
四、分治法的基本步骤分治法在每⼀层递归上都有三个步骤:step1 分解:将原问题分解为若⼲个规模较⼩,相互独⽴,与原问题形式相同的⼦问题;step2 解决:若⼦问题规模较⼩⽽容易被解决则直接解,否则递归地解各个⼦问题step3 合并:将各个⼦问题的解合并为原问题的解。
它的⼀般的算法设计模式如下:Divide-and-Conquer(P)1. if |P|≤n02. then return(ADHOC(P))3. 将P分解为较⼩的⼦问题 P1 ,P2 ,...,Pk4. for i←1 to k5. do yi ← Divide-and-Conquer(Pi) △递归解决Pi6. T ← MERGE(y1,y2,...,yk) △合并⼦问题7. return(T)其中|P|表⽰问题P的规模;n0为⼀阈值,表⽰当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。
分治算法总结分治算法是一种将问题分解成更小的子问题并逐个解决的算法策略。
它通常用于解决具有重叠子问题和可分解性质的问题,能够提高问题的解决效率。
本文将对分治算法进行总结,介绍其基本思想、应用领域和解决问题的步骤。
一、基本思想分治算法的基本思想是将一个复杂的问题分解成多个简单的子问题,然后逐个解决这些子问题,并将其合并得到原问题的解。
分治算法通常采用递归的方式来实现,具体步骤如下:1. 分解:将原问题划分成多个规模更小的子问题;2. 解决:递归地求解各个子问题;3. 合并:将子问题的解合并得到原问题的解。
二、应用领域分治算法在许多领域得到了广泛的应用,以下是一些常见的应用场景:1. 排序算法:如快速排序和归并排序,它们都是基于分治思想进行设计的;2. 搜索算法:如二分查找算法,也可以看作是一种分治算法;3. 图算法:如最大子数组和、最短路径等问题都可以使用分治算法进行求解;4. 数据压缩:如Huffman编码算法,也是一种分治算法;5. 多项式乘法:将多项式乘法问题分解成更小的子问题,并通过递归求解得到最终结果。
三、解决问题的步骤使用分治算法解决问题的一般步骤如下:1. 分解:将原问题划分成多个规模更小的子问题;2. 解决:递归地求解各个子问题;3. 合并:将子问题的解合并得到原问题的解。
具体到每个子问题的求解过程,通常可以分为以下几个步骤:1. 边界条件判断:当问题的规模足够小,可以直接求解时,不再进行分解,直接返回结果;2. 分解子问题:将原问题划分成多个规模更小的子问题,通常可以通过将原问题划分成两个或多个规模相同或相似的子问题;3. 递归求解:对每个子问题进行递归求解,直到问题的规模足够小,可以直接求解;4. 合并子问题的解:将子问题的解合并得到原问题的解,通常可以通过简单的合并操作实现。
四、优缺点分析分治算法具有以下优点:1. 可以高效地解决具有重叠子问题和可分解性质的问题;2. 通过将问题划分成多个子问题,可以提高问题的解决效率;3. 适用范围广,可以应用于许多领域。