国内现有确定地基承载力表格汇总
- 格式:doc
- 大小:114.50 KB
- 文档页数:5
动力触探经验公式汇总及地基承载力试验记录表动力触探,简称动探,也称为圆锥动力触探DPT,是利用一定质量的重锤,将与探杆相连接的标准规格的探头打入土中,根据探头贯入土中10cm时,所需要的捶击数,判断土的力学特性,具有勘察与测试的双重性能。
根据穿心锤质量和提升高度的不同,动力触探试验一般分为轻型、重型、超重型动力触探。
用途:一般用来衡量碎石土的密实度,平均粒径和最大粒径不同选用的型号也不同,以重型动力触探为例:N≤5 则为松散;5<N63.5≤10 则为稍密;10<N≤20 则为中密;N>20则为密实。
地基承载力实验工程名称:北京绕城公路城市化改造工程合同号:RC-A1 试验编号:/地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号:S246NJ-- LJ1 试验编号:C-LJ1-HD-CZL-002地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号:S246NJ-- LJ1 试验编号:C-LJ1-HD-CZL-003地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号:S246NJ-- LJ1 试验编号:C-LJ1-HD-CZL-004地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号:S246NJ-LJ1 试验编号:C-LJ1-HDCZL-005地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号:S246NJ-LJ1 试验编号:C-LJ1-HD-CZL-006地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号:S246NJ-LJ1 试验编号:J-LJ1-HD-CZL-007地基承载力试验工程名称:S246溧水县城至苏皖省界段工程合同号:S246NJ-LJ1 试验编号:J-LJ1-HD-CZL-008。
地基承载力计算表格篇一:拌合站地基承载力计算表拌合站地基承载力计算为了确保混凝土拌合站使用安全,我单位对拌合站所选位置处地基进行了设计验算,并在基础施工时,进行了重力触探试验。
一、 HZS50拌和机各基础承载力计算1.1水泥罐地基承载力计算1个100T罐(装满水泥)自重约为1050KN,1个200T罐(装满水泥)自重约为2100KN,1个200T罐(装满粉煤灰)自重约为1900KN,本站共设1个100T水泥罐,1个200T水泥罐,1个200T粉煤灰罐,总重为:G罐=1050+2100+1900=5050KN;混凝土基础分为A第二层基础1个(4.4×15.75×2m)和B 整体式扩大基础(5.4×15.75×1.8m),基础自重为:G基础=(4.4×15.75×2+5.4×15.75×1.8) ×2400×9.8÷1000=6860KN;混凝土基础底面积为:S=5.4×15.75=85.05m2地基承载力为:σ=(G罐+ G基础)/S=(6860+5050)/85.05=140kPa;取安全系数1.5,则:1.5×140=210kPa;经静力触探现场实测,地基承载力为315 kPa>210kPa,满足安全施工要求。
1.2主机地基基础承载力计算一个主机自重为73.5KN,一次拌料1m3,搅拌层平台、下立柱、出料斗组装重量70KN,总重为:G主机=73.5+70+1×2.4×9.8=167KN;主机采用整体式扩大基础,支腿尺寸0.8×0.8×0.8m,自重为:G基础=(6.5×5×0.4+0.8×0.8×0.8)×2400×9.8÷1000=317.8KN;混凝土基础底面积:S=6.5×5=32.5m2地基承载力为:σ=(G主机+ G基础)/S=(167+317.8)/32.5=14.9kPa;14.9×1.5=22.35kPa经静力触探现场实测,地基承载力为150kPa>22.35kPa,满足安全施工要求。
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------坏。
1、地基承载力:指地基土单位面积上所能随荷载的能力。
地基承载力问题属于地基的强度和稳定问题。
2、容许承载力:指同时兼顾地基强度、稳定性和变形要求这两个条件时的承载力。
它是一个变量,是和建筑物允许变形值密切联系在一起。
3、地基承载力标准值:是根据野外鉴别结果确定的承载力值。
包括:标贯试验、静力触探、旁压及其它原位测试得到的值。
4、地基承载力基本值:是根据室内物理、力学指标平均值,查表确定的承载力值,包括载荷试验得到的值)。
通常0f f f k ψ=5、极限承载力:指地基即将丧失稳定性时的承载力。
二、地基承载力确定的途径目前确定方法有:1.根据原位试验确定:载荷试验、标准贯入、静力触探等。
每种试验都有一定的适用条件。
2.根据地基承载力的理论公式确定。
3.根据《建筑地基基础设计规范》确定。
根据大量测试资料和建筑经验,通过统计分析,总结出各种类型的土在某种条件下的容许承载力,查表。
一般:一级建筑物:载荷试验,理论公式及原位测试确定f;一级建筑物:规范查出,原位测试;尚应结合理论公式;一级建筑物:邻近建筑经验。
三、确定地基承载力应考虑的因素123456b以后)见图8-当P当P二.竖直荷载下地基的破坏形式在荷载作用下,建筑物由于承载能力不足而引起的破坏,通常是由于基础下持力层土的剪切破坏所造成的,而这种剪切破坏的形成一般又可分为整体剪切、局部剪切和冲剪三种。
1.整体剪切破坏的特征:当基础上的荷载较小时,基础压力与沉降的关系近乎直线变化,此时属弹性变形阶段,如图中oa段。
国内现有确定地基承载力表格资料汇总根据轻型动力触探试验确定地基承载力标准值N10(击) 15 20 25 30f k(kPa) 105 145 190 230备注依据老的《建筑地基基础设计规范》(7—89)。
N10(击) 6 10 20 30 40 50 60 70 80 90 f k(kPa) 51 69 114 159 204 249 294 339 384 429 备注依据广东省建筑设计研究院资料。
N10(击) 15~20 18~25 23~30 27~35 32~40 35~50e ~~~~~<f k(kPa) 40~70 60~90 80~120 100~150 130~180 150~200备注依据西安市资料。
饱和度Sr>取下限,Sr<取上限。
N10(击) 10 20 30 40f k(kPa) 85 115 135 160备注依据老的《建筑地基基础设计规范》(7—89)。
根据重型动力触探试验确定地基承载力标准值(击) 3 4 5 6 8 10 12 碎石土f k(kPa)140 170 200 240 320 400 480中、粗、砾砂f k(kPa)120 150 200 240 320 400备注1、依据原一机部勘察公司西南大队资料。
2、本表适用于冲、洪积成因的碎石土和砂土,对碎石土, d60不大于30mm,不均匀系数不大于120。
对中、粗砂,不均匀系不大于6,对砾砂,不均匀系数不大于20。
(击) 1 2 3 4 5 6 7 8 9 10 粘土96 152 209 265 321 382 444 505粉质粘土88 136 184 232 280 328 376 424 粉土80 107 136 165 195 (224)素填土79 103 128 152 176 (201)粉细砂(80) (110) 142 165 187 210 232 255 277 备注括号内值供内插用,依据《油气管道工程地质勘察技术规定》。
地基承载力计算表简介本文档旨在提供地基承载力计算表的基本结构和计算方法,以便工程师能够准确地评估地基的承载能力。
计算表结构地基承载力计算表包含以下几个主要部分:1. 项目信息该部分包括项目名称、地点、日期等基本信息,以便将计算结果与具体项目关联。
2. 地基特性参数在这一部分,需要列出地基的特性参数,如土质类型、含水量、密度等。
这些参数直接影响地基承载能力的计算结果。
3. 荷载信息荷载信息包括预计施工物的重量、面积、分布方式等。
该信息对地基承载力的计算至关重要。
4. 地基承载力计算方法在这一部分,需要提供地基承载力计算的具体方法。
一种常用的方法是通过文献和经验公式确定地基承载力。
这些公式通常根据地基特性参数和荷载信息进行计算。
5. 计算结果最后一部分是计算结果的展示。
根据所选的计算方法和输入的参数,计算出地基的承载能力,并将结果以合适的形式呈现出来,比如表格或图表。
使用指南以下是使用地基承载力计算表的基本步骤:1. 填写项目信息部分,确保准确记录项目的相关信息。
2. 填写地基特性参数部分,包括土质类型、含水量、密度等。
3. 填写荷载信息部分,包括施工物的重量、面积、分布方式等。
4. 根据所选的计算方法,在地基承载力计算方法部分进行计算。
5. 将计算结果展示在计算结果部分,以便进一步分析和评估地基的承载能力。
注意事项在使用地基承载力计算表时,需要注意以下事项:1. 确保输入的参数准确无误,以保证计算结果的准确性。
2. 使用合适的计算方法,根据实际情况选择最适合的公式。
3. 不要使用无法确认的内容,所有引用的信息应可靠和可验证。
4. 如有需要,可以参考相关文献和专业知识,以增加计算结果的可靠性。
结论地基承载力计算表是评估地基承载能力的重要工具,通过准确的数据和合适的计算方法,工程师可以获得对地基稳定性的准确评估。
在使用计算表时,请务必注意注意事项,并确保输入准确的参数,以获得可靠的计算结果。
参考资料: 建筑地基设计规范GB 7-89附录五土(岩)的承载力标准值(一)当根据野外鉴别结果确定地基承载力标准值时,应符合附表5—1、附表5—2的规定:岩石承载力标准值(kPa) 附表5-1②对于强风化的岩石,当与残积土难于区分时按土考虑.碎石土承载力标准值(kPa) 附表5-2注:①表中数值适用于骨架颗粒空隙全部由中砂、祖砂或硬塑、坚硬状态的粘性土或稍湿的粉上所充填,②当粗颗粒为中等风化或强风化时,可按其风化程度适当降低承裁力,当颗粒间呈半胶结状时,可适当提高承裁力。
(二)当根据室内物理、力学指标平均值确定地基承载力标准值时,应按下列规定将附表5—3至附表5—7中的承载力基本值乘以回归修正系数:回归修正系数,应按下式计算:ψf=1-2.884/√N+7.917/N^2)*δ粉土承载力基本值(kPa) 附表5-3注:①有括号者仅供内插用;折算系数ξ为0;②在湖、塘、沟、谷与河漫滩地段,新近沉积的粉土,其工程性质较差,应根据当地实践经验取值.粘性土承载力基本值—(kPa) 附表5-4注:①有括号者仅供内插用:.②折算系数ξ为0.1③在湖、塘、沟、谷与河漫滩地段新近沉积的粘性土,其工程性能一般较差.第四纪晚更新世(Q3)及其以前沉积的老粘性土,其工程性能通常较好.这些土均应根据当地实践经验取值。
沿海地区淤泥和淤泥质土承载力基本值附表5—5注:对于内陆淤泥和淤泥质上,可参照使用.红粘土承载力基本值(kPa)附表5-6注:①本表仅适用于定义范围内的红粘土②折算系数ξ为0.4素填土承载力基本值附表5-7注:①本表只适用于堆积时间超过十年的粘性土,以及超过五年的粉土②压实填土地基的承载力,可按本规范第6.3.2条采用。
(三)当根据标准贯入试验锤击数N,轻便触探试验锤击数Nl0。
自附表5—8至附表5—11确定地基承载力标准值时,现场试验锤击数应经下式修正:N(或Nl0)=μ一1.645σ(附5—6)计算值取至整数位。
地基承载力标准值表地基承载力是指地基土壤在承受建筑物或其他结构荷载作用下的稳定性能。
地基承载力标准值表是用来确定地基土壤承载力的参考标准,对于建筑工程设计和施工具有重要的指导意义。
在进行地基工程设计时,需要根据地基土壤的承载力标准值来确定合适的基础结构形式和尺寸,以确保建筑物的稳定和安全。
本文将介绍地基承载力标准值表的相关内容,希望能为相关领域的专业人士提供参考和帮助。
地基承载力标准值表通常包括了不同地基土壤类型和地基承载力标准值的对应关系。
在实际工程中,需要根据地基土壤的类型和性质来选择相应的地基承载力标准值,以确保基础的稳定性和安全性。
地基土壤的类型通常包括砂土、粉土、黏土、淤泥等,每种类型的土壤都有其特定的承载力特点和标准值范围。
根据地基土壤的类型和地基承载力标准值表,可以确定合适的地基基础形式和尺寸,为工程设计和施工提供重要的依据。
在进行地基承载力标准值的确定时,需要考虑地基土壤的承载性能、荷载的作用方式和强度要求等因素。
地基土壤的承载性能通常通过室内试验和现场勘测来确定,包括土壤的抗压强度、抗剪强度、变形特性等指标。
荷载的作用方式通常包括垂直荷载、水平荷载和倾覆力矩等,不同的荷载作用方式对地基承载力的要求也有所不同。
同时,根据建筑物的结构形式和荷载大小,还需要确定地基承载力的强度要求,以确保地基基础的稳定和安全。
地基承载力标准值表的编制需要考虑地域性、土壤类型、地下水位、地震烈度等因素的影响。
不同地区的土壤类型和地下水位可能存在较大差异,需要根据实际情况确定相应的地基承载力标准值。
同时,地震烈度对地基承载力的影响也需要进行考虑,以确保地基基础在地震作用下的稳定性和安全性。
因此,地基承载力标准值表的编制需要综合考虑多种因素,以确保其准确性和实用性。
在实际工程中,地基承载力标准值表的应用需要结合工程实际情况进行综合分析和确定。
需要考虑地基土壤的特性、荷载的作用方式、地下水位、地震烈度等因素,以确定合适的地基承载力标准值。
一.地基承载力计算方法:按《建筑地基基础设计规范》(GBJ7-89)1.野外鉴别法岩石承载力标准值f k(kpa)注:1.对于微风化的硬质岩石,其承载力取大于4000kpa时,应由试验确定;2.对于强风化的岩石,当与残积土难于区分时按土考虑。
碎石承载力标准值f k(kpa)注:1.表中数值适用于骨架颗粒空隙全部由中砂、粗砂或硬塑、坚硬状态的粘土或稍湿的粉土所充填的情况;2.当粗颗粒为中等风化或强风化时,可按其风化程度适当降低承载力,当颗粒间呈半胶结状时,可适当提高承载力;3.对于砾石、砾石土均按角砾查承载力。
2.物理力学指标法粉土承载力基本值f(kpa)注:1.有括号者仅供内插用;2.折算系数§=0。
粘性土承载力基本值f(kpa)注:1.有括号者仅供内插用;2.折算系数§=0.1。
沿海地区淤泥和淤泥质土承载力基本值f注:对于内陆淤涨和淤泥质土,可参照使用。
红粘土承载力基本值f注:1.本表仅适用于定义范围内的红粘土;2.折算系数§=0.4。
素填土承载力基本值f(kpa)注:本表只适用于堆填时间超过10年的粘性土,以及超过5年的粉土;所查承载需经修正计算。
3.标准贯入试验法砂土承载力标准值f k(kpa)注:1.砾砂不给承载力; 2.粉细砂按粉砂项给承载力;3.中粗砂按中砂项给承载力;4.细中砂按细砂项给承载力;5.粗砾砂按粗砂项给承载力;6.N63.5需修正后查承载力.粘性土承载力标准值f k(kpa)注:N63.5需经修正后查承载力。
花岗岩风化残积土承载力基本值f(kpa)注:花岗岩风化残积土的定名:2mm含量≥20%为砾质粘性土;2mm含量<20%为砂质粘性;2mm含量=0为粘性土二.标准贯入击数修正方法1.国标方法N=aN′2.公路方法当触探杆长度≤21m时按国标;当触探杆长度≥21m时按下式计算:N L=(0.784-0.004L)Ns式中:N L表示校正后的击数Ns表示实际击数L表示触探杆长度三.土的部分特征参考值注:括号内为海南地区经验值粘性土的内摩擦角φ(度)和粘聚力c(kpa)参考值四.土的分类粉土密实度和湿度分类粘性土状态分类五.工程降水方法聚乙烯(PE)简介1.1聚乙烯化学名称:聚乙烯英文名称:polyethylene,简称PE结构式:聚乙烯是乙烯经聚合制得的一种热塑性树脂,也包括乙烯与少量α-烯烃的共聚物。
国内现有确定地基承载力表格资料汇总1.1根据轻型动力触探试验确定地基承载力标准值
1.2根据重型动力触探试验确定地基承载力标准值
平均击数
(击)
N
63.5
平均击数
(击)
N
63.5
1.3根据标准贯入试验确定地基承载力标准值
1.4根据岩土的物理指标确定地基承载力标准值
根据构成边坡的岩性不同,将边坡分为岩质边坡与土质边坡,而岩质边坡按岩石的软硬又分为软岩边坡和硬岩边坡。
一般认为,软岩高陡边坡是坡度大且高、构成边坡的岩石介质为软弱岩体的边坡,但现今并没有统一的定义。
有人认为,岩质高边坡是指高度为15m~30m、坡度为30度~60度的边坡,而高度超过30m、坡度为60度~90度的边坡为超高急坡[1,2]。
但不同系统对岩石高边坡的定义有所不同。
黄润秋建议城建系统为大于15m,公路系统为大于30m,铁道系统为大于50m,而矿山系统和水电系统为大于100m[3],但未对坡度进行界定。
综上所述,本人认为,对城建系统,软岩高陡边坡是指其地质软岩岩体抗压强度介于1.5MPa~25MPa之间、坡度为30度~60度、高度为15m~30m的边坡。
[1] 杨宇航,颜志平,朱赞凌,等.公路边坡防护与治理[M].北京:人民交通出版社,2002
[2] 周培德,张俊云.植被护坡工程技术[M].北京:人民交通出版社,2003
[3] 黄润秋.中国岩石高边坡工程及其研究[A].工程地质原理分析精品课程建设[DB
友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。