YAG激光器调Q试验
- 格式:ppt
- 大小:727.50 KB
- 文档页数:8
Nd:YAG激光器调Q激光束的放大特性实验目的:1. 了解固体激光器的自由振荡输出特性2. 了解调Q技术以及调Q激光输出特性3. 了解固体激光器的应用4. 掌握固体激光器的光路调整实验原理:1. 自由振荡激光输出特性通常激光器谐振腔的损耗是不变的,一旦光泵浦使反转粒子数达到或略超过阈值时,激光器便开始振荡,于是激光上能级的粒子数因受激辐射而减少,致使上能级不能积累很大的反转粒子数,只能被限制在阈值反转数附近,当低于阈值时又开始准备第二次振荡。
这使得自由振荡固体激光器的输出是由许多振幅、脉宽和间隔作随即变化的尖峰脉冲组成,尖峰脉宽非常窄(微秒量级),间隔数微秒,脉冲序列的时间长度大致等于闪光灯泵浦持续时间。
激光器的输出能量分散在这样一串脉冲中,因而不可能有很高的峰值功率,增大泵浦能量时也无助于峰值功率的提高,只会使小尖峰数量增加。
2. 调Q技术激光上能级最大粒子反转数受到激光器阈值的限制,因此可设法改变激光器的阈值来实现上能级积累大量的反转粒子。
由激光振荡阈值条件可知临界阈值与谐振腔Q值成反比。
Q 值为谐振腔的品质因数,当波长和腔长一定时,Q与谐振腔的损耗成反比,即损耗大,Q值就低,阈值高而不易起振;当损耗小,Q值就高,阈值低而易起振。
调Q技术就是通过某种方法使腔的Q值随时间按一定程序变化的技术。
本实验通过Q 晶体改变谐振腔的阈值(或Q值)。
泵浦开始时,使光腔处于低Q值,即提高振荡阈值使激光器不产生激光振荡,于是上能级反转粒子数便可大量积累,当积累达到最大值时,突然使腔的损耗减小,Q值突增,激光振荡迅速建立,在极短时间内上能级的反转粒子被消耗,受激辐射增强非常迅速,在腔的输出端形成一个峰值功率很高、脉冲宽度很窄的单一脉冲激光。
实验中所用Q晶体为Cr4+:YAG晶体,有自饱和吸收特性,对光的吸收损耗在其饱和之前很大,达到饱和之后则瞬间降低至接近于零,这样就起到了调Q的作用。
这是一种被动调Q技术。
实验装置1. He-Ne激光器2. 小孔光阑3. 1064nm全反凹面镜M14. Cr4+:YAG调Q晶体5. Nd:YAG振荡棒6. 输出镜M27. Nd:YAG放大棒8. 平板玻璃9. 能量计图1 实验光路示意图本实验采用两组Nd:Y AG晶体和泵浦氙灯,前组为振荡级,后组为放大级。
实验八脉冲式灯泵浦YAG激光器被动调Q实验实验目的(1)掌握被动调Q Y AG激光器的工作原理与调试方法。
(2)测量脉冲与连续泵浦Y AG激光器的静态输出特性。
(3)分析被动调Q率被动调Q Y AG激光器的动态输出特性。
(4)在被动调Q理论分析的基础上,通过实验研究,针对相应的运转条件和应用需求,设计被动调Q Y AG激光器的光学参数。
实验原理1.固体Nd:Y AG激光器的工作原理。
(1)Nd:Y AG晶体的性质Nd3+:YAG是以三阶钕(Nd3+)离子部分取代Y3Al45O12晶体中Y3+离子的激光工作物质,称为掺钕钇铝石榴石(简称Nd3+:YAG)。
它以Nd3+离子作为激活粒子。
图8-1给出了Nd3+:YAG晶体中Nd3+离子的与激光产生过程有关的能级图。
处于基态4I9/2的钕离子吸收光泵发射的相应波长的光子能量后跃迁到4I5/2,2H9/2和4F7/2,4S3/2能级(吸收带的中心波长是810nm和750nm,带宽为30nm),然后几乎全部通过无辐射跃迁迅速降落到4F3/2能级。
4F3/2能级是一个寿命为0.23ms的亚稳态能级。
处于4F3/2能级的Nd3+离子可以向多个较低能级跃迁并产生辐射,其中几率最大的是4F3/2至4I11/2的跃迁(波长为1064nm)。
图8-1 Nd3+:YAG激光的激发机理(2)静态运转特性分析(a)脉冲运转→驰豫振荡(尖峰效应)暂态过程。
(b)连续运转→阈值条件(增益饱和)稳态过程。
按“激光原理与技术”中有关章节的分析,结合实验得出:仅仅依靠增加泵浦能量与功率,不能获得窄脉宽,高峰值功率的激光脉冲的结论。
2.Cr:YAG饱和吸收被动调Q原理自饱和被动式调Q激光器由于器件结构简单,对激光器无电磁干扰,应用十分广泛,但由于通常的染料调Q介质,导热率极低,使其应用范围受到局限,只能用于低重复率的脉冲调Q激光器中。
近年来,由于激光晶体技术的进步,我国已生产出可用于高重复率调Q的多掺Y AG晶片,制成了被动式的Q开关器件,兼备声光和染料调Q的长处,在激光医疗、激光打标和非线性光学等领域获得广泛的应用。
声光调Q倍频YAG激光器实验声光调制器由石英晶体、铌酸锂或重火石玻璃作为声光介质,通过压电晶体电声转换器将超声波耦合,在声光介质中产生超声波光栅,介质的折射率被周期性调制形成折射率体光栅。
在腔内采用该技术,可将连续的1064nm基频光变换成10KHz的高重复率脉冲激光,由于具有重复频率和峰值功率高的特点,可获得高平均功率的倍频绿光输出。
【实验目的】(1)掌握声光调Q连续激光器及其倍频的工作原理;(2)学习声光调Q倍频激光器的调整方法;(3)了解声光调Q固体激光器的静态和动态特性,并掌握测试方法;(4)学习倍频激光器的调整方法。
【实验原理】【实验原理】声光调Q倍频连续YAG激光器的工作原理(1)声光调Q基本原理:图1 声光调制器工作原理声光调制器是由石英晶体、铌酸锂、或重火石玻璃做为声光介质,通过电声换能器(压电晶体)将超声波耦合进去,在声光介质中产生超声波光栅。
超声波光栅将介质的折射率进行周期性调制,从而进一步形成折射率体光栅。
如图1所示。
光栅公式如下式(1)式(1)中,是声光介质中的超声波波长,为布拉格衍射角,为入射光波波长,n为声光介质的折射率。
当入射光以布拉格角入射时,出射光将被介质中的体光栅衍射到一级衍射最大方向上。
利用声光介质的这种性质,可以对激光谐振腔内的光束方向进行调制。
当加入声光调制信号时,光束偏转出腔外,不能在腔内形成振荡,即此时为高损耗腔。
在此期间泵浦灯注入给激活介质(激光晶体)的能量储存在激光上能级,形成高反转粒子数。
当去掉声光调制信号时,光束不被偏转,在腔内往返,形成激光振荡。
由于前面积累的高反转粒子数远远超过激光阈值,所以瞬时形成脉冲激光输出,从而形成窄脉宽、高能量的激光脉冲。
声光调Q激光器工作在几千周到几十千周的调制频率下,所以可以获得高重复率、高平均功率的激光输出。
(2)倍频器件工作原理:图2 倍频晶体折射率椭球及通光方向示意图由于晶体中存在色散现象,所以在倍频晶体中的通光方向上,基频光与倍频光所经历的折射率与是不同的。
Nd:YAG激光器自由运转及调Q实验【实验目的】1.了解固体激光器的结构及工作原理(自由运转和染料调Q),掌握其调整方法;2.了解固体激光器的主要参数的测试技术;3.观察调Q脉冲经过KTP晶体实现倍频现象,了解倍频中相位匹配特性。
【实验原理】一、自由振荡1.固体激光器组成固体激光器主要由工作物质,泵浦光源和光学谐振腔三大部分组成。
常用的工作物质有红宝石,掺钕钇铝石榴石(Nd:YAG),钛宝石等晶体和钕玻璃等。
谐振腔常用两个平面或球面反射镜。
泵浦光源常用氙灯、氪灯、高压汞灯,碘钨灯。
在本实验中,激光器的主要元件为:①工作物质:掺钕钇铝石榴石(Nd:YAG);②光学谐振腔:双氙灯,双椭圆聚光腔,重复脉冲电源;③谐振腔镜:双色镜,部分反射镜。
2.自由振荡固体激光器的输出特性自由振荡激光器输出激光脉冲的特点是具有尖峰结构,即由许多振幅、脉宽和间隔作随机变化的尖峰脉冲组成。
每个尖峰的宽度约为0.1~1 μs,间隔为数微秒,脉冲序列的时间长度大致等于闪光灯泵浦持续的时间。
这种现象称为激光器的弛豫振荡。
产生弛豫振荡的主要原因是:当激光器的工作物质被泵浦,上能级的粒子反转数超过阈值条件时,即产生激光振荡,使腔内光子密度增加而发射激光。
随着激光的发射,上能级粒子数被大量消耗,导致粒子反转数降低,当低于阈值水平时,激光振荡就停止,这时,由于光泵的继续抽运,上能级粒子反转数重新积累,当超过阈值时,又产生第二个脉冲,如此不断重复上述过程,直到泵浦结束。
可见每个脉冲都是在阈值附近产生的,因此脉冲的峰值功率水平较低,从这个作用过程可以看出,增加泵浦功率也是无助于峰值功率的提高,而只会使小尖峰的个数增加。
二、调Q 的概念在激光技术中 ,用品质因数 Q 来描述与谐振腔损耗有关的特性。
Q 值定义为2Q v π=腔内存储的激光能量每秒损耗的能量用W 表示腔内存储的能量,δ表示腔的单程损耗,且设谐振腔长度为L,工作介质折射率n,光速c,则Q 值可表示为22/W nLQ v Wc nL ππδδλ==式中λ0为真空激光波长。
hv21(a)21(b)2 E 1(c)光与物质作用的吸收过程2 1(c)2 E 1(a)2 1(b)光与物质作用的自发辐射过程脉冲调Q Nd:YAG 倍频激光器实验一.激光原理光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。
如果一个原子,开始处于基态,在没有外来光子,它将保持不变,如果一个能量为hv 21的光子接近,则它吸收这个光子,处于激发态E 2。
在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E 1-E 2时才能被吸收。
激发态寿命很短,在不受外界影响时,它们会自发地返回到基态,并放出光子。
自发辐射过程与外界作用无关,由于各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。
phase处于激发态的原子,在外界光子的影响下,会从高能态向低能态跃迁,并且两个状态间的能量差以辐射光子的形式发射出去。
只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。
激光的产生主要依赖受激辐射过程。
激光器主要由:工作物质、谐振腔、泵浦源组成。
工作物质主要提供粒子数反转。
泵浦过程使粒子从基态E 1抽运到激发态E 3,E 3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E 2。
E 2是一个寿命较长的能级,这样处于E 2上的粒子不断积累,E 1上的粒子 又由于抽运过程而减少,从而实现E 2与E 1能级间的粒子数反转。
激光产生必须有能提供光学正反馈的谐振腔。
处于激发态的粒子由于不稳定而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。
实验十二声光调Q倍频YAG激光器实验一、实验目的<1)掌握声光调Q连续激光器及其倍频的工作原理;<2)学习声光调Q倍频激光器的调整方法;<3)了解声光调Q固体激光器的静态和动态特性,并掌握测试方法;<4)学习倍频激光器的调整方法。
二、实验原理声光调Q倍频连续YAG激光器的工作原理<1)声光调Q基本原理:图12-1 声光调制器工作原理声光调制器是由石英晶体、铌酸锂、或重火石玻璃做为声光介质,通过电声换能器<压电晶体)将超声波耦合进去,在声光介质中产生超声波光栅。
超声波光栅将介质的折射率进行周期性调制,从而进一步形成折射率体光栅。
如图12-1所示。
光栅公式如下式b5E2RGbCAP<1)式<1)中,为声光介质中的超声波波长,为布拉格衍射角,为入射光波波长,为声光介质的折射率。
当入射光以布拉格角入射时,出射光将被介质中的体光栅衍射到一级衍射最大方向上。
利用声光介质的这种性质,可以对激光谐振腔内的光束方向进行调制。
当加入声光调制信号时,光束偏转出腔外,不能在腔内形成振荡,即此时为高损耗腔。
在此期间泵浦灯注入给激活介质<激光晶体)的能量储存在激光上能级,形成高反转粒子数。
当去掉声光调制信号时,光束不被偏转,在腔内往返,形成激光振荡。
由于前面积累的高反转粒子数远远超过激光阈值,所以瞬时形成脉冲激光输出,从而形成窄脉宽、高能量的激光脉冲。
声光调Q激光器工作在几千周到几十千周的调制频率下,所以可以获得高重复率、高平均功率的激光输出。
p1EanqFDPw<2)倍频器件工作原理:图12-2 倍频晶体折射率椭球及通光方向示意图由于晶体中存在色散现象,所以在倍频晶体中的通光方向上,基频光与倍频光所经历的折射率与是不同的。
图12-3给出了一个单轴晶体的色散及1064nm倍频匹配点的折射率关系曲线。
DXDiTa9E3dR e f r a g t i v e I n d e x l (m m)图12-3 单轴晶体色散曲线及倍频原理示意图图12-3中的实线代表了寻常光的折射率,点划线代表了非常光的折射率,中间的点线则代表了非常光在改变入射光角度时得到的折射率。
第30卷第4期2008年8月光学仪器OPTICALINSTRUMENTSVoL30,No.4August,2008文章编号:1005—5630(2008)04—0011-03YAG电光调Q激光器发光特性的测试*王玮(深圳技师学院光机电技术系,广东深圳518040)摘要:电光调Q技术是利用晶体的电光效应来实现Q突变的方法。
在电光调Q激光器上,就激光器静态状态下氙灯光和出射激光的波形、激光发光阈值等状态进行了测试;并就调Q状态下的激光波形的变化及脉宽、峰值功率等进行了测试与讨论,从而对电光调Q激光器的发光特性给出了较为完整的测试。
结果证明该测试方法直观可靠,对了解和掌握电光调Q激光器有较大的帮助。
关键词:Nd3十.YAG激光器;电光调Q开关;激光阈值;激光脉宽中图分类号:TN248.1文献标识码:AMeasurementofemittinglightpropertyforelectro-opticalQ-switchYAGlaserWANGWei(DepartmentofPhotoelectricMachinery,ShenzhenSeniorTechnicalInstitute,Shenzhen518040,China)Abstract:Electro-opticalQswitchingtechnologyisappliedtotheNd3+:YAGlasertorealizeQvaluechanging.Forelectro-opticalQ-switchLaser,thewavepatternsofXelamp,Laserthresholdvalueandemittinglightinstaticstatearemeasured.Thechangingoflaserpattern,pulsewidthandpeakpoweroflaserarealsomeasuredanddiscussedindynamicadjustingQstate.Sopropertiesofemittinglightforelectro-opticalQ-switchlaseraretestedcompletely.TheresultsshoWthetestingmethodsarefeasibleandvaluable,andmorehelpfulforunderstandingelectro-opticalQ-switchlaser.Keywords:Nd3+:YAGlaser;electro-opticalQ-switch;laserthresholdvalue;laserpulsewidth1引言调Q技术就是通过某种方法使腔的Q值随时问按一定程序变化的技术。
实验报告——调Q YAG 激光器实验实验时间:2017.03.07一、实验目的1、掌握3:Nd YAG +激光器的工作原理2、学习并掌握3:Nd YAG +激光器调整技术3、学习声光调Q 3:Nd YAG +激光器的工作原理4、掌握声光调Q 实验技术,学习nm 量级激光脉冲测量方法5、学习腔外倍频实验技术二、实验原理1.掺钕钇铝石榴石掺钕钇铝石榴石(3:Nd YAG +)是一种典型的四能级激光工作物质,由于它的热传导性好;激光阈值低和转换效率高,所以用它可作成连续激光器和高重复频率的脉冲激光器。
YAG 激光器可输出几种波长,其中最强的为1.06μm 。
如果采用调Q 、倍频技术,则可获得波长为532nm 的脉冲激光。
这种以3:Nd YAG +激光器为基础的脉冲激光系统以其高峰值功率、高重复频率和宽波长调谐特性等优点而得到了广泛的应用。
2. YAG 激光器的结构图1为典型的3:Nd YAG +激光器示意图。
其中包括YAG 棒;泵浦灯(连续运转的氪灯两个);Q 开关和光学谐振腔。
YAG 晶体棒3:Nd YAG +激光器的工作物质是一种人工晶体,它的基质是钇(Y)铝(Al)石榴石(G),其分子式为3512Y Al O 。
晶体在高温的过程中掺入氧化钕,用提拉法制成。
钕就以三价正离子的形式存在于YAG 的晶格中,掺钕量约为1%。
通常3:Nd YAG +晶体被加工成 φ6mm ×100mm 左右的圆棒状,两端磨成光学平面,平面的法线与棒轴有一个小夹角,面上镀有增透膜,能承受高的功率密度,棒的侧面全部“打毛”,以防止寄生振荡。
激励泵浦源YAG 激光器可用多种光源作为激励泵浦源,连续YAG 激光器常用氪灯和碘钨灯为泵浦源,脉冲YAG 激光器常用脉冲氙灯为泵浦源。
因为这些灯的辐射光谱与YAG 棒晶体的吸收光谱匹配较好。
如图1所示,泵浦用的氪灯做成和YAG 棒长度相近的直管形,以便达到最佳的耦合。
两氪灯串联后,外接直流电源。