_第7章_火成岩结构的成因(2.5)
- 格式:ppt
- 大小:6.74 MB
- 文档页数:38
火成岩的构造及原理火成岩是指由岩浆冷却凝固而形成的岩石。
它们形成于地下深处的火成活动,通过岩浆的喷发、侵入或渗透形成。
火成岩的构造及形成原理主要涉及以下几个方面:1. 岩浆形成:岩浆是由地幔或地壳中的部分岩石熔融而形成的。
在高温和高压的条件下,岩石中的矿物质熔化成为可流动的岩浆。
2. 岩浆喷发:当地下岩浆压力超过地壳的抵抗能力时,岩浆会通过火山口喷发到地面,形成火山喷发。
这样形成的岩浆快速冷却后,即可形成火山岩,如玄武岩。
3. 岩浆侵入:当岩浆在地下岩石层中逐渐冷却凝固时,可能会侵入邻近岩石中形成侵入岩体。
根据侵入方式和形状的不同,可分为浅侵入岩体(如辉绿岩、花岗岩等)和深侵入岩体(如辉长岩、橄榄岩等)。
4. 岩浆渗透:岩浆亦可能在地下通过岩石间隙的渗透而形成渗透岩体,如玄武岩石床、独居石(岩浆透入)等。
火成岩的构造特点主要表现为以下几个方面:1. 结晶结构:在岩浆冷却凝固的过程中,矿物质开始结晶,形成了岩石的晶体结构。
晶体的大小和形状决定了火成岩的结构特征。
2. 斑状构造:火成岩中常常出现大颗粒或更大的矿物斑块,称为斑状构造。
这是因为在岩浆冷却过程中,某些矿物质组分较多而结晶速度较快,导致了颗粒增大。
3. 层状构造:在火成岩中,由于岩浆的渗透和侵入,可能会形成堆积的层状构造。
这些层状结构往往与火成活动的不同阶段和岩浆的流动方式有关。
4. 花岗岩的板层状构造:某些花岗岩可出现板层状构造,即一条一条的板状矿物质在岩石中排列。
这种结构是由于岩浆在流动过程中受到混合、分层等作用所致。
总之,火成岩的构造及形成原理主要涉及岩浆的生成、喷发、侵入和渗透等过程,它们的形成与岩浆的特性、地壳的构造和环境条件等因素密切相关。
论火成岩的形成与构造论文提要地质学是关于地球的物质组成、内部构造、外部特征、各圈层间的相互作用和演变历史的知识体系。
在地质学的服务领域,一个重要方面是开发地球资源,其中有关矿产资源和新能源的研究,仍处于最重要的地位。
同时,由于区域成矿研究的需要,将进一步加强区域地质的综合研究,并促进地层学、古生物学、沉积学、构造地质学、地质年代学,以及区域岩浆活动研究、变质地质研究等向新的水平发展。
在现阶段,由于观察、研究条件的限制,主要以岩石圈为研究对象,岩石是天然产出的具一定结构构造的矿物集合体,是构成地壳和上地幔的物质基础。
按成因分为岩浆岩、沉积岩和变质岩。
在这里我所要探讨的是火成岩。
正文一、火成岩地球上所见到的虽然千姿百态,五彩缤纷,但根据它们自身的特点、形成条件不同,可分为火成岩、沉积岩和变质岩三大类,其中以火成岩最多,它主要构成了深部地壳和上地幔,约占整个地壳的65%。
通过对火成岩的研究,可探讨地球的形成、演化、地壳运动等一些重要作用。
(一)、岩浆与火成岩岩浆是指地球深部产生的一种炽热的、粘度较大的硅酸盐熔融体。
岩浆可以在上地幔或地壳深处运移,或喷出地表,它的主要成分是硅酸盐,还含有大量的挥发组分及成矿金属。
岩浆温度范围为700-1200℃之间。
火成岩英文名称来源于拉丁文,意为火焰,一般指由地下深处炽热的岩浆(熔融或部分熔融物质)在地下或在地表冷凝形成的岩石。
火成岩和岩浆成分不完全相同,它是失去了大量挥发份的岩浆冷凝物。
火成岩通常分为喷出岩和侵入岩两类。
(二)、矿物成分岩石是有由矿物组成的,矿物成分可以反映岩石的特征和成因。
组成火成岩的矿物,常见的约二十多种,主要由长石、石英、云母、角闪石、辉石和橄榄石等硅酸盐矿物,及少量的磁铁矿、钛铁矿、锆石、磷灰石和榍石等副矿物组成。
这些构成岩石的矿物被称为造岩矿物。
按化学成分的特点和颜色,造岩矿物可分为两类:硅铝矿物SiO2与Al2O3的含量较高,不含铁、镁的铝硅酸盐矿物。
火成岩与岩浆运动的形成与成因地球的深处隐藏着许多神秘的力量和能量,它们在地壳之下不停地运动、演变,在极富破坏性的自然灾害中改变着整个地球的面貌。
其中,火成岩的形成与岩浆运动的成因就是其中一个颇受关注的话题。
在下面的文章里,我们将深入探究这些现象,了解它们的形成和成因。
火成岩的形成火成岩是地球核心与地壳之间的一种中间产物,它是从地球内部的高温高压环境中形成的,具有密度高、稳定性强的特点。
火成岩的形成大致可以分为三个步骤。
首先,火成岩的形成需要源岩。
源岩是指地球内部原始物质,通常是地幔中的低硅酸盐岩石。
在地球内部,源岩处于高温高压状态下,这使得其中的矿物质和化学元素互相作用,产生了许多新的物质。
其次,火成岩的形成需要有地幔柱的上升。
地幔柱是从地幔深处向地表垂直上升的热柱,其中包含了大量的岩石和物质。
当地幔柱向地表运动的时候,地表的温度升高,造成了局部环境的变化。
这些环境变化可以导致岩浆的形成。
最后,岩浆的形成是火成岩形成的关键。
岩浆是地幔柱经过一定的化学或物理作用后,在地表上形成的一种流体体系。
当地幔柱经过地壳时,地壳上的温度和压力条件将引起地幔柱内部的矿物质和化学物质的各种反应,生成岩浆。
岩浆通过地壳上升并冷却,形成了火成岩。
岩浆运动的成因岩浆运动是指在地球内部,由于热与压力的作用,岩石与岩浆在地壳和地球内部中移动向上的过程。
首先,岩浆运动的成因之一是地球内部热量的分布和环流。
地球内部有一个热流环流系统,在此体系中,地球内部的热量和流体动力驱动了岩浆的形成和运动。
地球内部热量的分布和流动在地球表面上表现为火山和地震等许多自然现象。
其次,岩浆运动的成因之二是地壳的构造。
地壳的构造是指地球表面的结构和形态,包括地球表层的地形地貌、岩层的厚度、断裂带的分布和形态等。
地壳构造的不断变化会引起地壳的变形和运动,从而使得地壳上的岩浆发生运动。
最后,岩浆运动的成因之三是地球内部的物质循环。
地球内部的物质循环是指地球内部物质的热对流和物质的不断交换和调节,这种循环是由地球内部高温和高压的环境造成的。
岩土工程资料:造岩矿物中火成岩有哪些成
因及分类
岩浆岩又称火成岩,是由岩浆冷凝固结后形成的岩石。
岩浆位于地幔和地壳深处,是以硅酸盐为主和一部分金属硫化物、氧化物、水蒸气及其它挥发性物质(如C02、C0、S02、HC1及H2S 等)组成的高温、高压熔融体。
岩浆主要通过地壳运动,沿地壳薄弱地带上升冷却凝结。
其中侵入到周围岩层(简称围岩)中形成的岩浆岩称为侵入岩。
根据形成深度,侵入岩又可分为深成岩(形成深度大于3km)和浅成岩(形成深度小于3km)。
而岩浆喷出地表形成的岩浆岩则称为喷出岩,包括火山碎屑岩和熔岩(岩浆沿火山通道喷溢地表冷凝固结而形成)。
火成岩的实验原理火成岩是由地壳深部的岩浆在地壳中冷却凝固形成的岩石。
为了研究火成岩的形成过程和性质,科学家们进行了一系列的实验研究。
火成岩的实验原理主要包括岩浆的形成、岩浆的冷却凝固和岩浆中矿物的结晶过程。
首先,岩浆的形成是火成岩实验的基础。
岩浆是由地幔中的岩石物质在高温高压条件下熔融形成的。
实验中,科学家们通过模拟地壳深部的高温高压环境,使用高温熔炉和高压装置,将不同成分的岩石样品加热至熔融状态,形成岩浆。
岩浆的成分可以通过实验中加入不同比例的岩石样品来调控,以模拟不同类型的火成岩。
其次,岩浆的冷却凝固是火成岩实验的关键步骤。
岩浆在地壳中冷却凝固时,其中的矿物会逐渐结晶并沉淀下来,形成火成岩的基质。
为了模拟这一过程,科学家们将熔融的岩浆样品放置在恒温槽中进行冷却。
通过控制冷却速率和温度梯度,可以模拟不同类型的火成岩的形成过程。
此外,科学家们还可以通过调整岩浆中的成分和添加不同的添加剂来研究火成岩的特殊性质,如颗粒大小、结晶度等。
最后,岩浆中矿物的结晶过程是火成岩实验的重点内容。
在岩浆冷却凝固的过程中,岩浆中的矿物会逐渐结晶并形成晶体。
通过实验观察和分析,科学家们可以研究不同矿物的结晶速度、结晶顺序以及矿物之间的相互作用。
实验中常用的方法包括显微镜观察、X射线衍射分析、电子探针分析等。
这些实验方法可以帮助科学家们确定火成岩中的主要矿物组成和结晶顺序,进而推断岩浆的成因和形成环境。
总之,火成岩的实验原理主要包括岩浆的形成、岩浆的冷却凝固和岩浆中矿物的结晶过程。
通过模拟地壳深部的高温高压环境,科学家们可以制备不同成分的岩浆样品,并通过控制冷却速率和温度梯度来模拟火成岩的形成过程。
通过实验观察和分析,科学家们可以研究火成岩中的矿物组成和结晶顺序,进而推断岩浆的成因和形成环境。
这些实验研究对于理解火成岩的形成机制和性质具有重要意义。
火成岩结构的成因(仅仅从最基本的岩浆结晶实验结果来讨论结构成因)相图对岩浆结晶和结构成因的解释1.相律f=c+2-p2代表温度+压力,当岩浆就位,则为1(压力不变)。
当f=0时就可以确定平衡相数。
由于化学成分和结构上的相似性,一般独立组分c=4,所以最终形成稳定的平衡矿物相不超过5种。
因此,岩浆中各种氧化物的含量差异,决定形成不同岩石的矿物组合。
2.二元共结系上述相律的应用,几个典型的例子:辉石-斜长石,二者同时结晶时,形成辉长结构、也叫共结结构。
如果斜长石先结晶,形成辉绿结构、包含结构、间粒结构。
石英-钾长石形成的文象结构类似于共结机构。
3.二元固溶体系用来解释环带结构。
斜长石环带结构常形成于浅成、火山相岩石,代表快速冷却结晶条件。
类似的有镁橄榄石-铁橄榄石系统(中心富镁,边缘富铁)。
4.OR-AB二元固溶体系大规模岩体、中深成岩相,由于温度下降速度慢,固溶体分离作用比较彻底。
反之则不彻底。
5.二元近结系用来解释反应边结构。
如果温度下降过快,如果ol与Q共存,ol一般都有辉石的反应边,这种现象一般仅见于基性火山岩。
6.过冷度与结晶程度、矿物颗粒大小的关系在一个标本中,大的晶体形成于形成于缓慢的结晶条件或过冷度小成核密度小但生长快速的条件。
似斑状结构虽然晶体大小截然,但属同一阶段结晶形成。
斑状结构是两个阶段的结晶产物。
火成岩的构造块状构造:反映缓慢、静止的结晶作用。
层状构造、带状构造:结晶条件发生周期性变化。
班杂构造:岩浆多次脉冲或同化混染围岩物质。
流线:与岩浆流动方向一致,向岩体中心消失。
流面:与围岩接触面方向一致。
面状组构、线状组构(原生片麻理):主动侵位挤压应力导致的定向,主要体现在暗色矿物定向。
围岩也因挤压产生相同产状(区别于流线流面)。
气孔构造、杏仁构造:陆相喷发。
流动构造、流纹构造:喷出熔岩不同组分拉长定向。
中基性熔岩中则主要表现为气孔拉长、斑晶定向。
基质中针柱状长石微晶定向(微观)。
火成岩主要由什么成分组成火成岩或称岩浆岩,是指岩浆冷却后成形的一种岩石。
现在已经发现700多种岩浆岩,大部分是在地壳里面的岩石。
亲爱的小伙伴们,大家知道火成岩主要由什么成分组成的呢?下面小编给大家分享关于火成岩主要成分,我们一起来看一下吧~火成岩主要成分火成岩有600多种,每种都由独特的颗粒形式和矿物组成。
火成岩遍布于我们的日常生活中,晶莹剔透的水晶是一种石英,而石英就是构成火成岩的成分之一。
除此之外,正长石、斜长石、云母、角闪石、辉石和橄榄石都是构成火成岩的成分,其中最为常见的就是云母。
云母是一种六角板状结晶体,有黑、白两种颜色,质地很薄,如果你用大头针轻挑花岗岩中的黑云母,它就会一层层地剥落下来。
火成岩的成因火成岩岩浆岩就是从橄榄岩浆、玄武岩浆、安山岩浆、花岗岩浆通过复杂的演化作用形成的。
这几种原始岩浆是上地幔和地壳底层的固态物质在一定条件下通过局部熔融(重熔)产生的。
局部熔融是现代岩浆成因方面的一个基本概念,大致解释如下:和单种矿物比较起来,岩石在熔化时有下列两个特点:第一,是岩石的熔化温度低于其构成矿物各自单独熔化时的熔点;第二,是岩石从开始熔化到完全熔化有一个温度区间,而矿物在一定的压力下仅有一个熔化温度。
岩石熔化时之所以出现上述特点,是因为岩石是由多种矿物组成的,不同的矿物其熔点也不相同,在岩石熔化时,不同矿物的熔化顺序自然不同。
一般的情况是:矿物或岩石中SiO2和K2O含量愈高,即组分愈趋向于“酸性”,愈易熔化,称为易熔组分;反之,矿物或岩石中FeO、MgO、CaO含量愈高,即组分愈趋于“基性”,愈难熔化,称为难熔组分。
所以,岩石开始熔化时产生的熔体中SiO2、K2O、Na2O较多,熔体偏于酸性,随着熔化温度的提高,熔体中铁、镁组分增加而渐趋于基性。
火成岩的结构成岩的结构与构造,基本上是用肉眼在一块手标本上,或者在一米见方的野外露头上就能观察到的岩石特征,可以说是一项“微观”考察吧,要谈的,是在比较大的范围内考察,也可说是一项“宏观”项目吧!这就是火成岩的产状。
火成岩火成岩由地幔或地壳的岩石经熔融或部分熔融(partial melting)的物质如岩浆冷却固结形成的。
岩浆可以是由全部为液相的熔融物质组成,称为熔体(melt);也可以含有挥发分及部分固体物质,如晶体及岩石碎块。
火成岩的分类:岩浆岩主要由硅酸盐矿物组成,此外,还常含微量磁铁矿等副矿物。
根据岩石SiO2含量,岩浆岩可分为四大类:超基性岩:SiO2<45%;基性岩:SiO2=45~52%;中性、碱性岩:SiO2=52~65%;酸性岩:SiO2>65%。
岩石的碱度即指岩石中碱的饱和程度,岩石的碱度与碱含量多少有一定关系。
通常把Na2O+K2O的重量百分比之和,称为全碱含量。
Na2O+K2O含量越高,岩石的碱度越大。
A.Rittmann 1957年考虑SiO2和Na2O+K2O之间的关系,提出了确定岩石碱度比较常用的组合指数(σ)。
σ值越大,岩石的碱性程度越强。
每一大类岩石都可以根据碱度大小划分出钙碱性、碱性和过碱性岩三种类型。
σ< 3.3时,为钙碱性岩;σ= 3.3-9.0时,为碱性岩;σ> 9时,为过碱性岩。
除了岩石化学成分之外,矿物成分也是岩浆岩分类的依据之一。
在岩浆岩中常见的一些矿物,它们的成分和含量由于岩石类型不同而随之发生有规律的变化。
如石英、长石呈白色或肉色,被称为浅色矿物;橄榄石、辉石、角闪石和云母呈暗绿色、暗褐色,被称为暗色矿物。
通常,超基性岩中没有石英,长石也很少,主要由暗色矿物组成;而酸性岩中暗色矿物很少,主要由浅色矿物组成;基性岩和中性岩的矿物组成位于两者之间,浅色矿物和暗色矿物各占有一定的比例。
根据产状,也就是根据岩石侵入到地下还是喷出到地表,岩浆岩又可以分为侵入岩和喷出岩。
侵入岩根据形成深度的不同,又细分为深成岩和浅成岩。
每个大类的侵入岩和喷出岩在化学成分上是一致的,也就是说岩浆成分是相似的,但是由于形成环境不同,造成它们的结构和构造有明显的差别。
深成岩位于地下深处,岩浆冷凝速度慢,岩石多为全晶质、矿物结晶颗粒也比较大,常常形成大的斑晶;浅成岩靠近地表,常具细粒结构和斑状结构;而喷出岩由于冷凝速度快,矿物来不及结晶,常形成隐晶质和玻璃质的岩石。