第九章目标规划——多目标线性规划
- 格式:ppt
- 大小:722.00 KB
- 文档页数:41
线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
多目标线性规划图解法满意解条件线性规划的图解法对于两个决策变量的线性规划可用作图方法来求解。
图解法求解线性规划问题的步骤如下:分别取决策变量x1,x2为坐标向量建立直角坐标系。
画出线性规划的约束区域;画出目标函数等值线;平行移动目标函数等值线,找到最优解。
*线性规划的图解法例1:某工厂拥有A、B、C三种类型的设备,生产甲、乙两种产品。
每件产品在生产中需要占用的设备机时数,每件产品可以获得的利润以及三种设备可利用的时数如下表所示:?产品甲产品乙设备能力(h)设备A3265设备B2140设备C0375利润(元/件)15002500?*线性规划的图解法问题:工厂应如何安排生产可获得最大的总利润?用图解法求解。
解:设变量xi为第i 种(甲、乙)产品的生产件数(i=1,2)。
根据前面分析,可以建立如下的线性规划模型:Maxz=1500x1+2500x2s。
t.3x1+2x2≤65(A)2x1+x2≤40(B)3x2≤75(C)x1,x2≥0(D,E)*线性规划的图解法以决策变量x1,x2为坐标轴建立平面直角坐标系。
考虑约束条件3x1+2x2≤653x1+2x2=65是一个直线方程画出这条直线。
约束3x1+2x2≤65是半个平面同理约束条件2x1+x2≤40也是半个平面。
线性规划的图解法整个约束区域是由直线3x1+2x2=65;2x1+x2=40;3x2=75;x1=0;x2=0所围在约束区域中寻找一点使目标函数最大。
约束区域*线性规划的图解法作出目标函数的等值线:1500x1+2500x2=7500将目标函数等值线沿增大方向平行移动。
*线性规划的图解法图解法求解线性规划最优解是3x1+2x2=65(A线)和3x2=75(C线)两直线的交点。
*线性规划的图解法任意给定目标函数一个值作一条目标函数的等值线,并确定该等值线平移后值增加的方向,平移此目标函数的等值线,使其达到既与可行域有交点又不可能使值再增加的位置,得到交点(5,25)T,此目标函数的值为70000。
线性规划的十种类型线性规划是一种优化问题的数学方法,其目标是找到一组决策变量的最佳值,以使目标函数在一组约束条件下达到最大(最小)值。
线性规划问题可以分为以下十种类型。
1.单目标线性规划:在单目标线性规划中,只有一个目标函数需要最大化或最小化。
例如,最大化营销利润或最小化生产成本。
2.多目标线性规划:多目标线性规划包含两个或更多个目标函数,需要在多个目标之间进行权衡。
例如,同时最大化销售额和最小化生产成本。
3.约束线性规划:在约束线性规划中,问题除了目标函数外,还有一些约束条件需要满足。
例如,生产项产品所需的原材料数量不能超过供应商的可用数量。
4.混合整数线性规划:在混合整数线性规划中,决策变量可以为实数或整数。
该问题既包含线性约束条件,又包含整数约束条件。
例如,在生产计划中考虑到机器的整数需求。
5.二次线性规划:在二次线性规划中,目标函数为二次函数,但约束条件为线性函数。
例如,在市场分析中,为了最大化利润,需要考虑产品价格和销售量之间的二次关系。
6.敏感性分析:敏感性分析用于确定目标函数和约束条件的变化情况下,最优解如何随之变化。
例如,在成本或需求变化时,优化生产或库存计划。
8.资源分配:资源分配问题涉及到如何最优地分配有限资源,以满足不同的需求。
例如,在项目管理中,如何分配时间、金钱和人力资源以最大化项目成功。
9.增益线性规划:增益线性规划是在优化问题中引入风险和不确定性的一种方法。
例如,在金融领域,如何在市场波动和风险条件下最大化回报。
10.竞争性线性规划:竞争性线性规划涉及到多个参与者之间的竞争和博弈。
例如,在拍卖和竞标过程中,如何确定最佳投标策略以赢取项目并最大化利润。
以上是线性规划的十种类型,每种类型都涉及不同的问题和应用领域。
线性规划的方法可以帮助企业、组织和个人做出最佳的决策,以实现其目标并最大化效益。