7-第三节 流体在管内的流动阻力
- 格式:doc
- 大小:530.00 KB
- 文档页数:5
.化学实验教学中心实验报告化学测量与计算实验Ⅱ实验名称:流体流动阻力的测定学生姓名:学号:院(系):年级:级班指导教师:研究生助教:实验日期: 2017.05.26 交报告日期: 2017.06.02一、实验目的1.学习直管摩擦阻力、直管摩擦系数的测定方法;2.掌握直管摩擦阻力系数与雷诺数和相对粗糙度之间的关系及其变化规律;3.掌握局部阻力的测量方法;4.学习压强差的几种测量方法和技巧;5.掌握坐标系的选用方法和对数坐标系的使用方法。
二、实验原理化工管路是由直管和各种管阀件组合构成的,流体通过管内流动必定存在阻力。
因此,在进行管路设计和流体机械造型时,阻力大小是一个十分重要的参数。
流体流经直管时所造成机械能损失称为直管阻力损失。
流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。
1.直管摩擦阻力系数与雷诺数的测定流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。
流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,对水平等径管道,它们之间存在如下关系:(1-1)(1-2)(1-3)式中,为直管阻力引起的压头损失,;为管径,;为直管阻力引起的压强降,;为管长,;为流速,;为流体密度,;为流体的粘度,。
直管摩擦阻力系数与雷诺数之间的关系,一般可以用曲线来表示。
在实验装置中,直管段长度与管径都已经固定。
若水温一定,则水的密度和粘度也是定值。
所以本实验实质上是测定直管段流体阻力引起的压强降与流速(流量V)之间的关系。
根据实验数据以及式(1-2)可以计算出不同流速下的直管摩擦系数,用式(1-3)计算对应的,从而整理出直管摩擦系数和雷诺数的关系,绘出两者的关系曲线。
2. 局部阻力系数的确定(1-4)(1-5)式中,为局部阻力引起的压强降,;为局部阻力系数,无因次;为局部阻力引起的压头损失,。
局部阻力引起的压强降,可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压和,使,则在之间列伯努利方程式:(1-6)在之间列伯努利方程式:(1-7)联立式(1-6)和(1-7),则有为了实验方便,称为近点压差,称为远点压差,用差压传感器来测量。
第四节流体在管内的流动阻力实际上理想流体是不存在的。
流体在流动过程中需要消耗能量来克服流动阻力,本节讨论流体流动阻力的产生、影响因素及其计算。
§1.4.1牛顿粘性定律与流体的粘度1、牛顿粘性定律设有间距很小的两平行板,两平板间充满液体(如图)。
下板固定,上板施加一平行于平板的切向力F,使上板作平行于下板的等速直线运动。
紧贴上板的液体层以与上板相同的速度流动,而紧贴固定板的液体层则静止不动。
两层平板之间液体的流速分布则是从上到下为由大到小的渐变。
此两板间的液体可看成为许多平行于平板的流体层,这种流动称为层流,而层与层之间存在着速度差,即各液层之间存在着相对运动。
运动较快的液层对与之相邻的运动较慢的液层作用着一个拖动其向运动方向前进的力;而与此同时,运动较慢的液层对其上运动较快的液层也作用着一个大小相等方向相反的力,从而阻碍较快的液层的运动。
这种运动着的流体内部相邻两流体层间的相互作用力称为流体的内摩擦力(粘滞力)。
流体流动时产生内摩擦力的这种特性称为粘性。
在上图中,若某层流体的速度为u,在其垂直距离为dy处的邻近流体层的速度为u+du,则du/dy表示速度沿法线方向上的变化率,称为速度梯度。
实验证明,内摩擦力F与两流体层间的接触面积S成正比,与速度梯度du/dy成正比。
即:F∝S·du/dy亦即:F=μS·du/dy剪应力τ:单位面积上的内摩擦力,即F/S, 单位N/㎡于是:τ=F/S=μ·du/dy——牛顿粘性定律μ为比例系数,称为粘性系数或动力粘度,简称粘度说明:①牛顿粘性定律可表达为剪应力与法向速度梯度成正比,与法向压力无关,流体的这一规律与固体表面的摩擦力的变化规律截然不同。
②牛顿粘性定律的使用条件:层流时的牛顿型流体。
③根据此定律,粘性流体在管内的速度分布可以预示为:如图紧贴壁面的流体受壁面固体分子力的作用而处于静止状态,随着离壁距离的增加,流体的速度连续地增大,至管中心处速度达到最大。
第一章 流体流动知识目标:本章要求熟悉流体主要物性(密度, 黏度)数据的求取及影响因素, 压强的定义、表示方法、单位及单位换算,连续性和稳定性的概念,管内流体速度分布,流体的流动类型, 雷诺准数及其计算。
理解流体在管内流动时产生阻力损失的原因,测速管、孔板流量计、转子流量计的基本结构, 测量原理及使用要求。
掌握静力学方程, 连续性方程,柏努利方程, 管路阻力计算公式,简单管路的计算方法。
了解湍流时的流速分布, 复杂管路计算。
能力目标:通过对本章的学习,学会能应用静力学原理和动力学原理处理工程过程的设计型计算和操作型计算。
气体和液体通称为流体,原来是固体的物料,有时也可以做成溶液以便于输送或处理。
流体具有流动性,其形状随容器的形状而变化,一般将液体视为不可压缩性流体,与此相反,气体的压缩性很强,受热时体积膨胀很大,因此将气体视为可压缩的流体。
流体流动是化工生产过程中是普遍的现象,研究流体流动的目的是要能解决以下几个工程问题:(1)流体的输送、输送管路的设计与所需功率的计算、输送设备的选型与操作;2)流速、流量的计算,系统中的压强或压强差的测量,设备液位及液封高度的确定;(3)根据流体流动规律减少输送能耗,强化化工设备中传热、传质过程等。
工程上研究流体流动的方法是:只研究流体的宏观运动,不考虑流体分子间的微观运动,也就是说,将流体视为有许多分子组成的“微团”,又把“微团”称作质点,质点的大小与它所处的空间相比是微不足道的,但比分子运动的自由程度要大得多。
在流体的内部各个质点相互紧挨着,他们之间没有任何空隙而成为连续体。
因此将流体视为有无数质点组成的其间无任何空隙的连续介质,即所谓的连续性假定。
第一节 流体静力学流体静力学是研究流体在外力作用下处于静止或相对静止状态下的规律,本节讨论静止流体在重力场中内部的压力变化规律,在讨论此规律之前,先对与此有关的物理量做些说明。
一、密度单位体积流体所具有的质量称为流体的密度,其表示式为mv ρ=(1-1)式中: m —— 流体的质量,kg ; v —— 流体的体积,m 3。
第一章 流体流动§4 流体在管内流动时的摩擦阻力损失本节重点:直管阻力与局部阻力的计算,摩擦系数的影响因素。
难点:用量纲分析法解决工程实际问题。
流动阻力的大小与流体本身的物理性质、流动状况及壁面的形状等因素有关。
化工管路系统主要由两部分组成,一部分是直管,另一部分是管件、阀门等。
相应流体流动阻力也分为两种:直管阻力:流体流经一定直径的直管时由于内摩擦而产生的阻力; 局部阻力:流体流经管件、阀门等局部地方由于流速大小及方向的改变而引起的阻力。
一 范宁公式(Fanning )1、范宁公式 :范宁经过理论推导,得到了以下公式: 22l u h f d λ= (1-53) 式(1-53)为计算流体在直管内流动阻力的通式,称为范宁(Fanning )公式。
式中λ为无量纲系数,称为摩擦系数或摩擦因数,与流体流动的Re 及管壁状况有关。
式(1-53)也可以写成:22u d l h p f f ρλρ==∆ (1-54) 应当指出,范宁公式对层流与湍流均适用,只是两种情况下摩擦系数λ不同。
2、管壁粗糙度对摩擦系数λ的影响光滑管:玻璃管、铜管、铅管及塑料管等称为光滑管;粗糙管:钢管、铸铁管等。
管道壁面凸出部分的平均高度,称为绝对粗糙度,以ε表示。
绝对粗糙度与管径的比值即dε,称为相对粗糙度。
工业管道的绝对粗糙度数值见教材(P27表1-1)。
管壁粗糙度对流动阻力或摩擦系数的影响,主要是由于流体在管道中流动时,流体质点与管壁凸出部分相碰撞而增加了流体的能量损失,其影响程度与管径的大小有关,因此在摩擦系数图中用相对粗糙度dε,而不是绝对粗糙度ε。
流体作层流流动时,流体层平行于管轴流动,层流层掩盖了管壁的粗糙面,同时流体的流动速度也比较缓慢,对管壁凸出部分没有什么碰撞作用,所以层流时的流动阻力或摩擦系数与管壁粗糙度无关,只与Re有关。
流体作湍流流动时,靠近壁面处总是存在着层流内层。
如果层流内层的厚度δL大于管壁的绝对粗糙度ε,即δL>ε时,如图1-28(a)所示,此时管壁粗糙度对流动阻力的影响与层流时相近,此为水力光滑管。
主要教学内容及步骤
复习:
柏努利方程式
引入:
前面曾经指出,流体流动时会遇到阻力。
流体阻力的大小与流体的动力学性质(粘度)以及其他因素有关。
新课:流体的粘度
板书:一、流体的粘度
1、流体阻力的表现和来源
表现:
简单的实验来观测流体阻力的表现,如图1-16所示
由实验可知,存在流体阻力致使静压能下降。
阻力越大,静压强下降就越大。
静压强下降就是流体阻力的表现。
来源:
流体流过管内时,由于流体对管壁有附着力,因此壁面粘附一层静止的流体。
同时,在流体内部,分子间存在吸引力。
所以,当流体流动时,造成流体各层流速差异而发生各层间相对运动。
所以,流体在圆管内流动时,实际上是被分割成无数极薄的圆筒,一层套着一层,各层以不同的速度向前运动。
(1)流体在管内流动时,流速快的流体层对相邻的流的较慢的流体层产生一种牵引力,而流速慢的一层则产生一种阻碍力。
所有层与层之间的阻碍力形成流体阻力。
这种流体阻力,是由于层与层之间的作用,在流体内部发生的,故称为内摩擦力。
内摩擦是产生流体阻力的根本原因。
(2)此外,当流体流动激烈呈紊乱状态时,流体质点流速的大小与方向发生急剧的变化,质点之间相互激烈地交换位置,这种运动的结果,也会损耗流体的机械能,而使流体阻力增大。
可以说,流体流动状况是产生流体阻力的第二位原因。
(3)管壁粗糙程度和管子的长度、直径均对流体阻力的大小有影响。
2、流体的粘度
定义:决定流体内摩擦力大小的物理性质称为粘性。
衡量流体粘性大小的物理量称为粘度,用符号μ表示。
实验证明:对于一定的液体,两块板的相对速度u越大,板面积A越大,两板间的距离y越小,则所需要外加的作用力F就越大,也就是内摩擦力越大。
主要教学内容及步骤
引入:
上面讨论过,影响流体阻力的因素,除了流体的粘度外,还有流体流动状况等。
板书:一、流体的流动类型
1、流体的流动类型的实验------雷诺实验
用下图所示的装置
可以直接观察到流体的流动类型和各种有关因素对流动类型的影响。
这个实验由雷诺首先进行,故称为雷诺实验。
现象:
层流时,玻璃管内水的质点沿着与管轴平行的方向作直线运动,不产生横向运动,从细管引到水流中心的有色液体成一条直线平稳地流过整玻璃管。
若逐渐提高水的流速,有色液体的细线出现波浪。
速度再高,有色细线完全消失,与水完全混为一体,此时即为湍流。
显然,湍流时,水的质点除了沿管道向前运动外,还作不规则的杂乱运动,且彼此相互碰撞与混合。
质点速度的大小和方向随时间而发生变化。
板书:2、流体流动的类型
实验表明,流体在管道中的流动状态可分两个类型:
(1)层流(滞流):质点始终沿着与管道中心线相平行的方向流动。
(2)湍流(紊流):质点作不规则运动,流体整体的流向虽不变,但质点的运动速度的大小与方向都随时发生变化。
板书:3、流动类型的判定
在不可观察的管道中,流速u、管径d、密度ρ、粘度μ多方面因素决定
雷诺准数的定义:Re=duρ/μ;。