通信射频电路4 无线通信收发系统结构
- 格式:ppt
- 大小:1.42 MB
- 文档页数:62
射频发射和接收原理射频发射和接收是无线电通信中必不可少的环节,其设计和实现的关键在于理解射频信号的产生和组成以及传输和接受。
在现代通信中,射频信号可以是数字或模拟信号,其传输媒介可以是无线或有线媒介。
本文将介绍射频发射和接收原理的基本概念、组成和执行方式。
射频信号是指频率在无线电波段内的电磁波,这些信号可以轻松地穿过不同材料和物体,像建筑物和薄膜层。
射频信号进入要通信的电设备以后,需要转换成数字信号,以方便人类的理解和处理。
射频发射系统射频发射系统(RF transmitter system)的主要组成部分包括振荡器、调制器和功率放大器。
振荡器:振荡器(oscillator)是发射机中的基本发生器,用于产生射频信号。
振荡器的输入由基准信号源提供,其输出的频率和相位可以通过调整物理器件的参数来实现,例如电容、电感、晶体管和螺旋通道。
一种重要的振荡器类型是谐振振荡器,该振荡器利用固定电感和电容构成的基本谐振电路,以产生稳定的信号。
调制器:调制器(modulator)将声音信号或其他信息信号转换成射频信号的调制信号。
常用的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
调制过程是通过改变载波信号的某些特性,例如振幅、频率或相位,来携带原始信号信息。
功率放大器:功率放大器(power amplifier)用于加强射频信号,使其能够克服传输距离的损耗和传输介质的噪音。
典型的功率放大器包括二极管放大器、场效应管放大器和恒温极端放大器。
功率放大器还可以在信号输出之前进行滤波,以去除截止频带外的噪音。
天线:天线(antenna)用于接收到达的射频信号,并将其传输到接收器中。
天线的类型和特性取决于其使用情况和工作频率。
典型的天线类型包括全向天线、末级直线天线、方向图可变天线和结构化广播天线。
射频前置放大器:射频前置放大器(RF Pre-Amplifier)主要用于增强输入信号,并提高系统灵敏度。
通常,在混频器之前的信号源之后添加一个RF前置放大器。
浅谈无线通信射频收发系统的分析与设计摘要:无线通信的产生与应用为人们生活注入了新的活力,增加了人与人之间的沟通渠道,对社会进步具有重要的促进作用。
基于此,本文首先对无线通信的射频收发系统进行了简单介绍,其次从接收机、发射机以及天线等方面对系统设计进行了深刻探讨,希望可以为我国无线通信领域的发展贡献一份力量。
关键词:无线通信;射频收发系统;接收机引言:对于射频通信系统来说,具有很多优点,比如射频频率比较高,可以对高信息容量以及宽频带等进行有效运用;由于电感以及电容等的尺寸比较小,因此可以缩小通信设备体积;可以对大量可用频谱进行有效提供,能够对频谱资源不足问题进行有效缓解;可以增大信道频率间隙,进而对信道干扰问题进行有效避免。
因此对于无线通信从业人员来说,应该增强对射频收发系统的重视,并做好系统的分析与设计工作,进而促进无线通信业的稳定发展。
1系统分析射频收发系统的组成部分主要体现在信息源、输入转换设备、发信机、传输信道、接收机(如图1)、输出转换设备以及收信者等方面。
图1 接收机在通信系统当中,通常都需要实现调制以及解调等的变换。
其中,对于调制来说,主要是对待传输信号进行一些处理,以确保其和信道传输信号相适应。
而对于解调来说,通常作用在发送端。
对于传输信号来说,多数都是一些低频信号,主要体现在零频附近分量方面,也就是基带信号。
而对于接收端的接收机来说,其功能和发信机功能相反,可以对已调信号进行还原,我们将这一现象称为解调。
对于调制以及解调等来说,使用它们的原因主要体现在以下两个方面:第一,可以提高频率。
无线通信系统主要是通过空间辐射对信号进行传输的,根据天线理论我们可以知道,如果想要实现信号的有效辐射,就必须确保信号波长小于辐射天线尺寸。
因此可以利用调制以及解调等提高频率,进而为信号辐射创造便利条件。
第二,可以对信道进行复用。
通常情况下,传输信号所占用的带宽会比信道带宽小,所以,如果信道在同一时间只能对一个信号进行传输,那么就会引发资源浪费问题,但是也不能对多个信号进行同时传输,因为会引发信号干扰问题。
射频电路结构和工作原理一、射频电路组成和特点:普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。
其主要负责接收信号解调;发射信息调制。
早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。
更有些手机则把频合、接收压控振荡器(RX —VCO )也都集成在中频内部。
RXI-P RXI-N 900M RXQ-P RXQ-N1800MVCC 频率取样 13MCLK 功 DAT 率 RST 样 取 发射频率取样 信 号TXI-P TXI-N 射频电压TXQ-PTXQ-N等级(射频电路方框图)1、接收电路的结构和工作原理:接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,天 线 开 关接收解调频 率合 成R X VCO鉴相调制功 率 放大器 TX VCO功控分频发射互感器高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P 、RXI-N 、RXQ-P 、RXQ-N );送到逻辑音频电路进一步处理。
1、 该电路掌握重点: (1)、接收电路结构。
(2)、各元件的功能与作用。
(3)、接收信号流程。
电路分析: (1)、电路结构。
接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。
早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。
900M1800MSYN-VCC频率取样 13M SYN-CLK SYN- DAT SYN- RST(接收电路方框图)(2)、各元件的功能与作用。
1)、手机天线:结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套天 线 开 关接收解调频 率合成R X VCOOCPU (音频)分频数字处理 音频放大组成。
塑料封套螺线管天线座微带电感(外置天线)(内置天线)作用:a)、接收时把基站发送来电磁波转为微弱交流电流信号。
无线通信收发机结构无线通信收发机是无线通信系统的关键部件之一,它负责将电信号转换成无线电波进行传输,并将接收到的无线电波转换成电信号进行解码。
无线通信收发机的结构主要包括天线、射频收发器、中频放大器、解调器等组成部分。
首先,天线是无线通信收发机的重要组成部分,它负责将电信号转换成电磁波进行传输。
天线根据不同的通信协议和频段进行设计,可以是单极化或双极化天线,也可以是定向天线或全向天线,以适应不同的通信场景和需求。
接下来是射频收发器,它是无线通信收发机的核心部件。
射频收发器主要包括射频放大器、频率合成器、混频器和滤波器等。
射频放大器负责将中频信号放大到合适的电平,以提高无线信号的传输距离和质量。
频率合成器用于产生指定的射频信号,以匹配通信系统所使用的频率。
混频器将接收到的射频信号与本地振荡器产生的频率进行混频,得到中频信号。
滤波器用于去除无用的频率分量,以净化信号质量。
中频放大器是无线通信收发机中的另一个重要组成部分。
中频放大器负责将中频信号放大到足够的电平,以提高信号的强度和质量。
中频放大器通常采用集成电路或管式放大器,以满足不同通信系统的需求。
中频放大器还需要具备良好的线性度和抗干扰能力,以确保信号的准确解读和传输。
解调器是无线通信收发机中的最后一个关键部分。
解调器用于对接收到的中频信号进行解码和解调,以还原出原始的音频或数据信号。
解调器主要包括解调器芯片、鉴频器和解调电路等。
解调器芯片负责对接收到的信号进行解码和解调,以还原出原始的数码信号。
鉴频器用于对接收到的信号进行频率鉴定和同步,以确保解调信号的准确性和完整性。
解调电路则用于对解调信号进行调节和放大,以提高信号的质量和稳定性。
除了以上主要组成部分,无线通信收发机还包括功率放大器、信号处理芯片、控制电路等。
功率放大器用于对发射信号进行放大,以提高无线信号的传输距离和质量。
信号处理芯片负责对接收到的信号进行数字处理和编码等,以提高信号的质量和可靠性。
图3.26动态天线的增益变化(左后轮)图3.27动态天线的阻抗变化(左后轮)根据上图动态天线的模拟结果,我们可以得知,天线的实际辐射电阻值比较小,而且随着轮轴的旋转而不断变化,分析可知上述变化规律和上图2.1所示的垂直辐射电阻的变化规律十分类似。
3.2 TPMS接收天线的仿真分析TPMS传输天线的模型如下图3.30所示,传输天线使用1 /4λ型天线。
接下来,笔者将详细的论述在理想条件下单天线与车辆,以及单天线组成的结构特征。
图3.30接收天线模型1)单天线图3.31单天线方向图图3.32方位角平面(仰角900)方向图图3.33仰角平面(方位角00)方向图图3.34仰角平面(方位角900)方向图2)车内天线图3.35车内天线方向图图3.36方位角平面(仰角900)方向图图3.37仰角平面(方位角00)方向图图3.38仰角平面(方位角900)方向图以上说明:单天线可以很好的维持1 /4λ型天线的所有特征,但是车身与单天线组成的车辆整体受到的影响作用比较强烈(上述方向图有一定的对称性,但是在很多方向也产生零点)。
3.3 本章小结在本章里,笔者详细论述了针对TPMS传输天线展开的模拟仿真运行:(1)考虑到车身和轮胎对信号收发的影响,建立了动态天线模型,进行了相关的仿真。
(2)对车内天线进行了方向性分析。
4 射频发射和射频接收电路4.1 身寸频发射电路设计射频发射电路的设计目的为:把数据信号中频率是315±0. 035MHz 的射频数据信号,符合FCC 关于短距离无线通信规定20dB 带宽≤0.25%的要求,同时把数据信号展开功率扩增处理。
基本上所有的TPMS 射频电路使用的都是Infineon 集团推出的低能耗单片合成FSK/ASK 传送IC 模块TDK5101F 来实现,其工作原理示意图如下图4.1所示。
这个板块生成FSK 数据信号的工作原理和第二章里提到的工作原理类似,不同之处在于数据信号的调整改变采用的是频率源的工作频率,并不是锁相环的分频率。