高三数学二轮专题复习 专题4 概率与统计 第8讲 统计与统计案例课件 文
- 格式:ppt
- 大小:15.43 MB
- 文档页数:70
高三数学第二轮专题讲座复习:概率与统计高考要求概率是高考的重点内容之一,尤其是新增的随机变量这部分内容要充分注意一些重要概念的实际意义,理解概率处理问题的基本思想方法重难点归纳本章内容分为概率初步和随机变量两部分第一部分包括等可能事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率和独立重复实验第二部分包括随机变量、离散型随机变量的期望与方差涉及的思维方法观察与试验、分析与综合、一般化与特殊化主要思维形式有逻辑思维、聚合思维、形象思维和创造性思维典型题例示范讲解例1有一容量为50的样本,数据的分组及各组的频率数如下[10,15]4 [30,35)9 [15,20)5 [35,40)8[20,25)10 [40,45)3 [25,30)11(1)列出样本的频率分布表(含累积频率);(2)画出频率分布直方图和累积频率的分布图命题意图本题主要考查频率分布表,频率分布直方图和累积频率的分布图的画法知识依托频率、累积频率的概念以及频率分布表、直方图和累积频率分布图的画法错解分析解答本题时,计算容易出现失误,且要注意频率分布与累积频率分布的区别技巧与方法本题关键在于掌握三种表格的区别与联系解(1)由所给数据,计算得如下频率分布表数据段频数频率累积频率[10,15) 4 0.08 0.08[15,20) 5 0.10 0.18[20,25)10 0.20 0.38[25,30)11 0.22 0.60[30,35)9 0.18 0.78[35,40)8 0.16 0.94[40,45) 3 0.06 1总计50 1(2)频率分布直方图与累积频率分布图如下例2袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i )求恰好摸5次停止的概率;(ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布率及数学期望E ξ. (Ⅱ) 若A 、B 两个袋子中的球数之比为12,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值. 命题意图本题考查利用概率知识和期望的计算方法 知识依托概率的计算及期望的概念的有关知识错解分析在本题中,随机变量的确定,稍有不慎,就将产生失误 技巧与方法 可借助n 次独立重复试验概率公式计算概率解 (Ⅰ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii)随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kk kn n P k C p p -=-,得()50513*******P C ξ⎛⎫==⨯-= ⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-= ⎪⎝⎭()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ0 1 2 3P32243 80243 80243 17243ξ的数学期望是 32808017131012324324324324381E ξ=⨯+⨯+⨯+⨯=(Ⅱ)设袋子A 中有m 个球,则袋子B 中有2m 个球由122335m mpm +=,得1330p = 例3如图,用A 、B 、C 三类不同的元件连接成两个系统N 1、N 2,当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作 已知元件A 、B 、C 正常工作的概率依次为0.80,0.90,0.90,分别求系统N 1,N 2正常工作的概率P 1、P 2(N 2)AB C(N 1)CB A解 记元件A 、B 、C 正常工作的事件分别为A 、B 、C , 由已知条件P (A )=0.80, P (B )=0.90,P (C )=0.90(1)因为事件A 、B 、C 是相互独立的,所以,系统N 1正常工作的概率P 1=P (A ·B ·C )=P (A )P (B )P (C )=0.648,故系统N 1正常工作的概率为0.648(2)系统N 2正常工作的概率P 2=P (A )·[1-P (C B ⋅)]=P (A )·[1-P (B )P (C )] =0 80×[1-(1-0 90)(1-0 90)]=0 792 故系统N 2正常工作的概率为0 792 学生巩固练习1 甲射击命中目标的概率是21,乙命中目标的概率是31,41现在三人同时射击目标,则目标被击中的概率为( )107 D. 54C. 32 B. 43A. 2 已知随机变量ζ的分布列为 P (ζ=k )=31,k =1,2,3,则P (3ζ+5)等于A 6B 9C 3D 43 1盒中有9个正品和3个废品,每次取1个产品,取出后不再放回,在取得正品前已取出的废品数ζ的期望E ζ=_________4 某班有52人,男女各半,男女各自平均分成两组,从这个班中选出4人参加某项活动,这4人恰好来自不同组别的概率是_________5 甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,计算 (1)两人都击中目标的概率;(2)其中恰有一人击中目标的概率; (3)至少有一人击中目标的概率6 已知连续型随机变量ζ的概率密度函数f (x )=⎪⎩⎪⎨⎧≥<≤-≤2 021 1 0x x a x x(1)求常数a 的值,并画出ζ的概率密度曲线; (2)求P (1<ζ<23) 参考答案:1 解析 设甲命中目标为事件A ,乙命中目标为事件B ,丙命中目标为事件C ,则目标被击中的事件可以表示为A+B+C ,即击中目标表示事件A 、B 、C 中至少有一个发生.41)411)(311)(211()](1[)](1[)](1[)()()()(=---=-⋅-⋅-=⋅⋅=⋅⋅∴C P B P A P C P B P A P C B A P故目标被击中的概率为1-P (A ·B ·C )=1-4341= 答案 A 2 解析 E ξ=(1+2+3)·31=2,E ξ2=(12+22+32)·31=314∴D ξ=E ξ2-(E ξ)2=314-2232∴D (3ξ+5)=9E ξ=6答案 A3 解析 由条件知,ξ的取值为0,1,2,3,并且有P (ξ=0)=43C C 11219=,3.02201322092449143022012C C C )3(,22092C C C )2(,4492C C C )1(412193331219232121913=⨯+⨯+⨯+⨯=ξ∴===ξ=⋅==ξ===ξE P P P 答案 0.34 解析 因为每组人数为13,因此,每组选1人有C 113种方法,所以所求概率为P 4524113)C ( 答案 4524113C )C ( 5 解 (1)我们把“甲射击一次击中目标”叫做事件A ,“乙射击一次击中目标”叫做事件B 显然事件A 、B 相互独立,所以两人各射击一次都击中目标的概率是P (A ·B ) =P (A )·P (B )=0.6×0.6=0.36答 两人都击中目标的概率是0.36(2)同理,两人各射击一次,甲击中、乙未击中的概率是P (A ·B )=P (A )·P (B )=0.6×(1-0.6)=0.6×0.4=0.24甲未击中、乙击中的概率是P (A ·B)=P (A )P (B )=0.24,显然,“甲击中、乙未击中”和“甲未击中、乙击中”是不可能同时发生,即事件A ·B 与A ·B 互斥,所以恰有一人击中目标的概率是P (A ·B )+P (A ·B )=0.24+0.24=0.48(2)两人各射击一次,至少有一人击中目标的概率P =P (A ·B )+[P (A ·B )+P (A )·B ]=0.36+0.48=0.84答 至少有一人击中目标的概率是0.846 解 (1)因为ξ所在区间上的概率总和为1,所以21 (1-a +2-a )·1=1,∴a =21概率密度曲线如图 (2)P (1<ξ<23)=9323)121(21=⋅+⋅。
8.4列联表独立性分析案例[读教材·填要点]1.列联表一般地,对于两个因素X和Y,X的两个水平取值:A和A(如吸烟和不吸烟),Y也有两个水平取值:B和B(如患肺癌和不患肺癌),我们得到下表中的抽样数据,这个表格称为2×2列联表.2.χ2公式χ2=n ad-bc2a +b c+d a+c b+d.3.独立性检验的概念用随机变量χ2研究两变量是否有关的方法称为独立性检验.4.独立性检验的步骤要判断“X与Y有关系”,可按下面的步骤进行:(1)提出假设H0:X与Y无关;(2)根据2×2列联表及χ2公式,计算χ2的值;(3)查对临界值,作出判断.其中临界值如表所示:表示在H0成立的情况下,事件“χ2≥x0”发生的概率.5.变量独立性判断的依据(1)如果χ2>10.828时,就有99.9%的把握认为“X与Y有关系”;(2)如果χ2>6.635时,就有99%的把握认为“X与Y有关系”;(3)如果χ2>2.706时,就有90%的把握认为“X与Y有关系”;(4)如果χ2≤2.706时,就认为没有充分的证据显示“X与Y有关系”,但也不能作出结论“H0成立”,即X与Y没有关系.[小问题·大思维]1.利用χ2进行独立性分析,估计值的准确度与样本容量有关吗?提示:利用χ2进行独立性分析,可以对推断的正确性的概率作出估计,样本容量n越大,这个估计值越准确.如果抽取的样本容量很小,那么利用χ2进行独立性检验的结果就不具有可靠性.2.在χ2运算后,得到χ2的值为29.78,在判断因素相关时,P(χ2≥6.64)≈0.01和P(χ2≥7.88)≈0.005,哪种说法是正确的?提示:两种说法均正确.P(χ2≥6.64)≈0.01的含义是在犯错误的概率不超过0.01的前提下认为两因素相关;而P(χ2≥7.88)≈0.005的含义是在犯错误的概率不超过0.005的前提下认为两因素相关.[例1]数据:[解] 由列联表中的数据,得χ2的值为χ2=-2254×1 379×54×1 579≈68.033>6.635.因此,有99%的把握认为每一晚打鼾与患心脏病有关系.解决一般的独立性分析问题,首先由所给2×2列联表确定a,b,c,d,a+b+c+d 的值,然后代入随机变量的计算公式求出观测值χ2,将χ2与临界值x0进行对比,确定有多大的把握认为两个分类变量有关系.1.某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,经过调查得到如下列联表:系?解:由列联表中的数据,得 χ2=-294×95×86×103≈10.759>6.635,∴有99%的把握认为工作态度与支持企业改革之间有关系.[例2] (1)(2)若饮用干净水得病5人,不得病50人,饮用不干净水得病9人,不得病22人.按此样本数据分析这种疾病是否与饮用水有关,并比较两种样本在反映总体时的差异.[解] (1)假设H 0:传染病与饮用水无关.把表中数据代入公式,得χ2=-2146×684×518×312≈54.21,因为当H 0成立时,χ2≥10.828的概率约为0.001,所以我们有99.9%的把握认为该地区这种传染病与饮用不干净水有关.(2)依题意得2×2列联表:此时,χ2=-214×72×55×31≈5.785.由于5.785>2.706,所以我们有90%的把握认为该种疾病与饮用不干净水有关.两个样本都能统计得到传染病与饮用不干净水有关这一相同结论,但(1)中我们有99.9%的把握肯定结论的正确性,(2)中我们只有90%的把握肯定.独立性分析的步骤:要推断“X与Y是否有关”可按下面的步骤进行:①提出统计假设H0:X与Y无关;②根据2×2列联表与χ2计算公式计算出χ2的值;③根据两个临界值,作出判断.2.为了探究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高二在校学生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.是否有90%的把握认为“学生选报文、理科与对外语的兴趣有关”?解:根据题目所给的数据得到如下列联表:χ2=-2211×150×236×125≈1.871×10-4.因为1.871×10-4<2.706,所以没有90%的把握认为“学生选报文、理科与对外语的兴趣有关”.[例3] 为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.下表1和表2分别是注射药物A和药物B后的试验结果.(疱疹面积单位:mm2) 表1:注射药物A后皮肤疱疹面积的频数分布表表2:注射药物B 后皮肤疱疹面积的频数分布表完成下面2×2列联表,并回答是否有99%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.表3:[解]χ2=-2100×100×105×95≈24.56>6.635.因此,有99%的把握认为“注射药物A 后的疱疹面积与注射药物B 后的疱疹面积有差异”.在绘制列联表时,应对问题中的不同数据分成不同的类别,然后列表.要注意列联表中各行、各列中数据的意义及书写格式.3.已知某班n 名同学的数学测试成绩(单位:分,满分100分)的频率分布直方图如图所示,其中a ,b ,c 成等差数列,且成绩在[90,100]内的有6人.(1)求n 的值;(2)规定60分以下为不及格,若不及格的人中女生有4人,而及格的人中,男生比女生少4人,借助独立性检验分析是否有90%的把握认为“本次测试的及格情况与性别有关”?附:χ2=a +bc +d a +cb +d解:(1)依题意得⎩⎪⎨⎪⎧+0.025+c +2b +a =1,2b =a +c ,解得b =0.01.因为成绩在[90,100]内的有6人, 所以n =60.01×10=60.(2)由于2b =a +c ,而b =0.01,可得a +c =0.02,则不及格的人数为0.02×10×60=12,及格的人数为60-12=48,设及格的人中,女生有x 人,则男生有x -4人, 于是x +x -4=48,解得x =26,故及格的人中,女生有26人,男生有22人. 于是本次测试的及格情况与性别的2×2列联表如下:结合列联表计算可得χ2=30×30×48×12=1.667<2.706,故没有90%的把握认为“本次测试的及格情况与性别有关”.性别与患色盲是否有关?你所得到的结论在什么范围内有效?[解] 由题意作2×2列联表如下:法一:由列联表中数据可知,在调查的男人中,患色盲的比例是38480≈7.917%,女人中患色盲的比例为6520≈1.154%,由于两者差距较大,因而我们可以认为性别与患色盲是有关系的.法二:由列联表中所给的数据可知,a=38,b=442,c=6,d=514,a+b=480,c+d=520,a+c=44,b+d=956,n=1 000,代入公式得χ2=-2480×520×44×956≈27.1.由于χ2≈27.1>6.635,所以我们有99%的把握即在犯错误不超过0.01的前提下认为性别与患色盲有关系.这个结论只对所调查的480名男人和520名女人有效.1.下面是2×2列联表:则表中a,b的值分别为A.94,96 B.52,50C.52,54 D.54,52解析:选C ∵a+21=73,∴a=52.又∵a+2=b,∴b=54.2.下列关于χ2的说法中正确的是( )A.χ2在任何相互独立问题中都可以用于检验是否相关B.χ2的值越大,两个事件的相关性越大C.χ2是用来判断两个相互独立事件相关与否的一个统计量,它可以用来判断两个事件是否相关这一类问题D.χ2=n ad-bca +b c+d a+c b+d答案:C3.对于因素X与Y的随机变量χ2的值,下列说法正确的是( )A.χ2越大,“X与Y有关系”的可信程度越小B.χ2越小,“X与Y有关系”的可信程度越小C.χ2越接近于0,“X与Y没有关系”的可信程度越小D.χ2越大,“X与Y没有关系”的可信程度越大解析:选B χ2越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大.即χ2越小,“X与Y有关系”的可信程度越小.4.若由一个2×2列联表中的数据计算得χ2的观测值为4.013,那么在犯错误的概率不超过________的前提下,认为两个变量之间有关系.解析:因为4.013>3.841,所以在犯错误的概率不超过0.05的前提下,认为两个变量之间有关系.答案:0.055.某矿石粉厂当生产一种矿石粉时,在数天内即有部分工人患职业性皮肤炎,在生产季节开始,随机抽取75名车间工人穿上新防护服,其余仍穿原用的防护服,生产进行一个月后,检查两组工人的皮肤炎患病人数如下:解析:χ2=-275×28×15×88≈13.826>6.635.故有99%的把握说,新防护服比旧防护服对预防工人职业性皮炎有效.答案:99%6.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到爱打篮球的学生的概率为35.(1)请将上面的列联表补充完整;(2)是否有99%的把握认为喜爱打篮球与性别有关;请说明理由. 附参考公式:χ2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .解:(1)列联表补充如下:(2)∵χ2=-230×20×25×25≈8.333>6.635,∴有99%的把握认为喜爱打篮球与性别有关.一、选择题1.有两个因素X 与Y 的一组数据,由其列联表计算得χ2≈4.523,则认为X 与Y 有关系是错误的可信度为( )A .95%B .90%C .5%D .10%解析:选C ∵χ2≥3.841.∴X 与Y 有关系的概率为95%,∴X 与Y 有关系错误的可信度为5%.2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:计算得,χ2=-260×50×60×50≈7.8.附表:A.在犯错误的概率不超过0.1% 的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1% 的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”解析:选C 根据独立性分析的思想方法,正确选项为C.3.某高校“统计初步”课程的老师随机调查了选该课的一些学生情况,具体数据如下表:为了分析主修统计中的数据,得到χ2=-223×27×20×30≈4.84,所以断定主修统计专业与性别有关系,这种判断出错的可能性为( )A.0.025 B.0.05C.0.975 D.0.95解析:选B ∵χ2≈4.84>3.841,所以我们有95%的把握认为主修统计专业与性别无关,即判断出错的可能性为0.05.4.已知P(x2≥2.706)=0.10,两个因素X和Y,取值分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35.若在犯错误的概率不超过0.1的前提下,认为X与Y有关系,则c等于( )A.5 B.6C.7 D.8解析:选A 经分析,c=5.二、填空题5.班级与成绩2×2列联表:表中数据m,n,p,解析:m=10+7=17,n=35+38=73,p=7+38=45,q=m+n=90.答案:17,73,45,906.在吸烟与患肺病是否相关的判断中,有下面的说法:①若χ2>6.64,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性分析可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;③从独立性分析可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.解析:χ2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①不正确;说法②中对“确定容许推断犯错误概率的上界”理解错误;说明③正确.答案:③7.统计推断,当________时,在犯错误的概率不超过0.05的前提下认为事件A与B 有关;当________时,认为没有充分的证据显示事件A与B是有关的.解析:当k>3.841时,就有在犯错误的概率不超过0.05的前提下认为事件A与B有关,当k<2.706时认为没有充分的证据显示事件A与B是有关的.答案:k>3.841 k<2.7068.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:由表中数据直观分析,收看新闻节目的观众是否与年龄有关:________(填“是”或“否”).解析:因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba +b =1858,dc +d =2742,两者相差较大,所以,经直观分析,收看新闻节目的观众与年龄是有关的.答案:是 三、解答题9.某市对该市一重点中学2018年高考上线情况进行统计,随机抽查得到表格:解:对于上述四个科目,分别构造四个随机变量 χ21,χ22,χ23,χ24. 由表中数据可以得到: 语文:χ21=-2201×43×204×40=7.294>6.64,数学:χ22=-2201×43×201×43=30.008>6.64,英语:χ23=-2201×43×200×44=24.155>6.64,综合科目: χ24=-2201×43×201×43=17.264>6.64.所以有99%的把握认为语文、数学、英语、综合科目上线与总分上线有关系,数学上线与总分上线关系最大.10.一次对人们休闲方式的调查中共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.(1)根据以上数据建立一个2×2列联表;(2)能否在犯错误的概率不超过0.05的前提下认为性别与休闲方式有关系? 解:(1)2×2列联表如下:(2)χ2=-270×54×64×60≈6.201.因为6.201>3.841,所以有理由认为假设休闲方式与性别无关是不合理的,即在犯错误的概率不超过0.05的前提下认为休闲方式与性别有关.。