《椭圆的几何性质》教学案1
- 格式:docx
- 大小:114.17 KB
- 文档页数:4
椭圆的几何性质教案教案标题:椭圆的几何性质教案目标:1. 了解椭圆的定义和基本性质。
2. 掌握椭圆的焦点、半长轴和半短轴的概念。
3. 学习如何画出给定椭圆的图形。
4. 理解椭圆与其他几何图形的关系。
教学资源:1. 教材:包含椭圆相关知识的数学教科书。
2. 白板、彩色粉笔/白板笔。
3. 几何工具:直尺、圆规、铅笔、橡皮擦。
4. PowerPoint演示文稿或其他电子媒体。
教学步骤:引入活动:1. 使用一张椭圆的图片或幻灯片,引发学生对椭圆的兴趣,并了解他们对椭圆的认知。
2. 引导学生思考,讨论他们曾经接触过的椭圆形状,例如篮球场、椭圆形的池塘等。
知识讲解:3. 通过教材或演示文稿,向学生介绍椭圆的定义和基本性质,包括焦点、半长轴和半短轴的概念。
4. 解释椭圆的数学方程,并提供一些实例进行说明。
示范与练习:5. 在白板上绘制一个椭圆,并解释绘制的步骤,包括如何确定焦点和半轴长度。
6. 给予学生一些练习题,要求他们根据给定的焦点和半轴长度画出椭圆的图形。
巩固与拓展:7. 引导学生思考椭圆与其他几何图形的关系,例如圆、双曲线等。
8. 提供一些拓展问题,让学生应用所学知识解决实际问题,如计算椭圆形的面积或周长。
总结与评价:9. 对本节课的内容进行总结,并回顾学生在课堂上的表现。
10. 鼓励学生提出问题或疑惑,并解答他们的疑问。
11. 可以布置一些课后作业,巩固学生对椭圆的理解。
教学延伸:12. 鼓励学生自主学习更多有关椭圆的性质和应用,如椭圆的离心率、焦准距等。
13. 组织学生进行小组讨论或展示,分享他们对椭圆的研究成果。
教学评估:1. 在课堂上观察学生的参与程度和对椭圆概念的理解。
2. 通过练习题、课堂讨论或小组展示来评估学生对椭圆性质的掌握程度。
3. 课后作业的完成情况和答案的准确性。
教学扩展:1. 将椭圆的性质与实际生活中的应用相联系,如天体运动、建筑设计等。
2. 引导学生进行椭圆的相关研究,并鼓励他们撰写有关椭圆的研究报告或论文。
椭圆的几何性质学习目标:1、掌握椭圆的范围、对称性、顶点,掌握几何意义以及的相互关系,初步学习利用方程研究曲线性质的方法。
学习重点、难点:重点:掌握如何利用椭圆标准方程的结构特征研究椭圆的几何性质;难点:从椭圆标准方程的结构特征中抽象出椭圆的几何性质。
学习策略:本节课采用创设问题情景——学生自主探究——师生共同辨析研讨——归纳总结组成的“四环节〞探究式学习方式,并在学习过程中根据实际情况及时地调整学习方案。
学习过程:创设问题情景,学生自主探究:方程表示什么样的曲线,你能利用以前学过的知识画出它的图形吗?学生活动过程:情形1:列表、描点、连线进行做图,在取点的过程中想到了椭圆的范围问题;情形2:求出椭圆曲线与坐标轴的四个交点,联想椭圆曲线的形状得到图形;情形3:方程变形,求出,联想椭圆画法,利用绳子做图;情形4:只做第一象限内的图形,联想椭圆形状,对称得到其它象限内的图形;辨析与研讨:实物投影展示学生的画图过程,挖掘学生的原有认知,表达同学的思维差异,培养学生的思维习惯。
教师点评:〔1〕能够抓住椭圆的几何特征;范围、对称性、关键点做图;〔2〕研究问题的方向发生了变化,利用方程研究曲线的几何性质;〔3〕本节课我们利用椭圆更一般的方程来研究椭圆的几何性质,表达特殊到一般的思想方法。
教师板书:椭圆的简单几何性质一、引导评价,引入课题:设置问题,学生思考:与直线方程和圆的方程相比照,椭圆标准方程有什么特点?〔1〕椭圆方程是关于的二元二次方程;〔2〕方程的左边是平方和的形式;右边是常数1;〔3〕方程中和的系数不相等;设计意图:类比直线方程和圆的方程能够使学生容易得到椭圆标准方程的特点,表达了新旧知识的联系与区别,符合学生的认知规律,同时为利用方程研究椭圆曲线的几何性质做好了准备.【问题1】自主探究:结合椭圆标准方程的特点,利用方程研究椭圆曲线的范围;实物投影展示学生的解题过程,鼓励学生开拓思维:学生活动过程:情形1:变形为:这就得到了椭圆在标准方程下的范围:同理,我们也可以得到的范围:情形2:椭圆的标准方程表示两个非负数的和为1,那么这两个数都不大于1,所以,同理可以得到的范围设计意图:〔1〕传统的研究椭圆的几何性质往往是利用图形直观得到性质,然后利用方程进行证明,没有真正表达出利用方程研究曲线几何性质的路子,因此在这里通过多媒体课件始终展示椭圆标准方程的特点,使学生在把握椭圆方程结构特征〔1〕和〔2〕的根底上来研究椭圆曲线的几何性质;〔2〕通过开头问题的铺垫,学生的思维在这里表达的异常活泼,除了教材中得到范围的方法外,另外两种方法很多同学都能想到,使学生真正感受成功的喜悦;〔3〕多媒体课件展示椭圆的范围,表达数形结合思想。
椭圆的几何性质教案一、教学目标1. 知识与技能:(1)理解椭圆的定义及标准方程;(2)掌握椭圆的几何性质,如焦点、半长轴、半短轴等;(3)能够运用椭圆的性质解决实际问题。
2. 过程与方法:(1)通过观察实物,培养学生的直观思维能力;(2)利用数形结合思想,引导学生发现椭圆的性质;(3)运用合作交流的学习方式,提高学生解决问题的能力。
3. 情感态度与价值观:激发学生对椭圆几何性质的兴趣,培养学生的探究精神,提高学生对数学的热爱。
二、教学重点与难点1. 教学重点:(1)椭圆的定义及标准方程;(2)椭圆的几何性质;(3)运用椭圆性质解决实际问题。
2. 教学难点:(1)椭圆几何性质的推导;(2)运用椭圆性质解决复杂问题。
三、教学过程1. 导入新课:通过展示生活中的椭圆实例,如地球、鸡蛋等,引导学生关注椭圆形状的物体,激发学生对椭圆的兴趣。
2. 知识讲解:(1)介绍椭圆的定义及标准方程;(2)讲解椭圆的几何性质,如焦点、半长轴、半短轴等;(3)引导学生发现椭圆性质之间的关系。
3. 实例分析:通过具体例子,让学生了解如何运用椭圆的性质解决问题,如计算椭圆的长轴、短轴等。
4. 课堂练习:布置一些有关椭圆性质的练习题,让学生巩固所学知识。
四、课后作业1. 复习椭圆的定义及标准方程;2. 熟练掌握椭圆的几何性质;3. 尝试运用椭圆性质解决实际问题。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对椭圆几何性质的理解和运用能力。
关注学生在学习过程中的困惑,及时解答疑问,提高教学质量。
六、教学活动设计1. 小组讨论:让学生分组讨论,探究椭圆性质之间的内在联系,培养学生合作交流的能力。
2. 课堂展示:每组选代表进行成果展示,分享探讨过程中的发现和感悟,提高学生的表达能力和逻辑思维。
3. 教师点评:对学生的讨论成果进行点评,总结椭圆性质的关键点,引导学生深入理解。
七、教学评价1. 课堂问答:通过提问方式检查学生对椭圆性质的理解程度,及时发现并解决问题。
《椭圆的几何性质》教学设计黄小洁【教材分析】教材的地位和作用地位:本节课是在椭圆的概念的基础上,介绍椭圆简单几何性质及简单应用 . 本节课内容的掌握程度直接影响学习双曲线和抛物线几何性质。
作用:提高学生的数学素质,培养学生的数形结合思想,及分析问题和解决问题的能力。
因此,内容在解析几何中占有非常重要的地位。
【教学目标】1.知识目标:(1).使学生掌握椭圆的性质,能根据性质正确地做出椭圆草图;掌握椭圆中a、b、c的几何意义及相互关系;(2) 通过对椭圆标准方程的讨论,使学生知道在解析几何中是怎样用代数方法研究曲线性质的,逐步领会解析法(坐标法)的思想。
(3) 能利用椭圆的性质解决实际问题。
2.能力目标:培养学生观察、分析、抽象、概括的逻辑思维能力和运用数形结合思想解决实际问题的能力。
3.情感目标:通过对问题的探究活动,亲历知识的建构过程,使学生领悟其中所蕴涵的数学思想和数学方法,体验探索中的成功和快乐,使学生在探索中喜欢数学、欣赏数学。
【教学重点】椭圆性质的探索过程及性质的运用。
【教学难点】利用曲线方程研究椭圆性质的方法及离心率的概念。
【教学方法】发现探究式【教学组织方式】学生独立思考、合作交流、师生共同探究相结合。
【教学工具】多媒体课件、实物投影仪。
【教学过程】一、创设情境教师:2008.9.25,是我国航天史上一个非常重要的日子,“神舟七号”载人飞船成功发射,实现了几代中国人遨游太空的梦想,这是我们中华民族的骄傲。
我们知道,飞船绕地运行了十四圈,在变轨前的四圈中,是沿着以地球中 心为一个焦点的椭圆轨道运行的。
如果告诉你飞船飞离地球表面最近和最远的距 离,即近地点距地面的距离和远地点距地面的距离,如何确定飞船运行的轨道方 程?要想解决这一实际问题,就有必要对椭圆做深入的研究,这节课我们就一起 探求椭圆的性质。
(引出课题)教师:前面我们学习了椭圆的定义和标准方程,谁能说说椭圆的标准方程(学生回答)。
椭圆的几何性质教案一、椭圆的定义椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
F1和F2称为椭圆的焦点,2a称为椭圆的长轴,2b称为椭圆的短轴,c称为椭圆的焦距,c2=a2−b2。
二、椭圆的几何性质1. 椭圆的对称性椭圆具有中心对称性,即椭圆的中心是对称中心。
2. 椭圆的离心率,0<e<1。
当e=0时,椭圆退化为圆;当e=1时,椭圆的离心率e=ca椭圆退化为抛物线。
3. 椭圆的焦点性质椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴2a,即PF1+PF2= 2a。
4. 椭圆的切线性质椭圆上任意一点P处的切线与椭圆的两个焦点F1和F2的连线的夹角相等。
5. 椭圆的法线性质椭圆上任意一点P处的法线与椭圆的两个焦点F1和F2的连线的夹角相等。
6. 椭圆的直径性质椭圆的长轴2a是椭圆的最长直径,短轴2b是椭圆的最短直径。
7. 椭圆的面积和周长椭圆的面积S=πab,周长C=4aE(e),其中E(e)是第二类完全椭圆积分。
三、椭圆的应用1. 椭圆的轨道椭圆的轨道在天文学中有广泛的应用,如行星绕太阳的轨道、卫星绕地球的轨道等。
2. 椭圆的几何光学椭圆镜是一种常见的光学元件,它可以将入射光线聚焦成一个点或将一个点的光线反射成一束平行光线。
3. 椭圆的机械应用椭圆齿轮是一种常见的机械元件,它可以将旋转运动转化为直线运动或将直线运动转化为旋转运动。
四、教学设计1. 教学目标1.理解椭圆的定义和基本性质;2.掌握椭圆的离心率、焦点性质、切线性质、法线性质、直径性质、面积和周长公式;3.了解椭圆的应用领域。
2. 教学内容1.椭圆的定义和基本性质;2.椭圆的离心率、焦点性质、切线性质、法线性质、直径性质、面积和周长公式;3.椭圆的应用领域。
3. 教学方法1.讲授法:通过讲解椭圆的定义和基本性质,引导学生理解椭圆的几何特征;2.演示法:通过演示椭圆的焦点性质、切线性质、法线性质等,帮助学生掌握椭圆的基本性质;3.实验法:通过实验椭圆的面积和周长,让学生深入了解椭圆的几何性质;4.讨论法:通过讨论椭圆的应用领域,激发学生的兴趣和创造力。
椭圆的简单几何性质教学目标:1. 理解椭圆的定义及其基本性质。
2. 掌握椭圆的长轴、短轴、焦距等几何参数的计算方法。
3. 能够运用椭圆的性质解决相关几何问题。
教学重点:1. 椭圆的定义及其基本性质。
2. 椭圆几何参数的计算方法。
教学难点:1. 椭圆性质的应用。
教学准备:1. 教学课件或黑板。
2. 尺子、圆规等绘图工具。
教学过程:一、导入1. 引导学生回顾圆的性质,提出问题:“如果将圆的半径缩小,圆的形状会发生什么变化?”2. 学生讨论并得出结论:圆的形状会变成椭圆。
二、新课讲解1. 引入椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。
2. 讲解椭圆的基本性质:a) 椭圆的两个焦点对称,且位于椭圆的长轴上。
b) 椭圆的长轴是连接两个焦点的线段,短轴是垂直于长轴的线段。
c) 椭圆的半长轴a和半短轴b是椭圆的几何参数,焦距2c与a、b之间的关系为c^2=a^2-b^2。
3. 演示如何用尺子和圆规绘制椭圆,并引导学生动手实践。
三、案例分析1. 给出一个椭圆,让学生计算其长轴、短轴和焦距。
2. 学生分组讨论并解答,教师巡回指导。
四、课堂练习1. 布置课堂练习题,让学生运用椭圆的性质解决问题。
2. 学生独立完成练习题,教师批改并给予反馈。
五、总结与拓展1. 总结本节课所学的椭圆的基本性质和几何参数的计算方法。
2. 提出拓展问题:“椭圆在实际应用中有什么意义?”,引导学生思考和探索。
教学反思:本节课通过导入、新课讲解、案例分析、课堂练习和总结与拓展等环节,使学生掌握了椭圆的基本性质和几何参数的计算方法。
在教学过程中,注意引导学生主动参与、动手实践,提高学生的学习兴趣和积极性。
通过课堂练习和拓展问题,培养学生的思维能力和解决问题的能力。
但在教学过程中,也要注意对学生的个别辅导,确保每个学生都能跟上教学进度。
六、椭圆的离心率1. 引入离心率的定义:椭圆的离心率e是焦距c与半长轴a之比,即e=c/a。
椭圆的简单几何性质教学目标:1. 理解椭圆的定义及其基本几何性质。
2. 学会运用椭圆的性质解决相关问题。
3. 培养学生的观察能力、推理能力和解决问题的能力。
教学内容:1. 椭圆的定义2. 椭圆的焦点3. 椭圆的长轴和短轴4. 椭圆的离心率5. 椭圆的面积教学准备:1. 教学课件或黑板2. 椭圆模型或图片3. 直尺、圆规等绘图工具教学过程:一、导入(5分钟)1. 引入椭圆的概念,展示椭圆模型或图片,让学生观察并描述椭圆的特点。
2. 引导学生思考:椭圆与其他几何图形(如圆、矩形等)有什么不同?二、椭圆的定义(10分钟)1. 给出椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和等于常数的点的集合。
2. 解释椭圆的焦点概念,说明焦点的作用。
3. 引导学生通过实际操作,绘制一个椭圆,并标记出焦点。
三、椭圆的焦点(10分钟)1. 介绍椭圆的焦点与椭圆的离心率的关系。
2. 引导学生通过实际操作,观察焦点的位置与椭圆的形状之间的关系。
3. 解释椭圆的离心率的定义及其几何意义。
四、椭圆的长轴和短轴(10分钟)1. 介绍椭圆的长轴和短轴的概念。
2. 引导学生通过实际操作,测量和记录椭圆的长轴和短轴的长度。
3. 解释长轴和短轴与椭圆的形状之间的关系。
五、椭圆的面积(10分钟)1. 介绍椭圆的面积的计算公式。
2. 引导学生通过实际操作,计算一个给定椭圆的面积。
3. 解释椭圆面积与长轴和短轴之间的关系。
教学评价:1. 通过课堂讲解和实际操作,学生能够理解椭圆的定义及其基本几何性质。
2. 通过解决问题和完成作业,学生能够运用椭圆的性质解决相关问题。
3. 通过课堂讨论和提问,学生能够展示对椭圆的理解和应用能力。
六、椭圆的离心率(10分钟)1. 回顾椭圆的离心率的定义和计算方法。
2. 引导学生通过实际操作,观察离心率与椭圆的形状之间的关系。
3. 解释离心率在几何中的应用,如椭圆的焦点和直线的交点等。
七、椭圆的参数方程(10分钟)1. 介绍椭圆的参数方程及其意义。
椭圆的简单几何性质教学教案一、教学目标1. 知识与技能:使学生掌握椭圆的定义,理解椭圆的基本几何性质,如焦点、半长轴、半短轴等概念;2. 过程与方法:通过观察、分析、归纳等方法,让学生发现并证明椭圆的几何性质;3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学内容1. 椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹。
2. 椭圆的基本几何性质:a. 焦点:椭圆的焦点距离为2c,其中c为半焦距,c^2=a^2-b^2;b. 半长轴:椭圆的半长轴为a,表示椭圆的长轴的一半;c. 半短轴:椭圆的半短轴为b,表示椭圆的短轴的一半;d. 椭圆的面积:S=πab。
三、教学重点与难点1. 教学重点:椭圆的定义及其基本几何性质;2. 教学难点:椭圆的焦点、半长轴、半短轴等概念的理解与应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳等方法发现椭圆的几何性质;2. 利用数形结合法,让学生直观地理解椭圆的定义及其几何性质;3. 运用实例讲解法,让学生掌握椭圆在实际问题中的应用。
五、教学过程1. 导入新课:通过介绍椭圆的起源和发展,激发学生的学习兴趣;2. 讲解椭圆的定义:结合图形,解释椭圆的定义,让学生理解椭圆的概念;3. 探索椭圆的基本几何性质:引导学生观察椭圆的图形,发现焦点、半长轴、半短轴等性质;4. 证明椭圆的几何性质:引导学生运用数学方法证明椭圆的基本几何性质;5. 应用实例:让学生运用椭圆的性质解决实际问题,巩固所学知识。
本教案为椭圆的简单几何性质教学教案的第一部分,后续章节将陆续呈现。
希望能对您的教学有所帮助!六、教学练习1. 基本概念练习:a. 定义椭圆的焦点;b. 解释椭圆的半长轴和半短轴;c. 计算椭圆的面积。
2. 应用题练习:a. 已知椭圆的半长轴为5cm,半短轴为3cm,求椭圆的焦点距离;b. 已知椭圆的面积为36πcm²,半长轴为6cm,求椭圆的半短轴;c. 一个椭圆的焦点在x轴上,半长轴为4cm,半短轴为3cm,求椭圆的标准方程。
椭圆的简单几何性质教学教案第一章:椭圆的定义与标准方程1.1 椭圆的定义引入椭圆的概念,通过实际例子让学生感受椭圆的形状。
讲解椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。
1.2 椭圆的标准方程推导椭圆的标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中\(a\)是椭圆的半长轴,\(b\)是半短轴。
解释\(a\)和\(b\)与椭圆的形状和大小之间的关系。
第二章:椭圆的焦点与离心率2.1 椭圆的焦点讲解椭圆的焦点定义:椭圆上到两个焦点距离之和为常数的点。
推导椭圆焦点的坐标公式:\((\pm c, 0)\),其中\(c\)是焦距,满足\(c^2 = a^2 b^2\)。
2.2 椭圆的离心率定义椭圆的离心率:\(e = \frac{c}{a}\),表示椭圆的扁率。
解释离心率与椭圆的形状之间的关系:离心率越接近1,椭圆越扁;离心率越接近0,椭圆越接近圆。
第三章:椭圆的面积与周长3.1 椭圆的面积推导椭圆的面积公式:\(A = \pi ab\),其中\(a\)和\(b\)分别是椭圆的半长轴和半短轴。
解释椭圆面积与半长轴和半短轴之间的关系。
3.2 椭圆的周长推导椭圆的周长公式:\(C = \pi(a + b)\),其中\(a\)和\(b\)分别是椭圆的半长轴和半短轴。
解释椭圆周长与半长轴和半短轴之间的关系。
第四章:椭圆的直线段性质4.1 椭圆的半通径定义椭圆的半通径:连接椭圆上一点与焦点的线段中点的距离。
推导半通径的公式:\(r = \frac{a}{2}\)。
4.2 椭圆的半焦距定义椭圆的半焦距:椭圆上到焦点距离之和的一半。
推导半焦距的公式:\(f = \frac{c}{2}\)。
第五章:椭圆的参数方程与极坐标方程5.1 椭圆的参数方程引入椭圆的参数方程:\(x = a \cos t\),\(y = b \sin t\),其中\(t\)是参数。
《椭圆的简单几何性质》教案第一课时教学目的:1.熟练掌握椭圆的范围,对称性,顶点等简单几何性质 2.掌握标准方程中的几何意义,以及的相互关系 3.理解.掌握坐标法中根据曲线的方程研究曲线的几何性质的一般方法 教学重点:椭圆的几何性质教学难点:如何贯彻数形结合思想,运用曲线方程研究几何性质 授课类型:新授课 课时安排:1课时教具:多媒体.实物投影仪 内容分析:根据曲线的方程,研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一,根据曲线的条件列出方程,如果说是解析几何的手段,那么根据曲线的方程研究它的性质.画图就是解析几何的目的怎样用代数的方法来研究曲线原性质呢?本节内容为系统地按照方程来研究曲线的几何性质提供了一个范例,因此,本节内容在解析几何中占有非常重要的地位通过本节的学习,使学生掌握应从哪些方面来讨论一般曲线的几何性质,从而对曲线的方程和方程的曲线彼此之间的相辅相成的辩证关系,对解析几何的基本思想有更深的了解通过对椭圆几种画法的学习,能深化对椭圆定义的认识,提高画图能力;通过几何性质的简单的应用,了解到如何应用几何性质去解决实际问题,提高学生用数学知识解决实际问题的能力本节内容的重点是椭圆的几何性质――范围.对称性.顶点.离心率.准线方程;根据方程研究曲线的几何性质的思路与方法;椭圆的几种画法.难点是椭圆的离心率.准线方程及椭圆的第二定义的理解,关键是掌握椭圆的标准方程与椭圆图形的对应关系,理解关掌握两种椭圆的定义的等价性根据教学大纲的安排,本节内容分4个课时进行教学,本节内容的课时分配作如下设计:第一课时,椭圆的范围.对称性.顶点坐标.离心率.椭圆的画法;第二课时,椭圆的第二定义.椭圆的准线方程;第三课时,焦半径公式与椭圆的标准方程;第四课时,椭圆的参数c b a ,,e c b a ,,,方程及应用教学过程: 一、复习引入:1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.标准方程:,()3.问题:(1)椭圆曲线的几何意义是什么?(2)“范围”是方程中变量的取值范围,是曲线所在的位置的范围,椭圆的标准方程中的取值范围是什么?其图形位置是怎样的?(3)标准形式的方程所表示的椭圆,其对称性是怎样的?(4)椭圆的顶点是怎样的点?椭圆的长轴与短轴是怎样定义的?长轴长.短轴长各是多少?的几何意义各是什么?(5)椭圆的离心率是怎样定义的?用什么来表示?它的范围如何?在这个范围内,它的变化对椭圆有什么影响?(6)画椭圆草图的方法是怎样的? 二、讲解新课:由椭圆方程()研究椭圆的性质.(利用方程研究,说明结论与由图形观察一致)(1)范围:从标准方程得出,,即有,,可知椭圆落在组成的矩形中.(2)对称性:把方程中的换成方程不变,图象关于轴对称.换成方程不变,图象关于轴对称.把同时换成方程也不变,图象关于原点对称.12222=+b y a x 12222=+bx a y 0>>b a c b a ,,12222=+by a x 0>>b a 122≤a x 122≤by a x a ≤≤-b y b ≤≤-b y a x ±=±=,y x --,QB 2B 1A 2A 1P F 2F 1P ′P ″xOy如果曲线具有关于轴对称,关于轴对称和关于原点对称中的任意两种,则它一定具有第三种对称原点叫椭圆的对称中心,简称中心.轴.轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点在椭圆的方程里,令得,因此椭圆和轴有两个交点,它们是椭圆的顶点令,得,因此椭圆和轴有两个交,它们也是椭圆的顶点因此椭圆共有四个顶点:, 加两焦点共有六个特殊点. 叫椭圆的长轴,叫椭圆的短轴.长分别为分别为椭圆的长半轴长和短半轴长.椭圆的顶点即为椭圆与对称轴的交点. 至此我们从椭圆的方程中直接可以看出它的范围, 对称性, 顶点.因而只需少量描点就可以较正确的作图了.(4)离心率:发现长轴相等,短轴不同,扁圆程度不同 这种扁平性质由什么来决定呢? 概念:椭圆焦距与长轴长之比 定义式:范围: 考察椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例椭圆变扁,直至成为极限位置线12222=+b y a x 0=y a x ±=)0,(),0,(2a A a A -12222=+by a x b y ±=),0(),,0(2b B b B -12222=+b y a x )0,(),0,(2a A a A -),0(),,0(2b B b B -)0,(),0,(21c F c F -b a 2,2ace =2)(1a b e -=10<<e 0,0→→c e ,,1a c e →→B 2B 1A 2A 1xOy段,此时也可认为圆为椭圆在时的特例三、讲解范例:例1 求椭圆的长轴和短轴的长.离心率.焦点和顶点的坐标,并用描点法画出它的图形.解:把已知方程化成标准方程所以,,因此,椭圆的长轴的长和短轴的长分别为,离心率,两个焦点分别为,椭圆的四个顶点是,将已知方程变形为,根据,在的范围内算出几个点的坐标:先描点画出椭圆的一部分,再利用椭圆的对称性画出整个椭圆:例2 在同一坐标系中画出下列椭圆的简图:(1)(2)答:简图如下:400251622=+y x 1452222=+y x 345,4,522=-===c b a 82,102==b a 53==a c e )0,3(),0,3(21F F -)0,5(),0,5(2A A -)4,0(),4,0(2B B -22554x y -±=22554x y -=50≤≤x ),(yx 1162522=+y x 192522=+y x例3 分别在两个坐标系中,画出以下椭圆的简图:(1) (2)答:简图如下:四、课堂练习:1.已知椭圆的一个焦点将长轴分为:两段,求其离心率 解:由题意,=:,即,解得 2.如图,求椭圆,()内接正方形ABCD 的面积解由椭圆和正方形的中心对称性知,正方形BFOE 的面积是所求正方形面积的1/4,且B 点横纵坐标相等,故设B (),代入椭圆方程求得,即正方形ABCD 面积为五、小结:这节课学习了用方程讨论曲线几何性质的思想方法;学习了椭圆的几何性质:对称性.顶点.范围.离心率;学习了椭圆的描点法画图及徒手画椭圆草图的方法六、课后作业: 七、板书设计(略)14922=+y x 1364922=+yx)(:)(c a c a -+2311=-+e e 625-=e 12222=+by a x 0>>b a 22222ba b a t +=22224b a b a +八、课后记:。
椭圆的几何性质教案一、教学目标1. 知识与技能:(1)理解椭圆的定义及其基本性质;(2)掌握椭圆的标准方程及参数含义;(3)学会运用椭圆的性质解决实际问题。
2. 过程与方法:(1)通过观察、思考、讨论,培养学生的逻辑思维能力和解决问题的能力;(2)利用图形计算器或软件,进行椭圆的动态演示,提高学生的直观认识。
3. 情感态度与价值观:(1)激发学生对椭圆几何性质的兴趣,培养其对数学美的感受;(2)培养学生团结协作、勇于探索的精神。
二、教学内容1. 椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹。
2. 椭圆的基本性质:(1)椭圆的焦点在x轴上,设为F1(-c,0)、F2(c,0),其中c>0;(2)椭圆的半长轴为a,半短轴为b,满足a>b>0;(3)椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1;(4)椭圆的离心率e=c/a,其中0<e<1;(5)椭圆的焦距为2c,长轴为2a,短轴为2b。
三、教学重点与难点1. 教学重点:(1)椭圆的定义及其基本性质;(2)椭圆的标准方程及其参数含义。
2. 教学难点:(1)椭圆的性质在实际问题中的应用;(2)椭圆离心率的求解。
四、教学过程1. 导入:(1)通过复习圆的性质,引导学生思考椭圆的定义;(2)利用图形计算器或软件,展示椭圆的动态图像,引导学生观察椭圆的特点。
2. 新课讲解:(1)讲解椭圆的定义及其基本性质;(2)推导椭圆的标准方程及其参数含义;(3)通过实例,解释椭圆性质在实际问题中的应用。
3. 课堂练习:(1)利用椭圆的性质,求解椭圆上的点满足的条件;(2)根据椭圆的参数,判断椭圆的位置和形状。
五、课后作业1. 复习椭圆的定义及其基本性质;2. 练习椭圆的标准方程及其参数含义;3. 探索椭圆性质在实际问题中的应用。
六、教学活动与方法1. 采用问题驱动法,引导学生主动探究椭圆的性质;2. 利用图形计算器或软件,进行椭圆的动态演示,增强学生的直观感受;3. 组织小组讨论,培养学生的团队合作精神。
椭圆的几何性质教学设计教学设计:椭圆的几何性质一、教学目标:1. 理解椭圆的定义和几何性质;2. 掌握椭圆的焦点、长轴、短轴等基本概念;3. 能够利用椭圆的性质进行问题求解。
二、教学内容:1. 椭圆的定义和性质;2. 椭圆的焦点、长轴、短轴;3. 椭圆的离心率;4. 椭圆的标准方程;5. 椭圆的参数方程;6. 椭圆的图形和应用。
三、教学过程:1. 导入(5分钟)通过引导学生观察一些日常生活中的椭圆形状物体,如篮球、鸡蛋等,引发学生对椭圆的思考,并让学生描述这些物体的特点。
2. 椭圆的定义和性质(15分钟)介绍椭圆的定义:平面上到两个定点的距离之和等于常数的点的集合。
然后讲解椭圆的性质,如对称性、离心率等,并通过实例说明。
3. 椭圆的焦点、长轴、短轴(15分钟)引导学生理解椭圆的焦点、长轴、短轴的概念,并讲解它们之间的关系。
通过实例让学生计算椭圆的焦点坐标、长轴和短轴的长度。
4. 椭圆的离心率(10分钟)介绍椭圆的离心率的概念,并讲解离心率与椭圆形状的关系。
通过实例计算椭圆的离心率,并让学生比较不同离心率的椭圆形状。
5. 椭圆的标准方程(15分钟)讲解椭圆的标准方程:(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标。
通过实例让学生根据给定的参数确定椭圆的标准方程。
6. 椭圆的参数方程(10分钟)讲解椭圆的参数方程:x = a*cosθ, y = b*sinθ。
然后通过实例让学生根据给定的参数绘制椭圆的图形。
7. 椭圆的图形和应用(20分钟)通过实际问题引导学生应用椭圆的性质进行求解,如椭圆的轨迹问题、椭圆的面积问题等。
同时,让学生观察和分析一些椭圆相关的图形和实际应用,如行星运动轨迹、建筑设计等。
8. 总结与拓展(10分钟)对本节课所学内容进行总结,并与学生一起回顾重要的概念和方法。
同时,提供一些拓展问题,让学生进一步巩固和拓展所学知识。
椭圆的几何性质教案第一章:椭圆的定义与标准方程1.1 椭圆的定义引导学生观察生活中的椭圆形状实例,如地球、柠檬等。
引导学生通过实际操作,用两个固定点(焦点)和一条连接这两个点的线段(半长轴)来定义椭圆。
强调椭圆的两个焦点在横轴上,且两个焦点的距离等于椭圆的长轴长度。
1.2 椭圆的标准方程引导学生推导椭圆的标准方程。
引导学生通过实际操作,用两个焦点和两个顶点来确定椭圆的方程。
强调椭圆的标准方程为\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \),其中\( a \) 是半长轴的长度,\( b \) 是半短轴的长度。
第二章:椭圆的长轴、短轴和焦距2.1 椭圆的长轴引导学生通过实际操作,测量和记录椭圆的长轴长度。
强调椭圆的长轴是连接两个焦点的线段,其长度等于椭圆的半长轴的两倍。
2.2 椭圆的短轴引导学生通过实际操作,测量和记录椭圆的短轴长度。
强调椭圆的短轴是垂直于长轴的线段,其长度等于椭圆的半短轴的两倍。
2.3 椭圆的焦距引导学生通过实际操作,测量和记录椭圆的焦距长度。
强调椭圆的焦距是两个焦点之间的距离,其长度等于椭圆的长轴长度减去短轴长度。
第三章:椭圆的面积3.1 椭圆的面积公式引导学生推导椭圆的面积公式。
强调椭圆的面积公式为\( A = \pi ab \),其中\( a \) 是半长轴的长度,\( b \) 是半短轴的长度。
3.2 椭圆的面积计算引导学生通过实际操作,计算给定椭圆的长轴和短轴长度,计算其面积。
强调椭圆的面积是椭圆内部所有点构成的区域的大小。
第四章:椭圆的离心率4.1 椭圆的离心率定义引导学生通过实际操作,观察椭圆的离心率与长轴、短轴的关系。
强调椭圆的离心率是焦距与长轴之间的比值,其公式为\( e = \frac{c}{a} \),其中\( c \) 是焦距的长度,\( a \) 是半长轴的长度。
4.2 椭圆的离心率性质引导学生通过实际操作,观察和记录不同椭圆的离心率性质。
椭圆的简单几何性质教学教案第一章:椭圆的定义与标准方程1.1 椭圆的定义引入椭圆的概念,通过实际物体(如地球、月球绕太阳的运动)来让学生理解椭圆的形状。
解释椭圆是由一个固定点(焦点)和到该点距离之和等于常数的点的集合所形成的图形。
1.2 椭圆的标准方程推导椭圆的标准方程,即x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。
解释方程中a和b的含义,以及它们与椭圆的性质之间的关系。
第二章:椭圆的长轴、短轴和焦距2.1 椭圆的长轴定义椭圆的长轴,即通过椭圆中心并且平行于x轴的轴。
解释长轴的长度是2a,与椭圆的半长轴a的关系。
2.2 椭圆的短轴定义椭圆的短轴,即通过椭圆中心并且垂直于x轴的轴。
解释短轴的长度是2b,与椭圆的半短轴b的关系。
2.3 椭圆的焦距定义椭圆的焦距,即焦点之间的距离。
解释焦距与椭圆的长轴和短轴的关系,即焦距等于2c,其中c是焦点到椭圆中心的距离。
第三章:椭圆的面积3.1 椭圆的面积公式推导椭圆的面积公式,即A = πab,其中a和b分别是椭圆的半长轴和半短轴。
解释面积公式中π的作用和意义。
3.2 椭圆的面积性质解释椭圆的面积与长轴和短轴的关系,即面积与长轴和短轴的乘积成正比。
举例说明椭圆面积的计算方法,并进行实际计算练习。
第四章:椭圆的离心率4.1 椭圆的离心率定义定义椭圆的离心率e,即焦距与长轴之间的比值,e = c/a。
解释离心率的作用和意义,以及它与椭圆的形状之间的关系。
4.2 椭圆的离心率性质解释离心率与椭圆的长轴和短轴的关系,即离心率越小,椭圆越接近于圆形。
举例说明椭圆离心率的计算方法,并进行实际计算练习。
第五章:椭圆的焦点和直线的交点5.1 椭圆的焦点定义椭圆的焦点,即椭圆上到焦点距离之和等于常数的点。
解释焦点的性质,以及它们与椭圆的中心和长轴之间的关系。
5.2 椭圆与直线的交点解释椭圆与直线的位置关系,以及交点的性质。
举例说明椭圆与直线交点的计算方法,并进行实际计算练习。
一、教案基本信息椭圆的简单几何性质教案课时安排:1课时教学目标:1. 让学生掌握椭圆的定义及基本性质。
2. 培养学生运用几何知识分析问题、解决问题的能力。
3. 引导学生发现椭圆在实际生活中的应用,培养学生的学习兴趣。
教学内容:1. 椭圆的定义2. 椭圆的基本性质3. 椭圆的标准方程4. 椭圆的焦点与离心率5. 椭圆的参数方程二、教学过程1. 导入:利用多媒体展示一些生活中的椭圆形状的物体,如地球、月球、鸡蛋等,引导学生发现椭圆在生活中的广泛存在。
2. 知识讲解:1. 讲解椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹。
2. 讲解椭圆的基本性质:(1)椭圆的两个焦点在椭圆的长轴上,且长轴长度为2a。
(2)椭圆的短轴长度为2b。
(3)椭圆的离心率e=c/a,其中c为焦距,a为半长轴,b为半短轴。
(4)椭圆的面积S=πab。
3. 讲解椭圆的标准方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1。
4. 讲解椭圆的参数方程:椭圆的参数方程为x=acosθ,y=bsinθ。
3. 案例分析:给出一个实际问题,如求解椭圆上一点到两焦点的距离之和。
引导学生运用椭圆的性质解决问题。
4. 课堂练习:布置一些有关椭圆性质的练习题,让学生课后巩固所学知识。
5. 总结:对本节课的内容进行总结,强调椭圆的基本性质及应用。
三、课后作业1. 复习椭圆的定义及基本性质。
2. 练习椭圆的标准方程和参数方程的转化。
3. 寻找生活中的椭圆形状物体,了解椭圆在实际中的应用。
四、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对椭圆知识的理解和运用能力。
五、教学评价通过课堂讲解、练习和课后作业,评价学生对椭圆定义、基本性质、标准方程和参数方程的掌握程度,以及运用椭圆知识解决实际问题的能力。
六、教学活动设计1. 互动提问:在上一节课中,我们学习了椭圆的定义及基本性质,谁能简要回顾一下椭圆的定义是什么?2. 小组讨论:请同学们分成小组,讨论如何运用椭圆的性质解决实际问题。
椭圆的简单几何性质教学教案第一章:椭圆的定义与基本性质1.1 椭圆的定义引入椭圆的概念,通过实际例子让学生感受椭圆的形状,如地球、月球绕太阳的运动轨迹等。
引导学生思考椭圆与圆的区别和联系,明确椭圆是平面上到两个固定点距离之和为常数的点的轨迹。
1.2 椭圆的基本性质引导学生探究椭圆的长轴、短轴、焦距等基本几何参数,并了解它们之间的关系。
引导学生通过画图或利用几何软件验证椭圆的离心率与焦距的关系。
第二章:椭圆的弧长与面积2.1 椭圆的弧长引导学生利用椭圆的参数方程或积分方法计算椭圆上任意弧长的公式。
通过实际例子,让学生了解椭圆弧长公式的应用,如计算椭圆上的某个角度对应的弧长。
2.2 椭圆的面积引导学生利用椭圆的参数方程或积分方法计算椭圆的面积公式。
通过实际例子,让学生了解椭圆面积公式的应用,如计算给定长轴和短轴的椭圆的面积。
第三章:椭圆的焦点与离心率3.1 椭圆的焦点引导学生利用椭圆的定义和基本性质,确定椭圆的焦点位置和数量。
通过实际例子,让学生了解焦点与椭圆的离心率之间的关系。
3.2 椭圆的离心率引导学生利用椭圆的离心率公式,计算给定长轴和短轴的椭圆的离心率。
通过实际例子,让学生了解离心率对椭圆形状的影响,如离心率越大,椭圆越扁平。
第四章:椭圆的直角坐标方程4.1 椭圆的标准方程引导学生利用椭圆的参数方程和基本性质,推导出椭圆的标准方程。
通过实际例子,让学生了解椭圆标准方程的应用,如给定长轴和短轴,求椭圆的方程。
4.2 椭圆的参数方程引导学生利用椭圆的标准方程,推导出椭圆的参数方程。
通过实际例子,让学生了解椭圆参数方程的应用,如求椭圆上任意一点的坐标。
第五章:椭圆的简单几何性质的应用5.1 椭圆的切线与法线引导学生利用椭圆的性质和几何知识,判断给定点是否在椭圆上,并求出相应的切线和法线方程。
通过实际例子,让学生了解切线和法线在解决椭圆问题中的作用。
5.2 椭圆的焦点弦引导学生利用椭圆的性质和几何知识,求解给定两点的焦点弦方程。
椭圆的简单几何性质教案教案:椭圆的简单几何性质一、教学目标:1.了解椭圆的定义和基本性质;2.掌握椭圆的离心率与长短轴长度的关系;3.能够判定给定的图形是否为椭圆。
二、教学内容:1.椭圆的定义;2.椭圆的焦点、离心率与长短轴之间的关系;3.如何判定给定的图形是否为椭圆。
三、教学过程:Step 1:导入新知引入椭圆的概念:椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a,且到两个点F1和F2的距离之差的绝对值等于常数2b的点的轨迹。
图示:绘制一个椭圆的图形,并标出其中心O、两个焦点F1、F2、长轴2a和短轴2b。
Step 2:椭圆的性质性质1:椭圆的任意一点到两个焦点的距离之和等于椭圆的长轴长度,即PF1+PF2=2a。
图示:绘制一个椭圆,任意选取一点P,并测量该点到两个焦点的距离PF1和PF2,证明PF1+PF2=2a。
性质2:椭圆的离心率e与椭圆的长短轴长度之比的平方等于1,即e^2=1-(b^2/a^2)。
图示:绘制一个椭圆,其中心O、两个焦点F1、F2和两个顶点A、B。
测量焦距CP和长轴2a的长度,以及短轴2b的长度,计算离心率e,并验证e^2=1-(b^2/a^2)。
Step 3:判定椭圆的图形给定一组数据,由学生判断该图形是否为椭圆。
示例:数据为横坐标x和纵坐标y的点集合。
图示:将一组数据绘制成一个坐标系,并将数据的散点连线,观察图形是否为椭圆。
Step 4:练习与巩固为学生提供一系列的练习题,巩固椭圆的性质和判定方法。
四、教学资源:1.教学PPT;2.椭圆的示意图;3.测量工具(尺子、量角器);4.练习题集合。
五、教学评价:1.在教学过程中,引导学生积极参与讨论、思考,并及时给予帮助和指导;2.在练习环节中,及时纠正学生的错误,鼓励他们在做错的题目上找到错误原因并进行改正。
六、教学延伸:1.椭圆的方程:利用椭圆的性质,可以推导出椭圆的标准方程和一般方程;2.椭圆的焦点性质:椭圆的焦点位置与长短轴之间的关系。
《2.2.2 椭圆的几何性质》教学案1
◆ 知识与技能目标
了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义.
◆ 过程与方法目标
(1)复习与引入过程
引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过P 48的思考问题,探究椭圆的扁平程度量椭圆的离心率.〖板书〗§2.1.2椭圆的简单几何性质.
(2)新课讲授过程
(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?
通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.
(ii )椭圆的简单几何性质
①范围:由椭圆的标准方程可得,22
2210y x b a
=-≥,进一步得:a x a -≤≤,同理可得:b y b -≤≤,即椭圆位于直线x a =±和y b =±所围成的矩形框图里;
②对称性:由以x -代x ,以y -代y 和x -代x ,且以y -代y 这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以x 轴和y 轴为对称轴,原点为对称中心;
③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;
④离心率: 椭圆的焦距与长轴长的比a
c e =叫做椭圆的离心率(10<<e ),
⎩⎨⎧→→→椭圆图形越扁时当01a ,,b ,c e ;⎩⎨⎧→→→椭圆越接近于圆
时当a ,b ,c e 00 . (iii )例题讲解与引申、扩展
例4 求椭圆221625400x y +=的长轴和短轴的长、离心率、焦点和顶点的坐标. 分析:由椭圆的方程化为标准方程,容易求出,,a b c .引导学生用椭圆的长轴、
短轴、离心率、焦点和顶点的定义即可求相关量.
扩展:已知椭圆()22550mx y m m +=>的离心率为105
e =,求m 的值. 解法剖析:依题意,0,5m m >≠,但椭圆的焦点位置没有确定,应分类讨论:①当焦点在x 轴上,即05m <<时,有5,,5a b m c m ===-52
55m
-=,得3m =;
②当焦点在y 轴上,即5m >时,有,5,5a m b c m ===-,∴5
10253
m m m -=⇒=. 例5 如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上,由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知12BC F F ⊥,1 2.8F B cm =,12 4.5F F cm =.建立适当的坐标系,求截口BAC 所在椭圆的方程.
解法剖析:建立适当的直角坐标系,设椭圆的标准方程为22
221x y a b
+=,算出,,a b c 的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于,,a b c 的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.
引申:如图所示, “神舟”截人飞船发射升空,进入预定
轨道开始巡天飞行,其轨道是以地球的中心2F 为一个焦点的椭
圆,近地点A 距地面200km ,远地点B 距地面350km ,已知
地球的半径6371R km =.建立适当的直角坐标系,求出椭圆
的轨迹方程.
例6如图,设(),M x y 与定点()4,0F 的距离和它到直线l :254
x =的距离的比是常数45
,求点M 的轨迹方程. 分析:若设点(),M x y ,则()224MF x y =-+,到直线l :254x =的距离254
d x =-,则容易得点M 的轨迹方程. 引申:(用《几何画板》探究)若点(),M x y 与定点()
,0F c 的距离和它到定直线l :2a x c =的距离比是常数c e a
=()0a c >>,则点M 的轨迹方程是椭圆.其中定点(),0F c 是焦点,定直线l :2a x c
=相应于F 的准线;由椭圆的对称性,另一焦点(),0F c '-,相应于F '的准线l ':2
a x c
=-. ◆ 情感、态度与价值观目标
在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新.必须让学生认同和掌握:椭圆的简单几何性质,能由椭圆的标准方程能直接得到椭圆的范围、对称性、顶点和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.
◆能力目标
(1) 分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问
题和解决问题的能力.
(2) 思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为
几何问题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生
的辩证思维能力.
(3)实践能力:培养学生实际动手能力,综合利用已有的知识能力.
(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.
练习:
作业:。