线性代数期末考试重点
- 格式:doc
- 大小:814.50 KB
- 文档页数:9
本学期线性代数课程的考试要点:第一章一、二阶行列式定义及其计算――对角线法则,利用行列式性质化为上(下)三角形行列式,利用展开定理进行计算(注意记号的正确写法);二、数码排列的逆序数的计算;三、n 阶行列式的定义及其计算――利用行列式性质化为上(下)三角形行列式,利用展开定理进行计算(注意记号的正确写法);四、行列式的展开定理的有关结论。
第二章一、矩阵的概念及其有关运算(加,减,数乘,矩阵相乘,逆矩阵,方阵的行列式,方阵的幂乘)(矩阵相乘一般不满足交换律,必须注意是左乘还是右乘)二、逆矩阵的定义及有关概念和有关结论;三、逆矩阵存在的充要条件;四、矩阵的初等变换(主要是初等行变换);五、行阶梯形矩阵和行最简形矩阵的定义;六、如何利用矩阵的初等行变换将一个矩阵化为行阶梯形和行最简形;七、初等矩阵的概念;八、矩阵的秩的概念;九、如何利用矩阵的初等行变换:(1)求出可逆矩阵的逆矩阵;(2)求解矩阵方程;(3)确定所给矩阵的秩。
第三章一、方程组的系数矩阵和增广矩阵的概念;二、如何利用矩阵的初等行变换判定齐次线性方程组是否有非零解;三、如何利用矩阵的初等行变换判定非齐次线性方程组是否有解;有解时是唯一解还是无穷多解;四、向量的线性组合、线性表示、线性相关、线性无关的概念;五、如何利用矩阵的初等行变换判定向量组:(1)求出所给向量组的秩;(2)判定向量组是否线性相关;(3)求出向量组的极大无关组;(4)求出不在极大无关组中的向量由极大无关组向量线性表示的表达式。
六、解向量、解空间、基础解系的概念;七、如何利用矩阵的初等行变换求解线性方程组:(1)求出齐次线性方程组的基础解系和通解的表达式;(2)求出非齐次线性方程组的一个特解,求出相应的齐次线性方程组的基础解系,最后,利用基础解系写出非齐次线性方程组的通解的表达式。
第四章一、如何求出所给矩阵的特征值和特征向量。
线性代数重点难点一、重点内容及要求:1. 理解行列式的概念,能熟练运用行列式的基本性质以及行列式按行(列)展开定理计算行列式,会用Laplace定理和Cramer 法则解线性方程组。
2. 理解矩阵及其秩的概念,会用初等变换求其秩,掌握线性方程组有解、有唯一解以及无解的条件。
掌握用行的初等变换求方程组解的方法。
3. 会熟练运用矩阵的加法、数乘、乘法、转置等运算法则,会计算方阵乘积的行列式。
理解矩阵可求逆的概念,掌握利用伴随矩阵和初等变换求出矩阵逆的方法。
理解矩阵的初等变换和初等矩阵的关系, 理解初等变换和矩阵乘法的关系,掌握矩阵可逆的充要条件。
掌握分块矩阵的运算法则。
4. 理解线性空间、向量的线性组合和线性表示、向量组等价、向量组的线性相关线性无关以及向量组的极大线性无关组和向量组秩的概念,掌握向量组线性相关、线性无关的性质,能判断向量组的线性相关和无关性,会求出向量组的极大线性无关组、确定向量组的秩。
掌握子空间的判断条件,会求出线性空间的基、维数以及向量在一组基下的坐标。
理解基变换的概念,会求过渡矩阵、会用坐标变换公式。
掌握理解向量组的秩与矩阵秩的关系。
理解非齐次线性方程组的解与其导出的齐次线性方程组的解之间的关系、掌握齐次线性方程组基础解系的求法以及写出非齐次线性方程组的通解。
5. 理解内积和欧氏空间的概念,掌握Schmidt正交化方法,理解标准正交基、正交矩阵的概念及其相关性质。
6. 了解线性变换的概念,会写出在基下的矩阵。
理解线性变化和矩阵特定的一一对应关系。
理解并能熟练计算矩阵的特征值和特征向量,掌握矩阵的特征值和特征向量的相关性质。
理解相似矩阵的概念和性质。
掌握矩阵可相似对角阵的充要条件,能熟练地利用之化矩阵为对角阵。
理解实对称矩阵的特征值和特征向量的性质,能熟练地用整交矩阵化实对称矩阵化为对角阵。
7. 理解二次型及其秩的概念,理解对称矩阵和二次型的一一对应关系,理解二次型的标准形、规范形概念以及惯性定理,熟练利用配方法和正交矩阵化二次型为标准形。
《线性代数》期末复习提纲第一部分:基本要求(计算方面)1. 四阶行列式的计算;2. N 阶特殊行列式的计算(如有行和、列和相等);3. 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);4. 求矩阵的秩、逆(两种方法);解矩阵方程;5. 含参数的线性方程组解的情况的讨论;6. 齐次、非齐次线性方程组的求解(包括唯一、无穷多解);7. 讨论一个向量能否用和向量组线性表示;8. 讨论或证明向量组的相关性;9. 求向量组的极大无关组,并将多余向量用极大无关组线性表示;10.将无关组正交化、单位化;11.求方阵的特征值和特征向量;12.讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;13.通过正交相似变换(正交矩阵)将对称矩阵对角化;14.写出二次型的矩阵,并将二次型标准化,写出变换矩阵;15.判定二次型或对称矩阵的正定性。
第二部分:基本知识一、行列式1.行列式的定义用2n 个元素ij a 组成的记号nnn n n n a a a a a a a a a212222111211称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算1. 一阶行列式a a =,二、三阶行列式有对角线法则;2. N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
3. 特特情况(1) 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0;Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例;Ⅳ 奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB =BA ,称A 、B 是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A 、B 为同阶方阵,则B A AB ⋅=; ④n kA k A =3.矩阵的秩(1)定义 非零子式的最大阶数称为矩阵的秩;(2)秩的求法 一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
线性代数期末题库线性代数的金融应用线性代数期末题库:线性代数的金融应用【第一题】投资组合分析假设你是一位金融投资分析师,你的客户有三种投资选择:股票、债券和期货。
你需要通过线性代数的方法来分析这些投资的可能结果。
1.1 建立模型首先,我们可以定义一个向量 x = [x1, x2, x3],表示投资在股票、债券和期货上的金额。
假设我们有一个初始投资总额的限制,即 x1 +x2 + x3 = C,其中 C 为常数。
这样就形成了一个线性方程。
另外,我们需要给出投资项目的收益率向量 r = [r1, r2, r3],其中 ri表示在第 i 种投资中获得的收益率。
1.2 计算收益和风险要计算投资组合的预期收益,我们可以将投资金额向量与收益率向量进行点积运算:E(R) = r⋅x。
同样地,要计算投资组合的风险,我们可以定义投资组合的协方差矩阵Σ,并用向量 x 和Σ 进行矩阵乘法运算:Var(R) = x⋅Σ⋅x。
1.3 优化投资组合为了找到最佳的投资组合,我们可以引入一个目标函数和一些约束条件。
假设我们的目标是最大化投资组合的预期收益 E(R),同时限制投资总额为 C。
利用线性代数的优化方法,我们可以建立拉格朗日函数:L = r⋅x − λ(x1 + x2 + x3 - C),其中λ 是拉格朗日乘子。
然后,对拉格朗日函数取偏导数,并令其等于零,可以求解最优的投资金额。
【第二题】奇异值分解在金融市场中的应用奇异值分解(Singular Value Decomposition, SVD)是线性代数中常用的一种矩阵分解方法,广泛应用于金融市场的数据分析和预测。
2.1 建立模型假设我们有一个包含金融数据的矩阵 A,其中每一行代表一个交易日,每一列代表一个金融指标(如股票收益率、利率等)。
我们希望能够从这个矩阵中提取出有用的信息,并进行预测和决策。
2.2 奇异值分解通过对矩阵 A 进行奇异值分解,可以得到三个矩阵 U、Σ 和 V。
线性代数期末知识点总结1、行列式1.行列式共有个元素,展开后有项,可分解为行列式;2.代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为;3.代数余子式和余子式的关系:4.设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则;5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值;6.对于阶行列式,恒有:,其中为阶主子式;7.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值;2、矩阵1.是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵;2.对于阶矩阵:无条件恒成立;3.4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯)3、矩阵的初等变换与线性方程组1.一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若;2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5.矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则;6.三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7.伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、8.关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0;9.线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程;10.线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得;11.由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)4、向量组的线性相关性1.个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应;2.①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程)3.矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14)4.;(例15)5.维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面;6.线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论)8.方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆);9.对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩;10.若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置)11.齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解;12.设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13.①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关;14.线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数;15.设的矩阵的秩为,则元齐次线性方程组的解集的秩为:;16.若为的一个解,为的一个基础解系,则线性无关;(题33结论)5、相似矩阵和二次型1.正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2.施密特正交化:;;3.对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4.①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似;5.相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格);6.为对称阵,则为二次型矩阵;7.元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。
《线性代数》重点题一. 单项选择题1.设A 为3阶方阵,数λ = -3,|A | =2,则 |λA | =( ).A .54;B .-54;C .6;D .-6.解. .54227)3(33-=⨯-=-==A A A λλ 所以填: B.2、设A 为n 阶方阵,λ为实数,则|λA |=( )A 、λ|A |;B 、|λ||A |;C 、λn |A |;D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C.3.设矩阵()1,2,12A B ⎛⎫==- ⎪⎝⎭ 则AB =( ).解. ().24121,221⎪⎪⎭⎫⎝⎛--=-⎪⎪⎭⎫ ⎝⎛=AB 所以填: D.A. 0;B. ()2,2-;C. 22⎛⎫ ⎪-⎝⎭;D. 2142-⎛⎫⎪-⎝⎭.4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32.解. |-2A |=(-2)3A =-8⨯4=-32. 所以填: D. 5.以下结论正确的是( ).A .一个零向量一定线性无关;B .一个非零向量一定线性相关;C .含有零向量的向量组一定线性相关;D .不含零向量的向量组一定线性无关.解. A .一个零向量一定线性无关;不对,应该是线性相关.B .一个非零向量一定线性相关;不对,应该是线性无关.C .含有零向量的向量组一定线性相关;对.D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C.6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极大无关组为( )A 、 12,; ααB 、 123,, ;αααC 、 124,, ;αααD 、1234,, ,αααα解. (B)93页7.设A,B,C 是n 阶矩阵,下列选项中不正确的是( ).A .若A 可逆,则*1A A A-=,其中*A 为A 的伴随矩阵;B .若AB E =,则1B A -=;C .若矩阵A 可逆,数k ≠ 0,则()11kA kA --=;D .对标准矩阵方程AXB C =,若A ,B 可逆,则11X A CB --=.解. A .若A 可逆,则*1A A A-=,其中*A 为A 的伴随矩阵;对.B .若AB E =,则1B A -=;对.C .若矩阵A 可逆,数k ≠ 0,则()11kA kA --=;不对,应该是().111--=A kkA D .对标准矩阵方程AXB C =,若A ,B 可逆,则11X A CB --=.对.所以填: C.8、 矩阵A =1111-⎛⎫ ⎪-⎝⎭的伴随矩阵A *=( ). A 、1111⎛⎫⎪⎝⎭;B 、⎪⎪⎭⎫ ⎝⎛--1111;C 、⎪⎪⎭⎫⎝⎛--1111; D 、⎪⎪⎭⎫ ⎝⎛--1111.解.因为112112221,(1)11,(1)11,1A A A A ==--⋅==--⋅==.所以1121*12221111AA A A A ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦ 故填A.41页9.若n 元齐次线性方程组0Ax =有非零解, 则( ). A . ()R A n <; B . ()R A n =;C . ()0R A =;D .A 、B 、C 都不对.解. A . ()R A n <;对.B . ()R A n =;不对, 此时应该0Ax =有且仅有零解.C . ()0R A =;不对. 此时, 仅是0Ax =有非零解的一种情况.D .A 、B 、C 都不对. 不对.所以填:A.10、 ,A B n 与均为阶方阵则下列结论中成立的是( ).A 、det()0,,;AB A O B O ===则或 B 、det()0,det 0,det 0;AB A B ===则或C 、,,;AB O A O B O ===则或;D 、,det 0,det 0.AB O A B ≠≠≠则或 解. A 、不对. B 、40页(iii),AB A B =.即有det()0,det 0,det 0AB A B ===则或.所以填: B .11.设向量组123,,ααα线性相关,234,,ααα线性无关,则下列成立是( ).A . 2α可由34,αα线性表示;B .4α可由23,αα线性表示;C . 4α不可由123,,,ααα线性表示;D .3α可由2,α4α线性表示.解.(p90例7.) 由题设“设向量组123,,ααα线性相关,234,,ααα线性无关”.①因234,,ααα线性无关,则23,αα线性无关.再由123,,ααα线性相关.则1α可由23,αα线性表示.②用反证法.假设4α可由123,,,ααα线性表示,而由①知1α可由23,αα线性表示.因此4α可由23,αα线性表示.这与题设234,,ααα线性无关相矛盾.所以4α不可由123,,,ααα线性表示. 所以填: C.12、设123,,a a a 是二维实向量,则( ).A 、123,,a a a 一定线性无关;B 、1a 一定可由23,a a 线性表出;C 、123,,a a a 一定线性相关;D.12,a a 一定线性无关.解. A 不对. B 不对. C.因为105页:n 维实向量12,,,n e e e 叫做n R 中的自然基.因此二维实向量123,,a a a 的自然基为二维实向量12,e e .当然123,,a a a 是线性相关的.即C 对. D 不对. 所以填: C.13.向量空间3R 的一组基为( )A . 1231200,3,1000ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;B . 1231000,1,0001ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;C . 1231010,3,1000ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;D . 1230210,0,0130ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.解. A .1231200,3,1000ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;不是.因31232ααα+=, 所以123,,ααα不是向量空间3R 的一组基.B . 1231000,1,0001ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;是向量空间3R 的一组基.C . 1231010,3,1000ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;不是.因13233ααα-=, 所以123,,ααα不是向量空间3R 的一组基.D . 1230210,0,0130ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.不是.因31223ααα+=, 所以123,,ααα不是向量空间3R 的一组基.所以填: B.14、设A 是4×6矩阵,R (A )=3,则齐次线性方程组Ax =0的基础解系中所含向量的个数是( ).A 、 4;B 、 3 ;C 、 2;D 、1.解.由97页,定理7.设m n ⨯矩阵A 的秩()R A r =,则n 元齐次线性方程组0Ax =的解集S 的秩.S R n r =-现在6, 3.n r ==因此63 3.-= 即填: B.15.设矩阵111213212223212223111213313233311132123313,,a a a a a a A a a a B a a a a a a a a a a a a ⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭12010100100,010,001101P P ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则必有( ). A .12APP B =; B .21AP P B =; C .12PP A B =; D .21P P A B =.解. A . 12APP B =?.10101000110101000110000101033313332232123221311131233313223212213111233323123222113121121B a a aa a a a a a a a a a a a a a a a a a a a a a a a a a a P AP ≠⎪⎪⎪⎭⎫⎝⎛+++=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=因此A 不对.B .21AP P B = ?11121311121321212223212223313233313233121113132221232332313333100010010010100100101001011.a a a a a a AP P a a a a a a a a a a a a a a a a a a a a B a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎪⎪== ⎪⎪⎪ ⎪⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭+⎛⎫ ⎪=+≠ ⎪ ⎪+⎝⎭因此B 不对.C .12PP A B = ?11121311121312212223212223313233313233212223111213113112321333010100010100010100001101101.a a a a a a PP A a a a a a a a a a a a a a a a a a a B a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪⎪== ⎪⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫ ⎪== ⎪ ⎪+++⎝⎭因此C 对.D .21P P A B = ?11121311121321212223212223313233313233212223111213213122322333100010010010100100101001011.a a a a a a P P A a a a a a a a a a a a a a a a a a a B a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪⎪== ⎪⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫ ⎪=≠ ⎪ ⎪+++⎝⎭所以填: C.16、设A ,B ,C 为同阶可逆方阵,则1()ABC -=( ).A 、111ABC ---; B 、111C A B ---; C 、111C B A ---;D 、111B A C ---解。
说明:1.本总结只是把课本的重点知识总结了一下,我没有看到期末考试题,所以考着了算是侥幸,考不着也正常。
2.知识点会了不一定做的对题,所以还要有相应的练习题。
3.前后内容要贯穿起来,融汇贯通,建立自己的知识框架。
第一章行列式1.行列式的定义式(两种定义式)-->行列式的性质-->对行列式进行行、列变换化为上下三角(求行列式的各种方法逐行相加、倒叙相减、加行加列、递推等方法,所有方法是使行列式出现尽可能多的0为依据的)。
2.行列式的应用——>克拉默法则(成立的前提、描述的内容、用途,简单的证明可从逆矩阵入手)。
总结:期末第一章可能不再单独考,但会在求特征值/判断正定性等内容时顺便考察行列式的求解。
第二章矩阵1.矩阵是一个数组按一定的顺序排列,和行列式(一个数)具有天壤之别。
2.高斯消元法求线性方程组的解—>唯一解、无解、无穷解时阶梯型的样子(与第三章解存在的条件以及解的结构联系在一起)3.求逆矩阵的方法(初等变换法,I起到记录所有初等变换的作用)、逆矩阵与伴随矩阵的关系。
4.初等矩阵和初等变换的一一对应关系,学会由初等变换找出与之对应的初等矩阵。
5.分块矩阵(运用分块矩阵有时可以很简单的解决一些复杂问题)记得结论A 可逆,则)A -(1|A |A -1T T αααα=+。
第三章 线性方程组第三章从向量组的角度入手,把线性方程组的系数矩阵的每一列看作一个列向量,从而得到一个向量组假设为n 21,,,ααα ,右边常则看作一个向量β,1)若向量β被向量组n 21,,,ααα 表出唯一(即满足关系:n n n ==),,,,(r ),,,(r 2121βαααααα 时,因为只有向量组n 21,,,ααα 线性无关才表出唯一),则只有唯一解;2)若β不能由向量组n 21,,,ααα 线性表出(即满足条件),,,,(r 1),,,(r 2121βααααααn n =+时)则无解;3)若β由向量组n 21,,,ααα 表出不唯一(即满足条件n n n <=),,,,(r ),,,(r 2121βαααααα 时,只有n 21,,,ααα 线性相关才表出不唯一)有无穷解。
行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行(列),行列式变号.推论1 如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行(列)元素成比例,则此行列式的值为零.性质4 若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++例1 已知,那么( )A.-24B.-12C.-6D.12 答案 B解析2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.3. 行列式按行(列)展开法则定理1 行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==定理2 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==例.设3阶矩阵()ij A a =的行列式12A =,ij A 为ij a 的代数余子式.那么313132323333a A a A a A ++=___12____; 213122322333a A a A a A ++=___0___.4. 行列式的计算(1)二阶行列式1112112212212122a a a a a a a a =- (3)对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-(4)三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)(一般选择有0元素的行或列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.例:思路:将有0的第三行化为只有一个非0元素a 33=1,按该行展开,D=a 33A 33,不用忘记a 33。
《线性代数》的主要知识点第一部分行列式概念:1. n 阶行列式展开式的特点:①共有n!项,正负各半;②每项有n 个元素相乘,且覆盖所有的行与列;③每一项的符号为(列)行)ττ+-()1(2. 元素的余子式以及代数余子式 ij j i ij M )1(A +-=3. 行列式的性质计算方法:1. 对角线法则2. 行列式的按行(列)展开 (另有异乘变零定理)第二部分 矩阵1. 矩阵的乘积注意:①不满足交换率(一般情况下B A A B ≠)②不满足消去率 (由AB=AC 不能得出B=C )③由AB=0不能得出A=0或B=0④若AB=BA ,则称A 与B 是可换矩阵2.矩阵的转置满足的法则:T T T B A )B A (+=+,T T T T T A B AB kA kA ==)(,)(3.矩阵的多项式 设n n x a x a a x +++=Λ10)(ϕ,A 为n 阶方阵,则n n A a A a E a A +++=Λ10)(ϕ称为A 的n 次多项式。
对与对角矩阵有关的多项式有结论如下:(1)如果 1-Λ=P P A ,则n n A a A a E a A +++=Λ10)(ϕ11110---Λ++Λ+=P Pa P Pa EP Pa n n Λ= 1)(-ΛP P ϕ(2)若),,(21n a a a diag Λ=Λ,则))(),(),(()(21n a a a diag ϕϕϕϕΛ=Λ4.逆矩阵:n 阶矩阵A,B ,若E BA AB ==,则A,B 互为逆矩阵。
n 阶矩阵A 可逆0A ≠⇔;n A r =⇔)( (或表示为n A R =)()即A 为满秩矩阵;⇔A 与E 等价;⇔A 可以表示成若干个初等矩阵的乘积;⇔A 的列(行)向量组线性无关;⇔A 的所有的特征值均不等于零求法:①伴随矩阵法:*11A AA ⋅=- ②初等变换法:()()1,,-−−−→−A E E A 初等行变换或⎪⎪⎭⎫⎝⎛−−−→−⎪⎪⎭⎫ ⎝⎛-1A E E A 初等列变换, E 是单位矩阵性质:(1)矩阵A 可逆,则A 的逆矩阵是唯一的(2)设A 是n 阶矩阵,则有下列结论 ①若A 可逆,则1-A 也可逆,且A A =--11)( ②若A 可逆,则T A 也可逆,且T T A A )()(11--=③若A 可逆,数0≠k ,则kA 可逆,且111)(--=A kkA ④若B A .为同阶矩阵且均可逆,则B A .也可逆,且111)(---=A B AB5.方阵A 的行列式:满足下述运算规律(设B A ,为n 阶方阵,λ为数) ①A A T = ②A A nλλ= ③B A AB =6.伴随矩阵:行列式A 的各个元素的代数余子式ij A 所构成的如下的矩阵 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n A A A A A A A A A A ΛM M M ΛΛ212221212111*,称为矩阵A 的伴随矩阵(注意行与列的标记的不同) 伴随矩阵具有性质:E A A A AA ==** 常见的公式有:①1*-=n A A ②1*-⋅=A A A ③A AA 1)(1*=- ④=-1*)(A *1)(-A 等 7.初等矩阵:由单位矩阵E 经过一次初等变换后所得的矩阵称为初等矩阵。
三种初等变换对应着三种初等矩阵,分别记为:(1)),(j i E (互换E 的第i 、j 列)(2)))((k i E (E 的第i 行乘以不为零的数k )(3)))((k ij E (把E 的j 行的k 倍加到第i 行上)初等矩阵具有下述性质:初等矩阵的转置仍为初等矩阵;初等矩阵都是可逆矩阵,其逆矩阵仍为初等矩阵且),(),(1j i E j i E =-、)]([)]([11--=k i E k i E 、)](,[)]([1k j i E k ij E -=-; 初等矩阵的行列式分别是 -1,k, 1。
8.矩阵的初等变换:初等行变换: 下面三种变换称为矩阵的初等行变换:①对调两行; 记为 j i r r ↔ 对换第j i 与行②以数0≠k 乘某一行中的所有元素; 记为 k r i ⨯ 第i 行乘k③把某一行所有元素的k 倍加到另一行对应的元素上去;记为 j i kr r + 第j 行k 倍加到第i 行上。
把定义中矩阵的行换成列,即得矩阵的初等列变换的定义.矩阵的初等行变换和初等列变换统称矩阵初等变换矩阵的初等变换与初等矩阵的关系:设A 是一个n m ⨯矩阵,则① 对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;② 对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵9.矩阵的等价:如果矩阵A 经过有限次初等变换变成矩阵B ,就称矩阵A 与矩阵B 等价。
且若矩阵A 经过有限次初等行变换变成矩阵B ,就称矩阵A 与B 行等价;若仅经过初等列变换,就称A 与B 列等价。
设B A ,为n m ⨯矩阵①A 与B 行等价⇔∃m 阶可逆矩阵P ,使得B PA =②A 与B 列等价⇔∃n 阶可逆矩阵Q ,使得B AQ =③B A ,等价⇔∃m 阶可逆矩阵P ,n 阶可逆矩阵Q ,使得B PAQ =利用矩阵的初等变换解矩阵方程B AX =,B A X 1-=,可以: )(B A M −−−→−初等行变换)(1B A E -MB XA =,1-=BA X ,可以: )(T T B A M −−−→−初等行变换)(TX E M ,从而解出X 。
10.矩阵的秩:非零子式的最高阶数。
记为)(或A R )A (r求法:A −−−→−初等行变换行阶梯形矩阵B ,)(A R =B 的非零行的行数。
相关公式:①若A 是n m ⨯矩阵,则},min{)(0m n A R ≤≤②)()(A R A R T = ③B A ~⇔)(A R =)(B R④若设A 为n m ⨯矩阵, n m Q P ,均为可逆矩阵,则)(A r )(PAQ r =⑤,则)()(),()}(),(max{B R A R B A R B R A R +≤≤⑥若B A ,均为n m ⨯矩阵,则)()()(B R A R B A R +≤+⑦))(),(min()(B R A R AB R ≤ ⑧若 O B A t n n m =⨯⨯,则 n B R A R ≤+)()(11.分块矩阵:主要记住:(1)分块对角矩阵:设.A 为n 阶方程,若A 的分块矩阵只有在主对角线上有非零子块,其余子块都为零矩阵,且非零子块都是方块,即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛O O =s A A A A O 21. 其行列式与逆矩阵具有下述性质: ①s i A A A A Λ2= ②若),,2,1(,0s i A i Λ=≠,则0≠A ,故A 可逆,并有:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛O O =----112111.s A A A A O ③设A 是m 阶方阵, B 是n 阶方阵,,且b B a A ==,,则()ab O B AO mn1-= 另有:(2)设有分块矩阵⎥⎦⎤⎢⎣⎡=B O C A H ,其中B A ,分别为m 阶、n 阶可逆矩阵,则矩阵H 可逆且⎥⎦⎤⎢⎣⎡-=-----11111B O CB A A H (3)设有分块矩阵⎥⎦⎤⎢⎣⎡=B C O A H ,其中B A ,分别为m 阶、n 阶可逆矩阵,则 矩阵H 可逆且⎥⎦⎤⎢⎣⎡-=-----11111B CAB O A H 第三部分 向量组1. 线性组合:给定向量组A :m ααα,,,21Λ,对于任意一组实数,称向量m m k k k αααΛ++2211为向量组的一个线性组合,m k k k ,,,21Λ称为该线性组合的系数。
给定向量组A :m ααα,,,21Λ和向量β,如果存在一组数m λλλ,,,21Λ,使得 β=m m αλαλαλΛ++2211则向量β是向量组A 的线性组合,也称向量β可以由向量组A 线性表示向量β能由向量组A 线性表示⇔方程组βααα=++m m x x x Λ2211 有解⇔矩阵A=(m ααα,,,21Λ)的秩等于矩阵B=(m ααα,,,21Λ,β)的秩2.等价:设有两个向量组A :m ααα,,,21Λ及B :s βββ,,,21Λ,若B 中的每个向量都可以由向量组A 线性表示,则称向量组B 能由向量组A 线性表示。
若向量组A 与向量组B 能互相线性表示,则称这两个向量组等价。
记为:(m ααα,,,21Λ)≌(s βββ,,,21Λ) 主要结论:(1)矩阵A 与B 若行等价,则A 的行向量组与B 的行向量组等价;若矩阵A 与B 若列等价,则A 的列向量组与B 的列向量组等价(2)向量组B :l b b b Λ,,21能由向量组A:m a a a Λ,,21线性表示⇔存在矩阵K ,使得B=AK ⇔方程AX=B 有解 ⇔),()(B A R A R =(3)向量组A: m a a a Λ,,21与向量组B :l b b b Λ,,21等价⇔ ),()()(B A R B R A R ==,其中,A,B 是向量组构成的矩阵(4)向量组B :l b b b Λ,,21能由向量组A:m a a a Λ,,21线性表示,则R(l b b b Λ,,21)≤R(m a a a Λ,,21)3.线性相关与线性无关对向量组A :m ααα,,,21Λ,如果存在不全为零的一组数m k k k ,,,21Λ,使得: 02211=++m m k k k αααΛ 则称向量组A 是线性相关的,否则称为线性无关, 也就是说当且仅当m k k k ,,,21Λ都是零时才能使(Ⅲ)式成立,则m ααα,,,21Λ线性无关。
主要结论:(1)向量组m ααα,,,21Λ线性相关⇔齐次线性方程组有非零解⇔它所构成的矩阵A =(m ααα,,,21Λ)的秩小于m ;同样 线性无关⇔仅有零解⇔m A R =)((2)n 个n 维向量()n a a a 112111,,,Λ=α,),,,(222212n a a a Λ=α),,(21nn n n n a a a ΛΛ=α线性相关⇔行列式0212222111211=nnn n n n a a a a a a a a a ΛMM M M ΛΛ, 线性无关⇔行列式0≠ (3)m 个n 维向量,当维数m n <时,向量组一定线性相关。
特别地,1+n 个n 维向量必线性相关;(4)若向量组A :m ααα,,,21Λ线性相关⇒向量组B: 121,,,,+m m ααααΛ一定线性相关;反之,向量组B 若线性无关⇒向量组A 线性无关或叙述为:整体无关,则任意部分无关;只要有一部分相关,则整体相关;(5)若向量组A :m ααα,,,21Λ线性无关,而向量组B: m ααα,,,21Λ,β线性相关⇒β必能由向量组A 线性表示,且表达式唯一(6)若r 维向量组m ααα,,,21Λ线性无关,则在每一个向量上再添加r n -个分量所得到的n 维向量组11211,,,m αααΛ也是线性无关的(7)向量组A :m ααα,,,21Λ线性相关⇔其中至少有一个向量是其余1-m 个向量的线性组合 ;线性无关⇔每一个向量都不能由其余向量线性表示。