信息光学基础1-6傅里叶变换性质
- 格式:pdf
- 大小:1.62 MB
- 文档页数:32
§3–4傅里叶变换的性质设f(t) ←→F(jω),f1(t) ←→F1(jω),f2(t) ←→F2(jω);α、α1、α2为实数,则有如下性质:一、线性:α1 f1(t) + α2 f2(t)←→α1F1(jω) + α2 F2(jω)二、对称性:F(jt)←→2πf(-ω)证明:将上式中的t换为ω,将原有的ω换为t,或:,即:F(jt)←→2π f(-ω)P.67例3-3:已知,再令==> ←→2πG(-ω)三、尺度变换:(α≠0的实数)可见信号持续时间与占有频带成反比(此性质易由积分变量代换证得)。
推论(折叠性):f(-t) ←→F(-jω)四、时移性:(此性质易由傅氏变换的定义证得)推论(同时具有尺度变换与时移):P.69-70例3-4请大家浏览。
五、频移性:(此性质易由傅氏变换的定义证得) π.70例3-5请大家浏览。
频移性的重要应用——调制定理:欧拉公式?例如门信号的调制:显然,当ω0足够大时,就可使原频谱密度函数被向左、右复制时几乎不失真。
六、时域卷积:f1(t)* f2(t) ←→F1(jω)F2(jω)证明:时域卷积的重要应用——求零状态响应的频域法:时域:yf(t) = f(t)* h(t) ==> 频域:Y f(jω) = F(jω)H(jω)七、频域卷积:f1(t). f2(t) ←→1/2π[F1(jω)*F2(jω)]八、时域微分性:df(t)/dt←→ jωF(jω) (其证明请自学P.72-73有关内容)推论:条件:例如:d(t) ←→1 ==>δ'(t) ←→jω九、时域积分性:证:故信号t轴上、下面积相等时F(0)=0,否则微分性与积分性是不可逆的。
十、频域微分性:例如:十一、频域积分性:f(0)=0时频域微分性与频域积分性才是可逆的。
十二、帕塞瓦尔定理:若f(t)为实函数,则能量表3-2傅里叶变换的基本性质下面再举几个例子说明性质的综合运用。
傅里叶变换的11个性质公式傅里叶变换的11个性质公式是傅立叶变换的基本性质,由他们可以推出其它性质。
其中包括线性性质、有穷性质、周期性质、旋转性质、折叠性质、应变性质、平移性质、对称性质、频域算子性质、滤波性质、压缩性质等共11条。
1、线性性质:如果x(t)和y(t)是两个信号,则有:X(ω)=F[x(t)],Y(ω)=F[y(t)],则有:X(ω)+Y(ω)=F[x(t)+y(t)];αX(ω)=F[αx(t)];X(ω)*Y(ω)=F[x(t)*y(t)]。
2、有穷性质:如果x(t)是有穷的,则X(ω)也是有穷的。
3、周期性质:如果x(t)在周期T内无穷重复,则X(ω)也在周期2π/T内无穷重复。
4、旋转性质:X(ω-ω0) = F[x(t)e^(-jω0t)],即信号x(t)经过相位旋转成x(t)e^(-jω0t),其傅里叶变换也会经过相位旋转成X(ω-ω0)。
5、折叠性质:X(ω+nω0)=F[x(t)e^(-jnω0t)],即信号x(t)经过频率折叠后变为x(t)e^(-jnω0t),其傅里叶变换也会经过频率折叠成X(ω+nω0)。
6、应变性质:X(aω)=F[x(at)],即信号x(t)经过时间应变成x(at),其傅里叶变换也会经过频率应变成X(aω)。
7、平移性质:X(ω-ω0) = F[x(t-t0)],即信号x(t)经过时间平移成x(t-t0),其傅里叶变换也会经过频率平移成X(ω-ω0)。
8、对称性质:X(-ω) = X*(-ω),即傅里叶变换的实部和虚部对称。
9、频域算子性质:X(ω)Y(ω)=F[h(t)*x(t)],即傅里叶变换不仅可以表示信号,还可以表示系统的频域表示,即h(t)*x(t),其傅里叶变换为X(ω)Y(ω)。
10、滤波性质:H(ω)X(ω)=F[h(t)*x(t)],即傅里叶变换可以用来表示滤波器的频域表示,即h(t)*x(t),其傅里叶变换为H(ω)X(ω)。