(完整版)北师大版八年级数学下册第一章复习(知识点+试题)
- 格式:pdf
- 大小:208.17 KB
- 文档页数:2
北师大版八年级数学下册第一章三角形的证明难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△AAA 中,90C ∠=︒,AB 的垂直平分线DE 交AC 于点D ,垂足为E ,若30A ∠=︒,2cm CD =,则AC 的长为( )A .2cmB .4cmC .5cmD .6cm2、下列条件:①222b c a =-;②C A B ∠=∠-∠;③111::::345a b c =;④::3:4:5A B C ∠∠∠=,能判定ABC 是直角三角形的有( )A .4个B .3个C .2个D .1个3、如图,Rt△ABC 中,∠C =90°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G .若CG =1,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .12C .1D .24、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为( )A .10B .15C .17D .195、如图,AB DF ∥,AC CE ⊥于点C ,BC 与DF 交于点E ,若20A ∠=︒,则CED ∠等于( )A .20°B .50°C .70°D .110°6、下列事件中,属于必然事件的是( )A .13人中至少有2个人生日在同月B .任意掷一枚质地均匀的硬币,落地后正面朝上C .从一副扑克牌中随机抽取一张,抽到的是红桃AD .以长度分别是3cm ,4cm ,6cm 的线段为三角形三边,能构成一个直角三角形7、如图,△ABC 中,90C ∠=︒,∠CAB 的角平分线AD 交BC 于D ,DE AB ⊥于E ,2cm DE =,且4cm DB =,则BC 的长是( )A .6cmB .4cmC .10cmD .以上都不对8、如图所示,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正ABC 和正CDE △,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下四个结论:①ACD BCE ≅△△;②AD BE =;③60AOB ∠=︒;④CPQ 是等边三角形.其中正确的是( )A .①②③④B .②③④C .①③④D .①②③9、如图,在△AAA 中, ∠AAA 和∠AAA 的平分线相交于点A ,过点A 作AA ∥AA 交AA 于A ,交AA 于A ,过点A 作AA ⊥AA 于A ,下列四个结论:①AA =AA +AA ;② 1902BOC A ∠=+∠; ③点A 到△AAA 各边的距离相等;④设AA =A , AE AF n +=,则A AAAA =AA .其中正确的结论个数是( )A .1个B .2个C .3个D .4个10、有下列说法:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;②等腰三角形一腰上的高与底边的夹角与顶角互余;③等腰三角形顶角的平分线是它的对称轴;④等腰三角形两腰上的中线相等.其中正确的说法有( )个.A .1B .2C .3D .4第Ⅱ卷(非选择题 70分)1、如图,△AAA 中,AB AC ⊥,AD BC ⊥于D ,30B ∠=︒,则:ADC BDA S S =△△__________________;2、以线段MN 为底边的等腰三角形的顶角顶点的轨迹是 _____.3、如图,在等边三角形ABC 中,AB =M 为边BC 的中点,点N 为边AB 上的任意一点(不与点A ,B 重合),将△BMN 沿直线MN 折叠,若点B 的对应点B '恰好落在等边三角形ABC 的边上,则BN 的长为______.4、如图,在△ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 为线段CE 的中点,BE =AC .∠BAC =75°,则∠B 的度数为_______.5、若一条长为24cm 的细线能围成一边长等于9cm 的等腰三角形,则该等腰三角形的腰长为_____cm .1、如图,△AAA 是等边三角形,D 点是BC 上一点,2BD CD ,AA ⊥AA 于点E ,CE 交AD 于点P .求∠AAA 的度数.2、针对于等腰三角形三线合一的这条性质,老师带领同学们做了进一步的猜想和证明,提问:如果一个三角形中,一个角的平分线和它所对的边的中线重合,那么这个三角形是等腰三角形. 已知:在△ABC 中,AD 平分∠CAB ,交BC 边于点 D ,且CD =BD ,求证:AB =AC .以下是甲、乙两位同学的作法.甲:根据角平分线和中线的性质分别能得出一组角等和一组边等,再加一组公共边,可证△ACD ≌△ABD ,所以这个三角形为等腰三角形;乙:延长AD 到E ,使DE =AD ,连接BE ,可证△ACD ≌△EBD ,依据已知条件可推出AB =AC ,所以这个三角形为等腰三角形(1)对于甲、乙两人的作法,下列判断正确的是( );A .两人都正确B .甲正确,乙错误C .甲错误,乙正确(2)选择一种你认为正确的作法,并证明.3、教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.请根据教材中的分析.(1)结合图①,写出“线段的垂直平分线质定理”完整的证明过程.(2)定理应用:如图②,在△AAA中,AA=AA,AB的垂直平分线交AB于N,交AC于M.连接MB,若AB=8cm,△AAA的周长是14cm.①求BC的长;②点P是直线MN上一动点,在运动的过程中,由P,B,C构成的△AAA的周长是否存在最小值?若存在,标出点P的位置,并求△AAA的周长最小值;若不存在,说明理由.4、在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 度;(2)设∠AAA=A,∠AAA=A.①如图2,当点在线段BC上移动,则A,A之间有怎样的数量关系?请说明理由;②当点在直线BC上(线段BC之外)移动,则A,A之间有怎样的数量关系?请直接写出你的结论.5、(1)我们把两个面积相等但不全等的三角形叫做“偏等积三角形”,如图1,△AAA中,AA=7,AA=9,AA=10,P为AA上一点,当AA=_______时,△AAA与△AAA是偏等积三角形;(2)如图2,四边形AAAA 是一片绿色花园,△AAA 、△AAA 是等腰直角三角形,∠AAA =∠AAA =90°(0<∠AAA <90°).①△AAA 与△AAA 是偏等积三角形吗?请说明理由;②已知AA =60A ,△AAA 的面积为2100m 2.如图3,计划修建一条经过点C 的笔直的小路AA ,F 在BE 边上,AA 的延长线经过AA 中点G .若小路每米造价600元,请计算修建小路的总造价.-参考答案-一、单选题1、D【分析】由题意知AD BD =,30DBA A CBD ∠=∠=∠=︒,24AD BD CD ===,AC CD DA =+可求出AC 的值.【详解】解:由题意知AD BD =30DBA A CBD ∴∠=∠=∠=︒在Rt BCD 中30CBD ∠=︒24BD CD AD ∴=== 又 AC CD DA =+6AC ∴=故选D .【点睛】本题考察了垂直平分线的性质,30角的直角三角形的性质.解题的关键在于灵活运用垂直平分线与30角的直角三角形的性质.2、C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论.【详解】解:①222b c a =-即222+=a b c ,△ABC 是直角三角形,故①符合题意;②∵∠A +∠B +∠C =180°,∠C =∠A −∠B ,∴∠A +∠B +∠A −∠B =180°,即∠A =90°,∴△ABC 是直角三角形,故②符合题意; ③∵111::::345a b c =,设a =3k,b =4k ,c =5k , 则222543k k k ⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴△ABC 不是直角三角形,故③不合题意;④∵::3:4:5A B C ∠∠∠=,∴∠C =5345++×180°=75°,故不是直角三角形;故④不合题意. 综上,符合题意的有①②,共2个,故选:C .【点睛】本题主要考查了直角三角形的判定方法.①如果三角形中有一个角是直角,那么这个三角形是直角三角形;②如果一个三角形的三边a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.3、C【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【详解】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点睛】本题考查了垂线段最短,角平分线的性质定理,尺规作图作角平分线,掌握角平分线的性质是解题的关键.4、C【分析】等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3,底边是7时,3+3<7,不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,3+7>7,能构成三角形,则其周长=3+7+7=17.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.5、C【分析】由AC CE ⊥与20A ∠=︒,即可求得ABC ∠的度数,又由AB DF ∥,根据两直线平行,同位角相等,即可求得CED ∠的度数.【详解】解:∵AC CE ⊥,∴90C ∠=︒,∵20A ∠=︒,∴70ABC ∠=︒,∵AB DF ∥,∴70CED ABC ∠=∠=︒.故选:C .【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.6、A【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.解:A. 13人中至少有2个人生日在同月,是必然事件,故该选项符合题意;B. 任意掷一枚质地均匀的硬币,落地后正面朝上,是随机事件,故该选项不符合题意;C. 从一副扑克牌中随机抽取一张,抽到的是红桃A ,是随机事件,故该选项不符合题意;D. 因为2222223425,636,346+==+≠,则以长度分别是3cm ,4cm ,6cm 的线段为三角形三边,能构成一个直角三角形,是不可能事件,故该选项不符合题意;故选A【点睛】本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键.7、A【分析】由角平分线的性质得CD =DE =2,等量代换后求出BC 的长.【详解】解:∵AD 平分∠CAB ,DE ⊥AB 于E ,∠C =90°,∴CD =DE =2,又∵4cm DB =,∴BC =BD +CD =4+2=6(cm );故选:A .【点睛】本题考查角平分线的性质的应用,熟练掌握角平分线的性质在实际问题中的应用,等量代换是解题关键.8、A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】解:ABC ∆和CDE ∆是正三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD ACB BCD ∠=∠+∠,BCE DCE BCD ∠=∠+∠,ACD BCE ∠∠∴=,()ADC BEC SAS ∴∆≅∆,故①正确,AD BE ∴=,故②正确;ADC BEC ∆≅∆,ADC BEC ∠∠∴=,60AOB DAE AEO DAE ADC DCE ∴∠=∠+∠=∠+∠=∠=︒,故③正确;CD CE =,60DCP ECQ ∠=∠=︒,ADC BEC ∠∠=,()CDP CEQ ASA ∴∆≅∆.CP CQ ∴=,60CPQ CQP ∴∠=∠=︒,CPQ ∴∆是等边三角形,故④正确;故选:A .【点睛】此题主要考查等边三角形的判定与性质、全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.9、C【分析】根据∠ABC和∠ACB的平分线相交于点O和三角形的内角和等于180°,可得1902BOC A∠=+∠;再由∠ABC和∠ACB的平分线相交于点O和EF∥BC,可得∠EOB=∠OBE,∠FOC=∠OCF,从而得到BE=OE,CF=OF,进而得到EF BE CF=+;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,根据角平分线的性质定理,可得点O到ABC各边的距离相等;又由AE+AF=n,可得S△AEF=S△AOE+S△AOF=12mn,即可求解.【详解】解:在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠ABC+∠ACB=180°-∠A,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=90°-12∠A∴∠BOC=180°-(∠OBC+∠OCB)=90°+12∠A,故②正确;在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,又∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,即点O到△ABC各边的距离相等,故③正确;∵AE+AF=n,∴S△AEF=S△AOE+S△AOF=12AE×OM+12AF×OD=12OD×(AE+AF)=12mn,故④错误;综上所述,正确的结论有3个.故选:C【点睛】本题主要考查了角平分线性质定理,等腰三角形的性质等知识,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.10、B【分析】根据轴对称的性质,轴对称图形的概念,等腰三角形的性质判断即可.【详解】解:①轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线,说法正确;②等腰三角形一腰上的高与底边的夹角与底角互余,原说法错误;③等腰三角形的顶角平分线在它的对称轴上,原说法错误;④等腰三角形两腰上的中线相等,说法正确.综上,正确的有①④,共2个,故选:B.【点睛】本题考查了轴对称的性质及等腰三角形的性质,掌握轴对称的性质,轴对称图形的概念,等腰三角形的性质是解题的关键.二、填空题1、1:3【分析】利用30度角所对的直角边是斜边的一半、三角形的面积计算公式即可得出两个三角形的面积之比.【详解】∵AB AC ⊥,AD BC ⊥,30B ∠=︒∴30B DAC ∠=∠=︒∴Rt CAD ∆中, 2AC CD =Rt ABC ∆中, 2BC AC =∴ 4BC CD =∴ 3BD CD =∴::1:3ADC BDA S S CD BD ==△△故答案为:1:3.【点睛】本题考查30°直角三角形的性质,两次使用30度角所对的直角边是斜边的一半时解题的关键.2、线段MN 的垂直平分线(线段MN 的中点除外)【分析】满足△MNC 以线段MN 为底边且CM =CN ,根据线段的垂直平分线判定得到点C 在线段AB 的垂直平分线上,除去与MN 的交点(交点不满足三角形的条件).【详解】解:∵△MNC 以线段MN 为底边,CM =CN ,∴点C 在线段MN 的垂直平分线上,除去与MN 的交点(交点不满足三角形的条件),∴以线段MN 为底边的等腰三角形的顶点C 的轨迹是:线段MN 的垂直平分线(线段MN 的中点除外).故答案为:线段MN 的垂直平分线(线段MN 的中点除外).【点睛】此题主要考查垂直平分线的判定,解题的关键是熟知等腰三角形的性质及垂直平分线的判定定理.3【分析】如图1,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AB 上时,于是得到MN ⊥AB ,BN =B ′N ,根据等边三角形的性质得到AC =BC ,∠ABC =60°,根据线段中点的定义和30°角直角三角形的性质得到BN =12BM 2,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AC 上时,则MN ⊥BB ′,四边形BMB ′N 是菱形,根据线段中点的定义即可得到结论.【详解】解:如图1,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AB 上时,则MN ⊥AB ,BN =B ′N ,∵△ABC 是等边三角形,∴AB =AC =BC ,∠ABC =60°,∴906030BMN ∠=︒-︒=︒,∵点M 为边BC 的中点,∴BM =12BC =12AB∵在直角三角形BMN 中,30∠=︒BMN ,∴BN =12BM 如图2,当点B 关于直线MN 的对称点B '恰好落在等边三角形ABC 的边AC 上时,则MN ⊥BB ′,BM B M '=,∵BM CM =,∴B M CM '=,∵60C ∠=°,∴三角形B MC '是等边三角形,∴60B MC ABC '∠=︒=∠,∴AB B M '∥∵60ABC NB M '∠=∠=︒∴NB M B MC ''∠=∠∴NB BC '∥∴四边形BMB ′N 是平行四边形,又∵BM B M '=,∴平行四边形BMB ′N 是菱形,∵∠ABC =60°,点M 为边BC 的中点,∴BN =BM =12BC =12AB【点睛】本题考查了轴对称的性质,等边三角形的性质,菱形的判定和性质,分类讨论是解题的关键.4、35°【分析】连接AE ,根据垂直平分线的性质,等腰三角形的性质可得EAB EBA ∠=∠,EAD CAD ∠=∠,根据三角形的内角和定理,外角性质建立二元次一次方程组,解方程组求解即可【详解】解:如图,连接AEAB 的垂直平分线EF 交BC 于点E ,EA EB ∴=EAB EBA ∴∠=∠BE =AC .EA EC ∴=又D 为线段CE 的中点EAD CAD ∴∠=∠,AD EC ⊥设EAB EBA ∠=∠α=,EAD CAD ∠=∠=β则2AED α∠=∠BAC =75°,∴275αβ+=︒①AD EC ⊥2=90αβ∴+︒②联立①②2752=90αβαβ+=︒⎧⎨+︒⎩,解得3520αβ=︒⎧⎨=︒⎩即∠B 的度数为35︒故答案为:35︒【点睛】本题考查了垂直平分线的性质,三线合一,三角形外角性质,三角形内角和定理,解二元一次方程组,掌握等腰三角形的性质是解题的关键.5、9或7.5或9【分析】分9是底边和腰长两种情况,分别列出方程,求解即可得到结果.【详解】解:若9cm 为底时,腰长应该是12(24-9)=7.5cm ,故三角形的三边分别为7.5cm 、7.5cm 、9cm ,∵7.5+7.5=15>9,故能围成等腰三角形;若9cm 为腰时,底边长应该是24-9×2=6,故三角形的三边为9cm 、9cm 、6cm ,∵6+9=15>9,∴以9cm 、9cm 、6cm 为三边能围成三角形,综上所述,腰长是9cm 或7.5cm ,故答案为:9或7.5.【点睛】本题考查了等腰三角形的性质,三角形的周长,掌握等腰三角形的两腰相等是解题的关键.三、解答题1、60APE ∠=︒【分析】由题意易得60ABC ACB ∠=∠=︒,AB AC BC ==,则有30BDE ∠=︒,然后可得BE CD =,进而可证BEC CDA ≌,则有BCE =∠∠CAD ,最后问题可求解.【详解】解:∵ABC 是等边三角形,∴60ABC ACB ∠=∠=︒,AB AC BC ==,∵DE AB ⊥,∴90DEB ∠=︒,∴30BDE ∠=︒,∴2BD BE =,∵2BD CD =,∴BE CD =,∴BEC CDA ≌(SAS ),∴BCE =∠∠CAD ,∵,60APE PAC ACP ACB DAC ACP ∠=∠+∠∠=∠+∠=︒,∴60APE ACB ∠=∠=︒.【点睛】本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.2、(1)C ;(2)见解析【分析】(1)甲同学证明的两个三角形全等,没有边边角的判定,故错误,而乙的证明则正确,因此可作出判断;(2)按照乙的分析方法进行即可.【详解】(1)甲同学证明的两个三角形全等,边边角不能判定两个三角形全等,故错误,而乙的证明则正确,故选C ;(2)依据题意,延长AD 至E ,使DE =AD ,连接BE ,如图.∵D 为BC 中点.∴BD CD =.在△CAD 和△BED 中DE AD ADC EDB BD CD =⎧⎪∠=∠⎨⎪=⎩∴△CAD ≌△BED (SAS ).∴DAC E ∠=∠,BE AC =∵AD 平分∠BAC ,∴BAD CAD ∠=∠∴DAB E ∠=∠∴BE AB =∴AB =AC∴△ABC 为等腰三角形【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,关键是构造辅助线得到全等三角形.3、(1)见解析;(2)①6cm;②存在,图见解析,14cm【分析】(1)根据MN AB ⊥,可得90ACP BCP ∠=∠=︒,从而证得△ACP ≌△BCP ,即可求证;(2)①根据线段垂直平分线的性质定理,可得MB =MA ,再由△MBC 的周长是14cm ,可得AC +BC =14cm ,即可求解;②根据线段垂直平分线的性质定理,可得PB =PA ,从而得到PB +CP =PA +PC ≥AC ,进而得到当点P 与点M 重合时,PB CP +的值最小,即可求解.【详解】(1)证明:∵MN AB ⊥,∴90ACP BCP ∠=∠=︒,在△ACP 与△BCP 中,AC BC ACP BCP PC PC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACP ≌△BCP ,∴PA =PB ;(2)①∵MN 垂直平分AB .∴MB =MA ,又∵△MBC 的周长是14cm ,∴AC +BC =14cm ,∵AC =AB =8cm ,∴BC =6cm .②如图,当点P 与点M 重合时,PB CP +的值最小,∵MN 垂直平分AB .∴PB =PA ,∴PB +CP =PA +PC ≥AC ,∴当点P 与点M 重合时,PB CP +的值最小,为AC 的长∴△PBC 的周长最小值是8+6=14cm .【点睛】本题主要考查了线段垂直平分线的性质定理,全等三角形的判定和性质,熟练掌握线段垂直平分线上的点到线段两端距离相等是解题的关键.4、(1)90;(2)180αβ+=︒,见解析;②180αβ+=︒或αβ=【分析】(1)由等腰直角三角形的性质可得∠ABC =∠ACB =45°,由“SAS ”可证△BAD ≌△CAE ,可得∠ABC =∠ACE =45°,可求∠BCE 的度数;(2)①由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论;②分两种情况,由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论.【详解】解:(1)∵90BAC ∠=︒,∴90DAE BAC ∠=∠=︒,∵AB =AC ,AD =AE ,∴45B ACB ∠=∠=︒,45ADE AED ∠=∠=︒,∵DAE BAC ∠=∠,∴BAD CAE ∠=∠,在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴BAD CAE ≅,∴45ACE B ∠=∠=︒,∴90BCE ACB ACE ∠=∠+∠=︒(2)αβ180+=︒或αβ=.理由:①∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠.即BAD CAE ∠=∠.在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴ABD ACE △≌△.∴B ACE ∠=∠.∴B ACB ACE ACB ∠+∠=∠+∠.∴B ACB β∠+∠=.∵180B ACB α+∠+∠=︒,∴180αβ+=︒.②如图:∵BAC DAE ∠=∠,∴BAC BAE DAE BAE ∠-∠=∠-∠.即BAD CAE ∠=∠.在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴ABD ACE △≌△.∴ABD ACE ∠=∠.∵+ABD ACB α∠=∠,ACE ACB β=∠-∠,ACE ABD βα∴=∠-∠+,αβ∴=.综上所述:点D 在直线BC 上移动,α+β=180°或α=β.【点睛】本题主要考查全等三角形的判定及性质,等腰三角形的性质和三角形内角和定理,掌握全等三角形的判定方法及性质是关键.5、(1)72;(2)①ACD △与BCE 是偏等积三角形,理由见详解;②修建小路的总造价为42000元【分析】(1)当AP CP =时,则72AP =,证ABP CBP S S ∆∆=,再证ABP ∆与CBP ∆不全等,即可得出结论;(2)①过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,证()ACM BCN AAS ∆∆≌,得AM BN =,则ACD BCE S S ∆∆=,再证ACD ∆与BCE ∆不全等,即可得出结论;②过点A 作//AN CD ,交CG 的延长线于N ,证得()AGN DGC AAS ∆∆≌,得到AN CD =,再证()ACN CBE SAS ∆∆≌,得ACN CBE ∠=∠,由余角的性质可证CF BE ⊥,然后由三角形面积和偏等积三角形的定义得12BCE S BE CF ∆=⋅,2100BCEACD S S ∆∆==,求出70()CF m =,即可求解. 【详解】解:(1)当72AP CP ==时,ABP ∆与CBP ∆是偏等积三角形,理由如下:设点B 到AC 的距离为h ,则12ABP S AP h ∆=⋅,12CBP S CP h ∆=⋅,ABP CBP S S ∆∆∴=,10AB =,7BC =,AB BC ∴≠,AP CP =、PB PB =,ABP ∴∆与CBP ∆不全等,ABP ∴∆与CBP ∆是偏等积三角形, 故答案为:72;(3)①ACD ∆与BCE ∆是偏等积三角形,理由如下: 过A 作AM DC ⊥于M ,过B 作BN CE ⊥于N ,如图3所示:则90AMC BNC ∠=∠=︒,ACB ∆、DCE ∆是等腰直角三角形,90ACB DCE ∴∠=∠=︒,AC BC =,CD CE =,3603609090180BCN ACD ACB DCE ∴∠+∠=︒-∠-∠=︒-︒-︒=︒, 180ACM ACD ∠+∠=︒,ACM BCN ∴∠=∠,在∆ACM 和BCN ∆中,AMC BNC ACM BCN AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ACM BCN AAS ∴∆∆≌,AM BN ∴=,12ACD S CD AM ∆=⋅,12BCE S CE BN ∆=⋅, ACD BCE S S ∆∆∴=,180BCE ACD ∠+∠=︒,090BCE ︒<∠<︒, ACD BCE ∴∠≠∠,CD CE =,AC BC =,ACD ∴∆与BCE ∆不全等, ACD ∴∆与BCE ∆是偏等积三角形; ②如图4,过点A 作//AN CD ,交CG 的延长线于N ,则N GCD ∠=∠, G 点为AD 的中点,AG GD ∴=,在AGN ∆和DGC ∆中, N GCD AGN DGC AG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AGN DGC AAS ∴∆∆≌, AN CD ∴=,CD CE =,AN CE ∴=,//AN CD ,180CAN ACD ∴∠+∠=︒, 90ACB DCE ∠=∠=︒,3609090180ACD BCE ∴∠+∠=︒-︒-︒=︒, BCE CAN ∴∠=∠,在ACN ∆和CBE ∆中, AN CE CAN BCE AC CB =⎧⎪∠=∠⎨⎪=⎩, ()ACN CBE SAS ∴∆∆≌,ACN CBE ∴∠=∠,1809090ACN BCF ∠+∠=︒-︒=︒, 90CBE BCF ∴∠+∠=︒,90BFC ∴∠=︒,CF BE ∴⊥.由①得:ACD ∆与BCE ∆是偏等积三角形,12BCE S BE CF ∆∴=⋅,2100BCE ACD S S ∆∆==, 22210070()60BCE S CF m BE ∆⨯∴===, ∴修建小路CF 的总造价为:6007042000⨯=(元).【点睛】本题是四边形综合题目,考查了新定义“偏等积三角形”的定义、全等三角形的判定与性质、等腰直角三角形的性质、三角形面积等知识;本题综合性强,熟练掌握“偏等积三角形”的定义,证明ACM BCN ∆∆≌和ACN CBE ∆∆≌是解题的关键,属于中考常考题型.。
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《三角形的证明》全章复习与巩固(基础)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半. 要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a的等边三角形它的高是32a,面积是234a;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL).要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,HL一共有5种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于12AB的长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形. 【典型例题】类型一、三角形的证明1. 已知:点D 是△ABC 的边BC 的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,且BF=CE .求证:△ABC 是等腰三角形.【思路点拨】欲证△ABC 是等腰三角形,又已知DE ⊥AC ,DF ⊥AB ,BF=CE ,可利用三角形中两内角相等来证明.【答案与解析】证明:∵D是BC 的中点,∴BD=CD ,∵DE ⊥AC ,DF ⊥AB ,∴△BDF 与△CDE 为直角三角形,在Rt △BDF 和Rt △CDE 中,,BF CE BDCD∴Rt △BFD ≌Rt △CED (HL ),∴∠B=∠C ,∴AB=AC ,∴△ABC 是等腰三角形.【总结升华】考查等腰三角形的判定方法及全等三角形的判定及性质;充分利用条件证明三角形全等是正确解答本题的关键.举一反三:【变式1】(2015秋?江阴市校级期中)已知:如图,△AMN 的周长为18,∠B ,∠C的平分线相交于点O ,过O 点的直线MN ∥BC 交AB 、AC 于点M 、N .求AB+AC 的值.【答案】解:∵MN ∥BC ,∴∠BOM=∠OBC ,∠CON=∠OCB ,∵∠B,∠C的平分线相交于点O,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠BOM,∠NCO=∠CON,∴BM=OM,CN=ON,∵△AMN的周长为18,AN=AB+AC=18.∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+【变式2】如图,在△ABC中,AB=AC,D、E在BC上,且AD=AE,求证:BD=CE.【答案】证明:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠EAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴ BD=CE.类型二、直角三角形2. 如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.【思路点拨】(1)根据折叠的性质:△BCE≌△BDE,BC=BD,当点D恰为AB的重点时,AB=2BD=2BC,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED⊥AB,可证D为AB的中点;(2)在Rt△ADE中,根据∠A及ED的值,可将AE、AD的值求出,又D为AB的中点,可得AB的长度,在Rt△ABC中,根据AB、∠A的值,可将AC和BC的值求出,代入S△ABC=AC×BC 进行求解即可.【答案与解析】解:(1)添加条件是∠A=30°.证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,∵C点折叠后与AB边上的一点D重合,∴BE平分∠CBD,∠BDE=90°,∴∠EBD=30°,∴∠EBD=∠EAB,所以EB=EA;∵ED为△EAB的高线,所以ED也是等腰△EBA的中线,∴D为AB中点.(2)∵DE=1,ED⊥AB,∠A=30°,∴AE=2.在Rt△ADE中,根据勾股定理,得AD=22213,∴AB=23,∵∠A=30°,∠C=90°,∴BC=12AB=3.在Rt△ABC中,AC=22AB BC=3,∴S△ABC=12×AC×BC=332.【总结升华】考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,根据轴对称的性质,折叠前后图形的形状和大小不变.3. 小林在上探索出只用三角尺作角平分线的一种方法:如图,在已知∠AOB的两边上分别取点M,N,使OM=ON,再过点M作OB的垂线,过点N作OA的垂线,垂足分别为C、D,两垂线交于点P,那么射线OP就是∠AOB的平分线.老师当场肯定他的作法,并且表扬他的创新.但是小林不知道这是为什么.①你能说明这样做的理由吗?也就是说,你能证明OP就是∠AOB的平分线吗?②请你只用三角板设法作出图∠AOB的平分线,并说明你的作图方法或设计思路.【思路点拨】①在Rt△OCM与Rt△ODN中,依据ASA得出OC=OD;在Rt△OCP与Rt△ODP中,因为OP=OP,OC=OD得出Rt△OC P≌Rt△ODP(HL),所以∠C OP=∠DOP,即OP平分∠AOB.②可作出两个直角三角形,利用HL定理证明两角所在的三角形全等.【答案与解析】①证明:在Rt△OCM和Rt△ODN中,COM DONOCM ODNOM ON∴△OCM≌△ODN(AAS),∴OC=OD,在△OCP与△ODP中,∵,OC OD OPOP∴Rt △OCP ≌Rt △ODP (HL ),∴∠COP=∠DOP ,即OP 平分∠AOB ;②解:①利用刻度尺在∠AOB 的两边上分别取OC=OD ;②过C ,D 分别作OA ,OB 的垂线,两垂线交于点E ;③作射线OE ,OE 就是所求的角平分线.∵CE ⊥OA ,ED ⊥OB ,∴∠OCE=∠ODE=90°,在Rt △OCE 与Rt △OD E 中,∵OC OD OEOE,∴Rt △OCE ≌Rt △ODE (HL ),∴∠EOC=∠EOD ,∴OE 为∠AOB 的角平分线.【总结升华】主要考查了直角三角形的判定,利用全等三角形的性质得出∠EOC=∠EOD 是解题关键.类型三、线段垂直平分线4.(2015秋?麻城市校级期中)如图所示:在△ABC 中,AB >BC ,AB=AC ,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .(1)若∠ABE=50°,求∠EBC 的度数;(2)若△ABC 的周长为41cm ,边长为15cm ,△BCE 的周长.【思路点拨】(1)由DE 是AB 的垂直平分线,根据线段垂直平分线的性质,可得AE=BE ,继而求得∠A的度数,又由AB=AC ,即可求得∠ABC 的度数,则可求得答案;(2)由△BCE 的周长=AC+BC ,然后分别从腰等于15cm 与底边等于15cm 去分析求解即可求得答案.【答案与解析】解:(1)∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∵AB=AC,∴∠ABC=∠C=65°,∴∠EBC=∠ABC﹣∠ABE=15°;(2)∵AE=BE,;∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC∵△ABC的周长为41cm,∴AB+AC+BC=41cm,若AB=AC=15cm,则BC=11cm,则△BCE的周长为:15+11=26cm;若BC=15cm,则AC=AB=13cm,∵AB>BC,∴不符合题意,舍去.∴△BCE的周长为26cm.【总结升华】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF的理由.【答案】解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF.类型四、角平分线5.(2016秋?兴化市期中)已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.【思路点拨】过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,根据角平分线上的点到角的两边距离相等可得PD=PM,同理可得PM=PN,从而得到PD=PN,再根据到角的两边距离相等的点在角的平分线上证明即可.【答案与解析】证明:如图,过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,∵BE平分∠ABC,点P在BE上,∴PD=PM,同理,PM=PN,∴PD=PN,∴点P在∠A的平分线上.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键.举一反三:【变式】如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处 C.3处 D.4处【答案】D.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.。
北师大版八年级数学下册第一章复习(知识点+试题)第一次课第一章:三角形的证明本章主要介绍了三角形的几何性质和证明方法。
等腰三角形等腰三角形是指两条边相等的三角形。
它的性质定理有三条:1.两底角相等(等边对等角)。
2.底边的高、顶角的角平分线和底边的中线重合(“三线合一”)。
3.两底角的角平分线相等,两腰的中线相等,两腰的高相等(特殊线段相等)。
等边三角形等边三角形是指三条边相等的三角形。
它的性质定理有两条:1.三个内角都相等,且都等于60°。
2.有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形。
反证法反证法是一种证明方法,步骤如下:1.假设结论不成立。
2.将假设当条件继续推论,得出与已知条件、公理、定义、定理相矛盾的结论。
3.假设不成立。
4.原命题成立。
直角三角形直角三角形是指其中一个角是90°的三角形。
它的性质定理有两条:1.两锐角互余。
2.勾股定理:直角三角形中,两直角边的平方和等于斜边的平方。
垂直平分线垂直平分线是指将一条线段垂直平分的直线。
它的性质定理有一条:垂直平分线上的点到这条线段两个端点的距离相等。
角平分线角平分线是指将一个角平分的直线。
它的性质定理有一条:角平分线上的点到角两边的距离相等。
以上是本章的主要内容,其中涉及到了三角形的各种性质和证明方法,对于初学者来说是非常重要的基础知识。
2、角平分线定理的符号语言为:在三角形ABC中,若点D在角ABC的角平分线BM上,且DE⊥AB,DF⊥BC,则有DE=DF。
3、角平分线判定定理表述为:在三角形内部,若有一点到角的两边的距离相等,则该点在该角的角平分线上。
4、平分线判定定理的符号语言为:在三角形ABC中,若有DE⊥AB,DF⊥BC,且DE=DF,则点D在角ABC的角平分线上。
性质定理:角平分线上的点到角的两边的距离相等。
判定定理:若点到角的两边的距离相等,则该点在该角的角平分线上。
北师大版八年级下册第一章三角形的证明测试题一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°2.一个等腰三角形的两边长分别为3,6,则它的周长为()A.9 B.12 C.15 D.12或153.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.37.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm²,则S阴影等于()A.2cm²B.1cm²C.cm²D.cm²二.填空题(共5小题)11.等边三角形是一个轴对称图形,它有______条对称轴.12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为______.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为______.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?北师大版八年级下册第一章三角形的证明测试题参考答案与试题解析一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选B.2.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.3.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.7.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°【解答】解:∵∠1=∠3,∠B=∠C,∠1+∠B+∠3=180°,∴2∠1+∠C=180°,∴2∠1+∠1﹣∠2=180°,∴3∠1﹣∠2=180°.故选B.8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠A=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ABC=∠ACB,∠1=∠2,∴∠PBA=∠PCB,∴∠1+∠ABP=∠PCB+∠2=140°×=70°,∴∠BPC=180°﹣70°=110°.故选A.9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°.故选:C.10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2 B.1cm2 C.cm2 D.cm2【解答】解:根据三角形的面积公式,知:等底等高的两个三角形的面积相等.即有:S阴影=S△BCE=S△ABC=1cm2.故选:B.二.填空题(共10小题)11.等边三角形是一个轴对称图形,它有 3 条对称轴【解答】解:等边三角形是轴对称图像,它有三个顶点,所以对应3条对称轴故答案为:312.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【解答】解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为32a .【解答】解:∵△A1B1A2是等边三角形∴∠B1A1A2=60°,A1B1=B1A2=A1A2∵∠MON=30°∴∠OB1A1=30°(三角形的一个外角等于和它不相邻的两个外角和∠OB1A1=∠B1A1A2-∠MON)∴OA1=A1B1(等边对等角)∴OA1=A1A2=a同理,根据∠MON=∠OB2A2,可得:A2A3=A2B2=OA1+A1A2=2A1A2=2a同理,可推出:A3A4=2A2A3=4a同理,可推出:A4A5=2A3A4=8a同理,可推出:A5A6=2A4A5=16a同理,可推出:A6A7=2A5A6=32a 即题目所求另外我们不难发现,第n个(△A1B1A2为第一个)等边三角形的边长为AnAn+1=(2^n-1)a 注:2的n-1次方倍的a三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.另外一种证法:证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°在Rt△ABD和Rt△BAC中∴Rt△ABD≌Rt△BAC(HL)∴AD=BC,在△AOD和△BOC中,∴△AOD≌△BOC(AAS),∴OA=OB,即△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.【解答】解:(1)∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HF),∴∠B=∠C,∴△ABC为等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?【解答】解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.。
第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形.立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体.3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形.7、三视图物体的三视图指主视图、俯视图、左视图.主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n 边形分割成(n-2)个三角形。
弧:圆上A 、B 两点之间的部分叫做弧.扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.第二章 有理数及其运算1、有理数的分类 正有理数有理数 零 有限小数和无限循环小数负有理数或 整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可).任何一个有理数都可以用数轴上的一个点来表示。
北师大版八年级数学下册第一章三角形的证明必考点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列三个说法:①有一个内角是30°,腰长是6的两个等腰三角形全等;②有一个内角是120°,底边长是3的两个等腰三角形全等;③有两条边长分别为5,12的两个直角三角形全等.其中正确的个数有().A.3 B.2 C.1 D.02、如图,在△ABC中,AB=AC=6cm,AD,CE是△ABC的两条中线,CE=4cm,P是AD上的一个动点,则BP+EP的最小值是()A.3cm B.4cm C.6cm D.10cm3、有两边相等的三角形的两边长为4cm,5cm,则它的周长为()A .8cmB .14cmC .13cmD .14cm 或13cm4、等腰三角形的一个顶角是80°,则它的底角是( ).A .40°B .50°C .60°D .70°5、如图,在△ABC 中,∠B =62°,∠C =24°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交AC 的两侧于点M 、N ,连接MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( )A .70ºB .60ºC .50ºD .40°6、如图,ABC DEC ≌△△,点E 在线段AB 上,75B ∠=︒,则ACD ∠的度数为( )A .20°B .25°C .30°D .40°7、下列各组数中,不能作为直角三角形的三边的是( )A .3,4,5B .2,3C .8,15,17D .23,24,258、如图,AB DF ∥,AC CE ⊥于点C ,BC 与DF 交于点E ,若20A ∠=︒,则CED ∠等于()A .20°B .50°C .70°D .110°9、如图,在△ABC 中,BD 平分∠ABC ,∠C =2∠CDB ,AB =12,CD =3,则△ABC 的周长为( )A .21B .24C .27D .3010、如图,在△AAA 中,90C ∠=︒,AB 的垂直平分线DE 交AC 于点D ,垂足为E ,若30A ∠=︒,2cm CD =,则AC 的长为( )A .2cmB .4cmC .5cmD .6cm第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知△ABC 是等边三角形,边长为3,G 是三角形的重心,那么GA =______.2、如图,点P 是等边△ABC 内的一点,PA =6,PB =8,PC =10,若点P ′是△ABC 外的一点,且△P ′AB ≌△PAC ,则∠APB 的度数为___.3、如图,将宽为2cm 的纸条沿BC 折叠,45CAB ∠=︒,则折叠后重叠部分的面积为____.(根号保留)4、如图,已知30MON ∠=︒,点1A ,2A ,3A ,⋅⋅⋅在射线ON 上,点1B ,2B ,3B ,⋅⋅⋅在射线OM 上,112A B A △,223A B A △,334A B A △,⋅⋅⋅均为等边三角形,若1OA a =,则223A B A △的边长为______.1n n n A B A +△的边长为______.5、如图,AD⊥BC,∠1=∠B,∠C=65°,∠BAC=__________三、解答题(5小题,每小题10分,共计50分)1、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=α,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.(1)如图1,点D在线段BC上.①根据题意补全图1;②∠AEF=(用含有α的代数式表示),∠AMF=°;③用等式表示线段MA,ME,MF之间的数量关系,并证明.(2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.2、在△ABC 中,∠ACB =90°.现给出以下3个关系:①CD 垂直于AB ,②BE 平分∠ABC ,③∠CFE =∠CEF ,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.3、如图1,在平面直角坐标系AAA 中,点A (−4,0),A (4,0),A (0,4),给出如下定义:若P 为△AAA 内(不含边界)一点,且AP 与△AAA 的一条边相等,则称P 为△AAA 的友爱点.(1)在A 1(0,3),A 2(−1,1),()32,1P -中,△AAA 的友爱点是________;(2)如图2,若P 为△AAA 内一点,且∠AAA =∠AAA =15°,求证:P 为△AAA 的友爱点;(3)直线l为过点A(0,A),且与A轴平行的直线,若直线A上存在△AAA的三个友爱点,直接写出A的取值范围.4、已知:(1)O是∠BAC内部的一点.①如图1,求证:∠BOC>∠A;②如图2,若OA=OB=OC,试探究∠BOC与∠BAC的数量关系,给出证明.(2)如图3,当点O在∠BAC的外部,且OA=OB=OC,继续探究∠BOC与∠BAC的数量关系,给出证明.5、如图,在△ABC中,AB=AC,AF⊥BC,在△CDE中,DC=DE,DG⊥CE,AF和DG的延长线交于点P,连接BP、EP.(1)求证:BP=EP;(2)若∠BCE=135°,试判断△PBE的形状,并给出证明.-参考答案-一、单选题1、C【分析】根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可.【详解】解:①当一个是底角是30°,一个是顶角是30°时,两三角形就不全等,故本选项错误;②有一个内角是120°,底边长是3的两个等腰三角形全等,本选项正确;③当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,故选:C.【点睛】本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.2、B【分析】连接CE交AD于点P,则BP+EP的最小值为CE的长.【详解】如图,连接CE交AD于点P,∵AB=AC,AD是BC的中线,∴AD⊥BC,∴BP=CP,∴BP+EP=CP+EP≥CE,∴BP+EP的最小值为CE的长,∵CE=4cm,∴BP+EP的最小值为4cm,故选:B.【点睛】本题是典型的将军饮马问题,考查了等腰三角形三线合一的性质和两点间线段最短知识,关键是把BP+EP的最小值转化为CP+EP的最小值,从而根据两点间线段最短解决最小值的问题.3、D【分析】有两边相等的三角形,是等腰三角形,两边分别为5cm和4cm,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为14cm;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为13cm.综上所述,该等腰三角形的周长是13cm或14cm.故选:D.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.4、B【分析】依据三角形的内角和是180°以及等腰三角形的性质即可解答.【详解】解:(180°-80°)÷2=100°÷2=50°;答:底角为50°.故选:B.【点睛】本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.5、A【分析】根据∠BAD =∠BAC −∠DAC ,想办法求出∠BAC ,∠DAC 即可解决问题.【详解】解:∵∠B =62°,∠C =24°,∴∠BAC =180°−86°=94°,由作图可知:MN 垂直平分线段AC ,∴DA =DC ,∴∠DAC =∠C =24°,∴∠BAD =94°−24°=70°,故选:A .【点睛】本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6、C【分析】根据全等三角形的性质可证得BC=CE ,∠ACB =∠DCE 即∠ACD =∠BCE ,根据等腰三角形的性质和三角形的内角和定理求解∠B =∠BEC 和∠BCE 即可.【详解】解:∵ABC DEC ≌△△,∴BC=CE ,∠ACB =∠DCE ,∴∠B =∠BEC ,∠ACD =∠BCE ,∵75B ∠=︒,∴∠ACD =∠BCE=180°-2×75°=30°,故选:C .【点睛】本题考查全等三角形的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握全等三角形的性质和等腰三角形的性质是解答的关键.7、D【分析】由题意直接根据勾股定理的逆定理即如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形,如果没有这种关系,这个就不是直角三角形进行分析判断即可.【详解】解:A 、32+42=52,符合勾股定理的逆定理,故选项错误;B 、22223+=,符合勾股定理的逆定理,故选项错误;C 、82+152=172,符合勾股定理的逆定理,故选项错误;D 、∵(32)2+(42)2=81+256=337,(52)2=625,∴(32)2+(42)2≠(52)2,不符合勾股定理的逆定理即此时三角形不是直角三角形,故选项正确. 故选:D.【点睛】本题考查勾股定理的逆定理,注意掌握在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8、C【分析】由AC CE ⊥与20A ∠=︒,即可求得ABC ∠的度数,又由AB DF ∥,根据两直线平行,同位角相等,即可求得CED ∠的度数.【详解】解:∵AC CE ⊥,∴90C ∠=︒,∵20A ∠=︒,∴70ABC ∠=︒,∵AB DF ∥,∴70CED ABC ∠=∠=︒.故选:C .【点睛】题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.9、C【分析】根据题意在AB 上截取BE =BC ,由“SAS ”可证△CBD ≌△EBD ,可得∠CDB =∠BDE ,∠C =∠DEB ,可证∠ADE =∠AED ,可得AD =AE ,进而即可求解.【详解】解:如图,在AB 上截取BE =BC ,连接DE ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,在△CBD 和△EBD 中,CB BE CBD DBE BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△CBD ≌△EBD (SAS ),∴∠CDB =∠BDE ,∠C =∠DEB ,∵∠C =2∠CDB ,∴∠CDE =∠DEB ,∴∠ADE =∠AED ,∴AD =AE ,∴△ABC 的周长=AD +AE +BE +BC +CD =AB +AB +CD =27,故选:C .【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.10、D【分析】由题意知AD BD =,30DBA A CBD ∠=∠=∠=︒,24AD BD CD ===,AC CD DA =+可求出AC 的值.【详解】解:由题意知AD BD =30DBA A CBD ∴∠=∠=∠=︒在Rt BCD 中30CBD ∠=︒24BD CD AD ∴===又 AC CD DA =+故选D .【点睛】本题考察了垂直平分线的性质,30角的直角三角形的性质.解题的关键在于灵活运用垂直平分线与30角的直角三角形的性质.二、填空题1【分析】延长AG 交BC 于D ,根据重心的概念得到AD ⊥BC ,BD =DC =12BC =32,根据勾股定理求出AD ,根据重心的概念计算即可.【详解】解:延长AG 交BC 于D ,∵G 是三角形的重心,∴AD ⊥BC ,BD =DC =12BC =32,由勾股定理得,AD =,∴GA =23AD 故答案为:3.【点睛】本题考查的是等边三角形的性质、三角形的重心的概念,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.【分析】如图:连接PP′,由△PAC≌△P′AB可得PA=P′A、∠P′AB=∠PAC,进而可得△APP′为等边三角形易得PP′=AP=AP′=6;然后再利用勾股定理逆定理可得△BPP′为直角三角形,且∠BPP′=90°,最后根据角的和差即可解答.【详解】解:连接PP′,∵△PAC≌△P′AB,∴PA=P′A,∠P′AB=∠PAC,∴∠P′AP=∠BAC=60°,∴△APP′为等边三角形,∴PP′=AP=AP′=6;∵PP′2+BP2=BP′2,∴△BPP′为直角三角形,且∠BPP′=90°,∴∠APB=90°+60°=150°.故答案为:150°.【点睛】本题主要考查了全等三角形的性质、等边三角形的判定与性质、勾股定理逆定理的应用等知识点,灵活应用相关知识点成为解答本题的关键.3、2利用折叠的性质可得出△ABC 是等腰三角形,有AC =AB ;过点C 作CG ⊥AB 于点G ,则得CG =2,且△CGA 为等腰直角三角形,从而可求得AC 的值,则可求得面积.【详解】如图,由折叠性质得:∠ECB =∠ACB∵DE ∥AB∴∠DCA =∠CAB =45°∵∠DCA +∠ACB +∠ECB =180° ∴1(180)67.52ACB DCA ∠=︒-∠=︒∵∠CAB +∠ACB +∠ABC =180°∴∠ABC =∠ACB =67.5°∴AB =AC即△ABC 是等腰三角形过点C 作CG ⊥AB 于点G ,则CG =2,且∠ACG =∠CAB =45°∴△CGA 为等腰直角三角形∴AG =CG =2由勾股定理得:AC ==∴AB =∴重叠部分△ABC 的面积为2112)22AB CG ⨯=⨯=故答案为:2【点睛】本题考查了折叠的性质,等腰三角形的判定,勾股定理等知识,判定△ABC是等腰三角形是本题的关键.4、2a 2n﹣1a【分析】利用等边三角形的性质得到∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,利用同样的方法得到A2O=A2B2=2a=21a,A3B3=A3O=2A2O=4=22a,利用此规律即可得到A n B n=2n﹣1a.【详解】解:∵△A1B1A2为等边三角形,∠MON=30°,∴∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,同理:A2O=A2B2=2=21a,A3B3=A3O=2A2O=4a=22a,…….以此类推可得△A n B n A n+1的边长为A n B n=2n﹣1a.故答案为:2a;2n﹣1a.【点睛】本题考查规律型:图形的变化类,等边三角形的性质,解题关键是掌握三角形边长的变化规律.5、70°【分析】先根据AD⊥BC可知∠ADB=∠ADC=90°,再根据直角三角形的性质求出∠1与∠DAC的度数,由∠BAC=∠1+∠DAC即可得出结论.【详解】∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠DAC=90°﹣65°=25°,∠1=∠B=45°,∴∠BAC=∠1+∠DAC=45°+25°=70°.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.三、解答题1、(1)①见解析;②60α︒-,60;③MF=MA+ME,证明见解析;(2)MF MA ME=-【分析】(1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF;③在FE上截取GF=ME,连接AG,证明△AFG≌△AEM且△AGM为等边三角形后即可证得MF =MA+ME;(2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.【详解】解:(1)①补全图形如下图:②∵∠CAE=∠DAC=α,∴∠BAE=30°+α∴∠FAE=2×(30°+α)∴∠AEF=()180-2+302α︒⨯︒=60°-α;∵∠AMF=∠CAE+∠AEF=α+60°-α=60°,故答案是:60°-α,60°;③MF=MA+ME.证明:在FE上截取GF=ME,连接AG.∵点D 关于直线AC 的对称点为E ,∴△ADC ≌△AEC .∴∠CAE =∠CAD =α.∵∠BAC =30°,∴∠EAN =30°+α.又∵点E 关于直线AB 的对称点为F ,∴AB 垂直平分EF .∴AF =AE ,∠FAN =∠EAN =30°+α,∴∠F =∠AEF =()180230602αα︒-︒+=︒-.∴∠AMG =6060αα︒-+=︒.∵AF =AE ,∠F =∠AEF , GF =ME ,∴△AFG ≌△AEM .∴AG =AM .又∵∠AMG =60︒,∴△AGM 为等边三角形.∴MA =MG .∴MF =MG +GF =MA +ME .(2)MF MA ME =-,理由如下:如图1所示,∵点E 与点F 关于直线AB 对称,∴∠ANM =90°,NE =NF ,又∵∠NAM =30°,∴AM=2MN,∴AM=2NE+2EM =MF+ME,∴MF=AM-ME;如图2所示,∵点E与点F关于直线AB对称,∴∠ANM=90°,NE=NF,∵∠NAM=30°,∴AM=2NM,∴AM=2MF+2NF=2MF+NE+NF=ME+MF,∴MF=MA-ME;综上所述:MF=MA-ME.【点睛】本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.2、①②作为条件,③作为结论,证明见解析【分析】结合题意,得∠CDA=∠ACB=90°,根据直角三角形两锐角互余的性质,得∠BCF+∠DCA=90°,∠DCA+∠A=90°,根据角平分线性质,计算得∠EBC=∠EBA,根据三角形外角的性质,通过计算得∠CFE=∠CEF,即可得到答案.【详解】∵CD⊥AB,∴∠CDA=∠ACB=90°,∴∠BCF+∠DCA=90°,∠DCA+∠A=90°,∴∠BCF=∠A,∵BE平分∠ABC,∴∠EBC=∠EBA,∵∠CFE =∠BCF +∠EBC ,∠BEC =∠A +∠EBA ,∴∠CFE =∠CEF∴①②作为条件,③作为结论成立.【点睛】本题考查了直角三角形、角平分线、三角形外角、命题的知识;解题的关键是熟练掌握直角三角形两锐角互余、三角形外角的性质,从而完成求解.3、(1)P 1、P 2;(2)见解析;(3)0<m <2【分析】(1)根据A (x 1,y 1)、和B (x 2,y 2)之间的距离公式AB 即可;(2)由题意易知∠OAB =∠OCA =∠OCB =45°,进而可求得∠PAC =∠OCP =30°,则可得出∠ACP =∠APC =75°,根据等角对等边和友爱点定义即可证得结论;(3)由题意,△ABC 在友爱点P 满足AP=BP 或AP=PC 或AP=BC=AC 三种情况,分别讨论求解即可.【详解】解:(1)∵点()4,0A -,()4,0B 关于y 轴对称,点()10,3P 在y 轴上,∴AP 1=BP 1,故P 1是ABC 的友爱点;∵AP 2CP 2=∴AP 2= CP 2,故P 1是ABC 的友爱点;∵AP 3=CP 3BP 3BC =∴故P 3不是ABC 的友爱点,综上,ABC 的友爱点是P 1、P 2,故答案为:P 1、P 2;(2)∵点()4,0A -,()4,0B ,()0,4C ,∴OA=OB=OC ,AC= BC , ∠BOC =90°,∴∠OAB =∠OCA =∠OCB =45°,∵15PAB PCB ∠=∠=︒,∴∠PAC =∠OCP =30°,∴∠ACP =45°+30°=75°,∴∠APC =180°-∠PAC -∠ACP =180°-30°-75°=75°,∴∠ACP =∠APC ,∴AP=AC=BC ,∴P 为ABC 的友爱点;(3)由题意,△ABC 的友爱点P 满足AP=BP 或AP=PC 或AP=BC 三种情况,若AP=BP ,则点P 在线段AB 的垂直平分线上,即点P 在y 轴线段OC 上,若AP=PC ,则点P 在线段AC 的垂直平分线上;若AP =BC ,则点P 在以点A 为圆心,BC 即AC 长为半径的圆上,如图,设AC 的中点为G ,则G 的坐标为(-2,2),由图可知,当直线l 为过点G 和过点()0,M m 且与x 轴平行的直线在x 轴之间时,直线l 上存在ABC 的三个友爱点,∴m 的取值范围为0<m <2.【点睛】本题考查两点之距离坐标公式、线段垂直平分线的判定与性质、等腰三角形的判定与性质、三角形的内角和定理、圆的定义、坐标与图形等知识,理解题中定义,熟练掌握相关知识的联系与运用,利用数形结合的思想解决问题是解答的关键.4、(1)①见解析;②∠BOC=2∠A,见解析;(2)∠BOC=2∠BAC,见解析【分析】(1)①连接AO并延长AO至点E,根据三角形外角性质解答即可;②延长AO至点E,根据三角形外角性质解答即可;(2)根据三角形外角性质和三角形内角和定理解答即可.【详解】证明:(1)①如图所示:连接AO并延长AO至点E,则∠BOE>∠BAO,∠COE>∠CAO,∴∠BOC>∠A;②∠BOC与∠BAC的数量关系:∠BOC=2∠A;证明:如图所示,延长AO至点E,则∠BOE=∠BAO+∠B,∠COE=∠CAO+∠C,∵OA=OB=OC,∴∠BAO=∠B,∠CAO=∠C,∴∠BOC=∠COE+∠COE=∠BAO+∠B+∠CAO+∠C=2(∠BAO+∠CAO)=2∠BAC;(2)∠BOC与∠BAC的数量关系:∠BOC=2∠BAC;证明:如图所示,设∠B=x,∵OA=OB=OC,∴∠B=∠BAO=x,∠C=∠OAC=∠BAC+x;在△BEO和△AEC中,有:∠B+∠BOC=∠C+∠CAE;即x+∠BOC=∠CAE+x+∠CAE=2∠BAC+x;即∠BOC=2∠BAC.【点睛】此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答.5、(1)见解析;(2)等腰直角三角形,见解析【分析】(1)由线段垂直平分线的性质可得出答案;(2)证出∠BPE=2(∠FPC+∠GPC)=90°,则可得出结论.【详解】(1)证明:连接PC,∵AB=AC,AF⊥BC,DC=DE,DG⊥CE,∴AP、DP分别为线段BC、CE的垂直平分线,∴PC=PB,PC=PE,∴PB=PE.(2)解:△PBE的形状为等腰直角三角形;∵∠BCE=135°,∠PGC=∠PFC=90°,∴在Rt△PGC和Rt△PFC中,∠FPC+∠GPC=45°;∵AP、DP分别为线段BC、CE的垂直平分线,∠FPC=∠FPB,∠GPC=∠GPE,∴∠BPE=2(∠FPC+∠GPC)=90°;∵PB=PE,∴△PBE的形状为等腰直角三角形.【点睛】本题考查了垂直平分线的性质和判定,等腰直角三角形判定,熟练掌握垂直平分线的判定是解题的关键.。
北师大版八年级下册数学第一章三角形的证明单元测试题一.选择题(共12小题)1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.52.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.363.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或104.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.25.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm6.如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°9.若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°10.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.811.如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.12.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°二.填空题(共6小题)13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为_________.14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是_________.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.16.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= _________.17.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是_________.18.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB= _________度.三.解答题(共12小题)19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.20.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.21.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.22.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.24.如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.25.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.26.已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.27.如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.28.如图,Rt△ABC中,∠C=90°,AC=6,∠A=30°,BD平分∠ABC交AC于点D,求点D到斜边AB的距离.29.如图,在△ABC中,∠CAB=90°,AB=3,AC=4,AD是∠CAB的平分线,AD交BC于D,求BD的长.30.如图,四边形ABCD中,AB=BC,AB∥CD,∠D=90°,AE⊥BC于点E,求证:CD=CE.参考答案与试题解析一.选择题(共12小题)1.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3B.4C.6D.5考点:角平分线的性质.专题:几何图形问题.分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.解答:解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.2.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36考点:线段垂直平分线的性质.分析:根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.解答:解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,角平分线的定义,三角形的内角和定理,熟记各性质并列出关于∠ABP的方程是解题的关键.3.已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或1O C.6或7 D.7或10考点:等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;解二元一次方程组;三角形三边关系.分析:先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.解答:解:∵|2a﹣3b+5|+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.点评:本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.4.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C.D.2考点:直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.专题:几何图形问题.分析:连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.解答:解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.5.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为()A.18cm B.22cm C.24cm D.26cm考点:线段垂直平分线的性质.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,再求出AC的长,然后根据三角形的周长公式列式计算即可得解.解答:解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵AE=4cm,∴AC=2AE=2×4=8cm,∴△ABC的周长=AB+BC+AC=14+8=22cm.故选B.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△ABD的周长=AB+BC是解题的关键.6.如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm考点:线段垂直平分线的性质;勾股定理.专题:探究型.分析:连接AD,先由三角形内角和定理求出∠BAC的度数,再由线段垂直平分线的性质可得出∠DAB的度数,根据线段垂直平分线的性质可求出AD的长及∠DAC的度数,最后由直角三角形的性质即可求出AC的长.解答:解:连接AD,∵DE是线段AB的垂直平分线,BD=15,∠B=15°,∴AD=BD=10,∴∠DAB=∠B=15°,∴∠ADC=∠B+∠DAB=15°+15°=30°,∵∠C=90°,∴AC=AD=5cm.故选C.点评:本题考查的是直角三角形的性质及线段垂直平分线的性质,熟知线段垂直平分的性质是解答此题的关键.7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.解答:解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.点评:此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.如图,△ABC中,∠B=40°,AC的垂直平分线交AC于D,交BC于E,且∠EAB:∠CAE=3:1,则∠C等于()A.28°B.25°C.22.5°D.20°考点:线段垂直平分线的性质.专题:计算题.分析:设∠CAE=x,则∠EAB=3x.根据线段的垂直平分线的性质,得AE=CE,再根据等边对等角,得∠C=∠CAE=x,然后根据三角形的内角和定理列方程求解.解答:解:设∠CAE=x,则∠EAB=3x.∵AC的垂直平分线交AC于D,交BC于E,∴AE=CE.∴∠C=∠CAE=x.根据三角形的内角和定理,得∠C+∠BAC=180°﹣∠B,即x+4x=140°,x=28°.则∠C=28°.故选A.点评:此题综合运用了线段垂直平分线的性质、等腰三角形的性质以及三角形的内角和定理.9.若一个等腰三角形至少有一个内角是88°,则它的顶角是()A.88°或2°B.4°或86°C.88°或4°D.4°或46°考点:等腰三角形的性质.分析:分88°内角是顶角和底角两种情况讨论求解.解答:解:88°是顶角时,等腰三角形的顶角为88°,88°是底角时,顶角为180°﹣2×88°=4°,综上所述,它的顶角是88°或4°.故选C.点评:本题考查了等腰三角形的两底角相等的性质,难点在于要分情况讨论.10.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5 C.2.5 D.2.8考点:线段垂直平分线的性质;勾股定理;矩形的性质.专题:计算题.分析:根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AE=CE,设CE=x,表示出ED的长度,然后在Rt△CDE中,利用勾股定理列式计算即可得解.解答:解:∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD﹣AE=4﹣x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4﹣x)2,解得x=2.5,即CE的长为2.5.故选:C.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,把相应的边转化为同一个直角三角形的边是解题的关键.11.如图,在Rt△ABC中,∠ACB=30°,CD=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是()A.1B.2C.D.考点:角平分线的性质;含30度角的直角三角形;勾股定理.分析:根据直角三角形两锐角互余求出∠ABC=60°,再根据角平分线的定义求出∠ABD=∠DBC=30°,从而得到∠DBC=∠ACB,然后利用等角对等边的性质求出BD的长度,再根据直角三角形30°角所对的直角边等于斜边的一半求出AD,过点D作DE⊥BC于点E,然后根据角平分线上的点到角的两边的距离相等解答即可.解答:解:∵Rt△ABC中,∠ACB=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∴∠DBC=∠ACB,∴BD=CD=4,在Rt△ABD中,∵∠ABD=30°,∴AD=BD=×4=2,过点D作DE⊥BC于点E,则DE=AD=2.故选B.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,以及等角对等边的性质,小综合题,但难度不大,熟记各性质是解题的关键.12.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20°B.25°C.30°D.40°考点:等腰三角形的性质.专题:几何图形问题.分析:根据此题的条件,找出等腰三角形,找出相等的边与角度,设出未知量,找出满足条件的方程.解答:解:∵AC=AE,BC=BD∴设∠AEC=∠ACE=x°,∠BDC=∠BCD=y°,∴∠A=180°﹣2x°,∠B=180°﹣2y°,∵∠ACB+∠A+∠B=180°,∴100+(180﹣2x)+(180﹣2y)=180,得x+y=140,∴∠DCE=180﹣(∠AEC+∠BDC)=180﹣(x+y)=40°.故选D.点评:根据题目中的等边关系,找出角的相等关系,再根据三角形内角和180°的定理,列出方程,解决此题.二.填空题(共6小题)13.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.考点:角平分线的性质.专题:几何图形问题.分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.解答:解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.点评:此题主要考查角平分线的性质;熟练运用角平分线的性质定理,是很重要的,作出并求出三角形AB边上的高时解答本题的关键.14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是2.考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又∵AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO= 4:5:6.考点:角平分线的性质.专题:压轴题.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.17.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是15°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE垂直平分AC,∠A=50°,根据线段垂直平分线的性质,易求得∠ACD的度数,又由AB=AC,可求得∠ACB的度数,继而可求得∠DCB的度数.解答:解:∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,∵AB=AC,∠A=50°,∴∠ACB=∠B==65°,∴∠DCB=∠ACB﹣∠ACD=15°.故答案为:15°.点评:此题考查了线段垂直平分线的性质与等腰三角形的性质.此题比较简单,注意数形结合思想的应用.18.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB= 72度.考点:线段垂直平分线的性质;菱形的性质.专题:计算题.分析:欲求∠CPB,可根据菱形、线段垂直平分线的性质、对称等方面去寻求解答方法.解答:解:先连接AP,由四边形ABCD是菱形,∠ADC=72°,可得∠BAD=180°﹣72°=108°,根据菱形对角线平分对角可得:∠ADB=∠ADC=×72°=36°,∠ABD=∠ADB=36度.EP是AD的垂直平分线,由垂直平分线的对称性可得∠DAP=∠ADB=36°,∴∠PAB=∠DAB﹣∠DAP=108°﹣36°=72度.在△BAP中,∠APB=180°﹣∠BAP﹣∠ABP=180°﹣72°﹣36°=72度.由菱形对角线的对称性可得∠CPB=∠APB=72度.点评:本题开放性较强,解法有多种,可以从菱形、线段垂直平分线的性质、对称等方面去寻求解答方法,在这些方法中,最容易理解和表达的应为对称法,这也应该是本题考查的目的.灵活应用菱形、垂直平分线的对称性,可使解题过程更为简便快捷.三.解答题(共12小题)19.如图,已知DE是AC的垂直平分线,AB=10cm,BC=11cm,求△ABD的周长.考点:线段垂直平分线的性质.分析:先根据线段垂直平分线的性质得出AD=CD,故可得出BD+AD=BD+CD=BC,进而可得出结论.解答:解:∵DE垂直平分,∴AD=CD,∴BD+AD=BD+CD=BC=11cm,又∵AB=10cm,∴△ABD的周长=AB+BC=10+11=21(cm).点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.20.如图,D为△ABC边BC延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB交AB于点F.求证:CE⊥CF.考点:等腰三角形的性质.专题:证明题.分析:根据三线合一定理证明CF平分∠ACB,然后根据CF平分∠ACB,根据邻补角的定义即可证得.解答:证明:∵CD=CA,E是AD的中点,∴∠ACE=∠DCE.∵CF平分∠ACB,∴∠ACF=∠BCF.∵∠ACE+∠DCE+∠ACF+∠BCF=180°,∴∠ACE+∠ACF=90°.即∠ECF=90°.∴CE⊥CF.点评:本题考查了等腰三角形的性质,顶角的平分线、底边上的中线和高线、三线合一.21.如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,BC=4,CD=3,求AB的长.考点:含30度角的直角三角形;相似三角形的判定与性质.专题:计算题.分析:延长DA,CB,交于点E,可得出三角形ABE与三角形CDE相似,由相似得比例,设AB=x,利用30角所对的直角边等于斜边的一半得到AE=2x,利用勾股定理表示出BE,由BC+BE表示出CE,在直角三角形DCE中,利用30度角所对的直角边等于斜边的一半得到2DC=CE,即可求出AB的长.解答:解:延长DA,CB,交于点E,∵∠E=∠E,∠ANE=∠D=90°,∴△ABE∽△CDE,∴=,在Rt△ABE中,∠E=30°,设AB=x,则有AE=2x,根据勾股定理得:BE==x,∴CE=BC+BE=4+x,在Rt△DCE中,∠E=30°,∴CD=CE,即(4+x)=3,解得:x=,则AB=.点评:此题考查了相似三角形的判定与性质,含30度直角三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.22.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理.分析:(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.解答:解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.点评:本题考查了角平分线性质和勾股定理的运用,注意:角平分线上的点到角两边的距离相等.23.如图,已知△ABC和△ABD均为直角三角形,其中∠ACB=∠ADB=90°,E为AB的中点,求证:CE=DE.考点:直角三角形斜边上的中线.专题:证明题.分析:由于AB是Rt△ABC和Rt△ABD的公共斜边,因此可以AB为媒介,再根据斜边上的中线等于斜边的一半来证CE=ED.解答:证明:在Rt△ABC中,∵E为斜边AB的中点,∴CE=AB.在Rt△ABD中,∵E为斜边AB的中点,∴DE=AB.∴CE=DE.点评:本题考查的是直角三角形的性质:在直角三角形中,斜边上的中线等于斜边的一半.24.如图所示,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连接EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.考点:等腰三角形的性质;三角形中位线定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)在等腰△ACD中,CF是顶角∠ACD的平分线,根据等腰三角形三线合一的性质知F是底边AD的中点,由此可证得EF是△ABD的中位线,即可得到EF∥BC的结论;(2)易证得△AEF∽△ABD,根据两个相似三角形的面积比(即相似比的平方),可求出△ABD的面积,而四边形BDFE的面积为△ABD和△AEF的面积差,由此得解.解答:(1)证明:∵在△ACD中,DC=AC,CF平分∠ACD;∴AF=FD,即F是AD的中点;又∵E是AB的中点,∴EF是△ABD的中位线;∴EF∥BC;(2)解:由(1)易证得:△AEF∽△ABD;∴S△AEF:S△ABD=(AE:AB)2=1:4,∴S△ABD=4S△AEF=6,∴S△AEF=1.5.∴S四边形BDFE=S△ABD﹣S△AEF=6﹣1.5=4.5.点评:此题主要考查的是等腰三角形的性质、三角形中位线定理及相似三角形的判定和性质.25.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.考点:直角三角形全等的判定;全等三角形的性质.专题:证明题.分析:此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.点评:本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.26.已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.考点:等腰三角形的性质;全等三角形的判定与性质.专题:计算题;证明题.分析:根据已知利用SAS判定△ABE≌△CBF,由全等三角形的对应边相等就可得到AE=CF;根据已知利用角之间的关系可求得∠EFC的度数.解答:(1)证明:在△ABE和△CBF中,∵,∴△ABE≌△CBF(SAS).∴AE=CF.(2)解:∵AB=BC,∠ABC=90°,∠CAE=30°,∴∠CAB=∠ACB=(180°﹣90°)=45°,∠EAB=45°﹣30°=15°.∵△ABE≌△CBF,∴∠EAB=∠FCB=15°.∵BE=BF,∠EBF=90°,∴∠BFE=∠FEB=45°.∴∠EFC=180°﹣90°﹣15°﹣45°=30°.点评:此题主要考查了全等三角形的判定方法及等腰三角形的性质等知识点的掌握情况;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.27.如图,在△ABC中,AB≠AC,∠BAC的外角平分线交直线BC于D,过D作DE⊥AB,DF⊥AC分别交直线AB,AC于E,F,连接EF.(1)求证:EF⊥AD;(2)若DE∥AC,且DE=1,求AD的长.考点:角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:几何综合题;压轴题.分析:(1)根据AD是∠EAF的平分线,那么DE=DF,如果证得EA=FA,那么我们就能得出AD是EF的垂直平分线,那么就证得EF⊥AD了.因此证明EA=FA是问题的关键,那么就要先证得三角形AED和AFD全等.这两个三角形中已知的条件有∠EAD=∠FAD,一条公共边,一组直角,因此两三角形全等,那么就可以得出EA=AF了.(2)要求AD的长,在直角三角形AED中,有了DE的值,如果知道了∠ADE或∠EAD的度数,那么就能求出AD了.如果DE∥AC,那么∠EAC=90°,∠EAD=45°,那么在直角三角形AED中就能求出AD的长了.解答:(1)证明:∵AD是∠EAF的平分线,∴∠EAD=∠DAF.∵DE⊥AE,DF⊥AF,∴∠DEA=∠DFA=90°又AD=AD,∴△DEA≌△DFA.∴EA=FA∵ED=FD,∴AD是EF的垂直平分线.即AD⊥EF.(2)解:∵DE∥AC,∴∠DEA=∠FAE=90°.又∠DFA=90°,∴四边形EAFD是矩形.由(1)得EA=FA,∴四边形EAFD是正方形.∵DE=1,∴AD=.点评:本题考查了全等三角形的判定,角平分线的性质,线段垂直平分线的性质等知识点.本题中利用全等三角形得出线段相等是解题的关键.。
北师大版八年级数学下册第一章(证明)练习题1.下列图形中,可以由其中一个图形通过平移得到的是 ( )A. B. C. D. 2.列命题中,其逆命题不成立的是( )A .同旁内角互补,两直线平行B .如果三角形的三边长 a ,b ,c 满足 a 2+b 2=c 2,那么这个三角形是直角三角形C .如果两个实数相等,那么它们的平方相等D .角平分线上的点到角两边的距离相等3. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.如图,在△ABC 中,BC =5,∠A =80°,∠B =70°,把△ABC 沿RS 的方向平移到△DEF 的位置,若CF =4,则下列结论中错误的是( )A. BE =4B. ∠F =30°C. AB ∥DED. DF =55.如图,在△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18°B .24°C .30°D .36°第4题 第5题 第6题 第7题 第8题6.如图,在△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则下列选项中AP 长不可 能是( )A .3.5B .4.2C .5.8D .77.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BC 于点E ,交BD 于点F ,连接CF .若∠A =60°,∠ABD =24°,则∠ACF 的度数为( )A .48°B .36°C .30°D .24°8.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D , 则下列说法中正确的个数是( )①AD 是∠BAC 的平分线②∠ADC =60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △ABC =1∶3.A. 1 B .2 C .3 D .49.要判定两个直角三角形全等,下列说法正确的有( )①有两条直角边对应相等;②有两个锐角对应相等;③有斜边和一条直角边对应相等;④有一条直角边和一个锐角相等;⑤有斜边和一个锐角对应相等;⑥有两条边相等.A.①③④⑤B.①③⑤C.①③④⑤⑥D.①③④10.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.6411.一个等腰三角形有一角是70°,则其余两角分别为.12.在用反证法证明命题“三角形中必有一个内角小于或等于60° ”时,首先应该假设这个三角形中_ _.13.有下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有.(填序号)14. “垂直于同一条直线的两条直线互相平行”的逆命题是,这是一个(填“真”或“假”)命题.15.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为.16.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,CD=3,AB=12,则△ABD的面积为.第16题第17题第18题第19题第20题17.如图,∠A=15°,AB=BC=CD=DE=EF,则∠MEF=________.18.如图,将一长方形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF 的面积为___ __.19.如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=________.20.如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(4,0),点C在第一象限内,且∠CAB=90°,BC=6.将△ABC沿x轴向右平移,当点C落在直线y=√3x-2√3上时,线段BC扫过的面积为.21. 如图所示,在平面直角坐标系中,每个小方格的边长是1,把△ABC先向右平移4个单位,再向下平移2个单位,得到△A′B′C′.(1)在坐标系中画出△A′B′C′,并写出△A′B′C′各顶点的坐标.(2)求出△A′B′C′的面积.22.如图,OA⊥OB,OA=45海里,OB=15海里,我国某岛位于O点,我国渔政船在点B处发现有一艘不明国籍的渔船,自A点出发沿着AO方向匀速驶向该岛所在地O点,我国渔政船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国渔政船行驶的航程BC的长.23.如图,在△ABC中,AD平分∠BAC,交BC于点D,EF∥AD,交AC于点E,交BA的延长线于点F. 求证:△AEF为等腰三角形.24.如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A,C之间选择一点B(A,B,C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40 m.(1)求点B到AD的距离;(2)求塔高CD.(结果用根号表示)25. 如图,已知E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C,D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线;(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.26.在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE=∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.27. 如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.28.如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.29. 已知:如图所示,△ABC是边长为6 cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC 边上匀速移动,它们的速度分别为v P=2 cm/s,v Q=1 cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P 的运动时间为t s.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?。
一. 不等关系第一章一元一次不等式和一元一次不等式组1. 一般地,用符号“<”(或“ ≥”), “>”(或“ ≤”)连接的式子叫做不等式.2.区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3.准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数⇔ 非正数⇔ 大于等于0( ≥ 0) ⇔小于等于0( ≤ 0) ⇔0 和正数0 和负数⇔不小于0⇔不大于0二. 不等式的基本性质1.掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, a >b .c c(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, a <bc c2.比较大小:(a、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b ⇔ a-b>0 a=b ⇔ a-b=0 a<b ⇔ a-b<0(由此可见,要比较两个实数的大小,只要作差即可)例下列各式一定成立的是( )A.7a﹥4a B. a﹥-a C. a+1﹥a-1 D. a≤a2例若a﹥b,且a、b 同号,以下不等式中一定成立的有①a2﹥b2 ②a3<b3 ③1/a<1/b ④a/b﹥1A. 0B. 1C. 2D. 3三. 不等式的解集:1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心点,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0 时,解为x >b;②当a=0 时,且b<0,则x 取一切实数;当a=0 时,且b≥0,则a无解;③当a<0 时, 解为x <b ;a5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.例不等式mx﹥n(m≠0)的解集是( )A.x﹥n/m B.当m﹥0 时,x﹥n/m,当m<0 时,x<-n/mC.x<n/m D.当m﹥0 时,x﹥n/m,当m<0 时,x<n/m例如果不等式(a+1) x﹥(a+1)的解集为x<1,则a 必须满足的的条件是:A. a<0B. a≤-1C. a﹥-1D. a<-1例已知关于x 的不等式(2a-b)x+a-5b ﹥0 的解集为x<10/7,则ax+b﹥0 的解集为例若不等式组x﹥a 无解,则不等式组x﹥2-a 的解集是例水果店进了某中水果1t,进价是7 元/kg。
戴氏西门总校数学资料北师大版八年级下第一章、一元一次不等式与不等式组复习讲义(一)第一部分、要点概况(一)不等关系1、一般地,用符号“<”、“≤”、“>”、“≥”、“≠”连接的式子叫做不等式。
注意:⑴要弄清不等式和等式的区别:等式有等号,而不等式没有。
⑵常用的不等号有:<、≤、>、≥、≠。
⑶列不等式是数学化与符号化的过程,它与列方程类似,列不等式注意找到问题中不等关系的词,如: “正数(>0)”, “负数(<0)”, “非正数(≤0)”, “非负数(≥0)”, “超过(>0)”, “不足(<0)”, “至少(≥0)”, “至多(≤0)”, “不大于(≤0)”, “不小于(≥0)”⑷除了⑶常见不等式所表示的基本语言与含义还有: ①若a -b >0,则a 大于b ; ②若a -b <0,则a 小于b ; ③若a -b ≥0,则a 不小于b ; ④若a -b ≤0,则a 不大于b ;⑤若ab >0或0ab >,则a 、b 同号; ⑥若ab <0或0ab<,则a 、b 异号。
⑸不等号具有方向性,其左右两边不能随意交换:a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
例1:判断下列哪些式子是不等式,哪些不是不等式。
①32>-; ②21x ≤; ③21x -; ④s vt =; ⑤283m x <-;⑥124x x ->-;⑦38x ≠;⑧5223x x -≈-+;⑨240x +>;⑩230xπ+>。
不等式: 。
变式训练1:已知下列各式:①-1<0,②2+3=5 ③3x>7 ④2x-3y=1 ,其中不等式有不等式: 。
例2:⑴a 是正数: ;⑵x 的平方是非负数: ; ⑶a 不大于b : ;⑷x 的3倍与-2的差是负数: ;⑸长方形的长为x cm ,宽为10cm ,其面积不小于200cm 2: 。
变式训练2:用不等式表示:(1)x 与1的差不大于y 的3倍; (2)a 与b 的平方和是非负数;例3:试判断237a a -+与32a -+的大小变式训练3-1:比较1415-与1314-的大小。
北师大版八年级全册数学定理知识点汇总八年级上册第一章勾股定理1.勾股定理直角三角形两直角边a, b的平方和等于斜边c的平方, 即2.勾股定理的逆定理如果三角形的三边长a, b, c有关系, 那么这个三角形是直角三角形。
3.勾股数:满足的三个正整数, 称为勾股数。
第二章实数1) 1.实数的概念及分类2)实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数无理数:无限不循环小数叫做无理数。
➢在理解无理数时, 要抓住“无限不循环”这一时之, 归纳起来有四类:➢开方开不尽的数, 如等;➢有特定意义的数, 如圆周率π, 或化简后含有π的数, 如+8等;➢有特定结构的数, 如0。
1010010001…等;某些三角函数值, 如sin60o等1) 2.实数的倒数、相反数和绝对值相反数:实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数, 零的相反数是零), 从数轴上看, 互为相反数的两个数所对应的点关于原点对称, 如果a与b互为相反数, 则有a+b=0, a=—b,反之亦成立。
绝对值:在数轴上, 一个数所对应的点与原点的距离, 叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身, 也可看成它的相反数, 若|a|=a, 则a ≥0;若|a|=-a, 则a ≤0。
倒数:如果a 与b 互为倒数, 则有ab=1, 反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
数轴:2) 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时, 要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想, 理解实数与数轴的点是一一对应的, 并能灵活运用。
估算:1) 3.平方根、算数平方根和立方根算术平方根:➢ 一般地, 如果一个正数x 的平方等于a, 即x2=a, 那么这个正数x 就叫做a 的算术平方根。
特别地, 0的算术平方根是0。
2) 表示方法:记作“ ”, 读作根号a 。
【导语】学会整合知识点。
把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡⽚,会让你的⼤脑、思维条理清醒,⽅便记忆、温习、掌握。
同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。
这样能够促进理解,加深记忆。
下⾯是为您整理的《北师⼤版初⼆数学下册知识点归纳》,仅供⼤家参考。
北师⼤版初⼆数学下册知识点归纳篇⼀ 第⼀章分式 1分式及其基本性质分式的分⼦和分母同时乘以(或除以)⼀个不等于零的整式,分式的只不变 2分式的运算 (1)分式的乘除乘法法则:分式乘以分式,⽤分⼦的积作为积的分⼦,分母的积作为积的分母除法法则:分式除以分式,把除式的分⼦、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分⼦相加减;异分母分式相加减,先通分,变为同分母的分式,再加减 3整数指数幂的加减乘除法 4分式⽅程及其解法 第⼆章反⽐例函数 1反⽐例函数的表达式、图像、性质 图像:双曲线 表达式:y=k/x(k不为0) 性质:两⽀的增减性相同; 2反⽐例函数在实际问题中的应⽤ 第三章勾股定理 1勾股定理:直⾓三⾓形的两个直⾓边的平⽅和等于斜边的平⽅ 2勾股定理的逆定理:如果⼀个三⾓形中,有两个边的平⽅和等于第三条边的平⽅,那么这个三⾓形是直⾓三⾓形。
第四章四边形 1平⾏四边形 性质:对边相等;对⾓相等;对⾓线互相平分。
判定:两组对边分别相等的四边形是平⾏四边形; 两组对⾓分别相等的四边形是平⾏四边形; 对⾓线互相平分的四边形是平⾏四边形; ⼀组对边平⾏⽽且相等的四边形是平⾏四边形。
推论:三⾓形的中位线平⾏第三边,并且等于第三边的⼀半。
2特殊的平⾏四边形:矩形、菱形、正⽅形 (1)矩形 性质:矩形的四个⾓都是直⾓; 矩形的对⾓线相等; 矩形具有平⾏四边形的所有性质 判定:有⼀个⾓是直⾓的平⾏四边形是矩形;对⾓线相等的平⾏四边形是矩形; 推论:直⾓三⾓形斜边的中线等于斜边的⼀半。
新北师大版八年级数学下第一章每课时知识点及习题(word版可编辑修改) 编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新北师大版八年级数学下第一章每课时知识点及习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新北师大版八年级数学下第一章每课时知识点及习题(word版可编辑修改)的全部内容。
第二章不等式与不等式组测试题
第三章图形的平移与旋转单元测试题。
八年级下册数第一章讲义主要知识点(1)等腰三角形一、主要知识点1、证明三角形全等的判定方法(SSS,SAS,ASA,AAS,证直角三角形全等除上述外还有HL)及全等三角形的性质是对应边相等,对应角相等。
2、等腰三角形的有关知识点。
等边对等角;等角对等边;等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合。
(三线合一)3、等边三角形的有关知识点。
判定:有一个角等于60°的等腰三角形是等边三角形;三条边都相等的三角形是等边三角形;三个角都是60°的三角形是等边三角形;有两个叫是60°的三角形是等边三角形。
性质:等边三角形的三边相等,三个角都是60°。
4、反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法(2)直角三角形、主要知识点1、直角三角形的有关知识。
直角三角形两条直角边的平方和等于斜边的平方;如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.(3)线段的垂直平分线角平分线1、线段的垂直平分线。
线段垂直平分线上的点到这条线段两个端点的距离相等;到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
2、角平分线。
角平分线上的点到这个角的两边的距离相等。
在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
第一章《三角形的证明》水平测试一、精心选一选,慧眼识金(每小题2分,共20分)1.如图1,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()去配. A. ① B. ②C.③D. ①和②2.下列说法中,正确的是().A .两腰对应相等的两个等腰三角形全等B .两角及其夹边对应相等的两个三角形全等C .两锐角对应相等的两个直角三角形全等D .面积相等的两个三角形全等3.如图2,AB ⊥CD ,△ABD 、△BCE 都是等腰三角形,如果CD =8cm ,BE=3cm ,那么AC长为().A .4cmB .5cmC .8cmD .34cm4.如图3,在等边ABC 中,,D E 分别是,BC AC 上的点,且BD CE ,AD 与BE 相交于点P ,则12的度数是(). A .045B .055C .060D .0755.如图4,在ABC 中,AB=AC ,36A ,BD 和CE 分别是ABC 和ACB 的平分线,且相交于点P. 在图4中,等腰三角形(不再添加线段和字母)的个数为().A .9个B .8个C .7个D .6个6.如图5,123,,l l l 表示三条相互交叉的公路,现在要建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有().A .1处B .2处C .3处D .4处7.如图6,A 、C 、E 三点在同一条直线上,△DAC 和△EBC 都是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN. 其中,正确结论的个数是().A .3个B .2个C .1个D .0个8.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再作出BF 的垂线DE ,使A ,C ,E 在同一条直线上(如图7),可以证明ABC ≌EDC ,得ED=AB. 因此,测得DE 的长就是AB 的长,在这里判定ABC ≌EDC 的条件是().A .ASAB .SASC .SSSD .HL9.如图8,将长方形ABCD 沿对角线BD 翻折,点C 落在点E 的位置,BE 交AD 于点F. 求证:重叠部分(即BDF )是等腰三角形.证明:∵四边形ABCD 是长方形,∴AD ∥BC又∵BDE 与BDC 关于BD 对称,∴23. ∴BDF 是等腰三角形.请思考:以上证明过程中,涂黑部分正确的应该依次是以下四项中的哪两项?().①12;②13;③34;④BDC BDEA .①③B .②③C .②①D .③④10.如图9,已知线段a ,h 作等腰△ABC ,使AB =AC ,且BC =a ,BC 边上的高AD =h. 张红的作法是:(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN ,MN 与BC 相交于点D ;(3)在直线MN 上截取线段h ;(4)连结AB ,AC ,则△ABC 为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是().A. (1)B. (2)C. (3)D. (4)二、细心填一填,一锤定音(每小题2分,共20分)1.如图10,已知,在△ABC 和△DCB 中,AC=DB ,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需增加一个条件是____________.2.如图11,在Rt ABC 中,090,BAC ABAC ,分别过点,B C 作经过点A 的直线的垂线段BD ,CE ,若BD=3厘米,CE=4厘米,则DE 的长为_______.3.如图12,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC 等于_________度.4.如图13,在等腰ABC 中,AB=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若BCE 的周长为50,则底边BC 的长为_________. 5.在ABC 中,AB=AC ,AB 的垂直平分线与AC 所在的直线相交所得的锐角为50,则图8底角B 的大小为________.6.在《证明二》一章中,我们学习了很多定理,例如:①直角三角形两条直角边的平方和等于斜边的平方;②全等三角形的对应角相等;③等腰三角形的两个底角相等;④线段垂直平分线上的点到这条线段两个端点的距离相等;⑤角平分线上的点到这个角两边的距离相等.在上述定理中,存在逆定理的是________.(填序号)7.如图14,有一张直角三角形纸片,两直角边AC=5cm ,BC=10cm ,将△ABC 折叠,点 B与点A 重合,折痕为DE ,则CD 的长为________.8.如图15,在ABC 中,AB=AC ,120A ,D 是BC 上任意一点,分别做DE ⊥AB于E ,DF ⊥AC 于F ,如果BC=20cm ,那么DE+DF= _______cm.9.如图16,在Rt △ABC 中,∠C=90°,∠B=15°,DE 是AB 的中垂线,垂足为D ,交BC于点E ,若4BE,则AC_______ .10.如图17,有一块边长为24m 的长方形绿地,在绿地旁边B 处有健身器材,由于居住在A 处的居民践踏了绿地,小颖想在A 处立一个标牌“少走_____步,踏之何忍?”但小颖不知在“_____”处应填什么数字,请你帮助她填上好吗?(假设两步为1米)?三、耐心做一做,马到成功(本大题共48分)1.(7分)如图18,在ABC 中,090ACB,CD 是AB 边上的高,30A . 求证:AB= 4BD.2.(7分)如图19,在ABC 中,090C ,AC=BC ,AD 平分CAB 交BC 于点D ,DE ⊥AB 于点E ,若AB=6cm. 你能否求出BDE 的周长?若能,请求出;若不能,请说明理由.3.(10分)如图20,D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点. 现有四个条件:①AB =AC ;②OB =OC ;③∠ABE =∠ACD ;④BE =CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正.确.的命题:命题的条件是和,命题的结论是和(均填序号).(2)证明你写出的命题.已知:求证:证明:4.(8分)如图21,在ABC 中,90A ,AB=AC ,ABC 的平分线BD 交AC 于D ,CE ⊥BD 的延长线于点 E.求证:12CEBD .5.(8分)如图22,在ABC 中,90C .(1)用圆规和直尺在AC 上作点P ,使点P 到A 、B 的距离相等.(保留作图痕迹,不写作法和证明);(2)当满足(1)的点P 到AB 、BC 的距离相等时,求∠A 的度数.6.(8分)如图23,90AOB ,OM 平分AOB ,将直角三角板的顶点P 在射线OM 上移动,两直角边分别与OA 、OB 相交于点C 、D ,问PC 与PD 相等吗?试说明理由.四、拓广探索(本大题12分)如图24,在ABC 中,AB=AC ,AB 的垂直平分线交AB 于点N ,交BC 的延长线于点M ,若40A .(1)求NMB 的度数;(2)如果将(1)中A 的度数改为070,其余条件不变,再求NMB 的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的A 改为钝角,你对这个规律性的认识是否需要加以修改?图21图24图23答案:一、精心选一选,慧眼识金1.C ;2.B ;3.D .点拨:BC=BE=3cm ,AB=BD=5cm ;4.C .点拨:利用ABD ≌BCE ;5.B ;6.D .点拨:三角形的内角平分线或外角平分线的交点处均满足条件;7.B .点拨:①②正确;8.A ;9.C ;10.C .点拨:在直线MN 上截取线段h ,带有随意性,与作图语言的准确性不相符.二、细心填一填,一锤定音1.答案不惟一.如ACBDBC ;2.7厘米. 点拨:利用ABD ≌CAE ;3.030;4.23.点拨:由27BE CE ACAB,可得502723BC;5.070或020.点拨;当ABC 为锐角三角形时,70B;当ABC 为钝角三角形时,20B ;6.①、③、④、⑤.点拨:三个角对应相等的两个三角形不一定是全等三角形,所以②不存在逆定理;7.154cm . 点拨:设CDx ,则易证得10BDAD x .在Rt ACD 中,222(10)5x x ,解得154x.8.10.点拨:利用含030角的直角三角形的性质得,1122DE DFBD CDBC .9.2. 点拨:在Rt AEC 中,030AEC,由AE=BE= 4,则得AC=2;10.16.点拨:AB=26米,AC+BC=34米,故少走8米,即16步. 三、耐心做一做,马到成功1.∵90ACB ,30A ,∴AB=2BC ,60B .又∵CD ⊥AB ,∴030DCB ,∴BC=2BD.∴AB= 2BC= 4BD.2.根据题意能求出BDE 的周长. ∵090C ,90DEA,又∵AD 平分CAB ,∴DE=DC.在Rt ADC 和Rt ADE 中,DE=DC ,AD=AD ,∴Rt ADC ≌Rt ADE (HL ).∴AC=AE ,又∵AC=BC ,∴AE=BC.∴BDE 的周长DE DB EB BC EB AE EB AB .∵AB=6cm ,∴BDE 的周长=6cm.3.(1)①,③;②,④.(2)已知:D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点,且AB =AC ,∠ABE =∠ACD. 求证:OB =OC ,BE =CD.证明:∵AB=AC ,∠ABE =∠ACD ,∠A =∠A ,∴△ABE ≌△ACD (ASA ).∴BE=CD.又∵ABC ACB ,∴BCD ACB ACD ABC ABE CBE∴BOC 是等腰三角形,∴OB =OC.4.延长CE 、BA 相交于点 F.∵090,90EBF F ACF F ,∴EBF ACF .在Rt ABD 和Rt ACF 中,∵DBA ACF ,AB=AC ,∴Rt ABD ≌Rt ACF (ASA ). ∴BD CF .在Rt BCE 和Rt BFE 中,∵BE=BE ,EBC EBF ,∴RtBCE ≌Rt BFE (ASA ).∴CEEF. ∴1122CECFBD .5.(1)图略. 点拨:作线段AB 的垂直平分线.(2)连结BP.∵点P 到AB 、BC 的距离相等,∴BP 是ABC 的平分线,∴ABPPBC .又∵点P 在线段AB 的垂直平分线上,∴PA=PB ,∴A ABP .∴190303AABPPBC.6.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点 F.∵OM 平分AOB ,点P 在OM 上,∴PE=PF.又∵090AOB ,∴90EPF .∴EPF CPD ,∴E P CF P D.∴Rt PCE ≌Rt PDF (ASA ),∴PC=PD. 四、拓广探索(1)∵AB=AC ,∴BACB .∴11180180407022BA.∴90907020NMB B. (2)解法同(1).同理可得,035NMB.(3)规律:NMB 的度数等于顶角A 度数的一半.证明:设A.∵AB=AC ,∴BC ,∴11802B .∵090BNM ,∴11909018022NMB B.即NMB 的度数等于顶角A 度数的一半. (4)将(1)中的A 改为钝角,这个规律不需要修改.仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交所成的锐角等于顶角的一半.全品中考网全品第二章一元一次不等式(组)检测试题一、选择题(每小题3分,共36分)1.x 与y 的差的5倍与2的和是一个非负数,可表示为()(A )025y x (B )025y x(C )025y x (D )0225y x 2.下列说法中正确的是()(A )3x 是32x 的一个解. (B )3x 是32x 的解集. (C )3x是32x 的唯一解. (D )3x不是32x 的解.3. 不等式222xx 的非负整数解的个数是()(A )1 (B )2(C )3(D )44.已知正比例函数x m y 12的图象上两点2221,,,y x B x x A ,当21x x 时,有21y y ,那么m 的取值范围是()(A )21m(B )21m(C )2m (D )m 5.不等式组2.351,062xx的解集是()(A )32x (B )38x (C )38x (D )8x或3x 6.若,0ba 且0b,则b a b a ,,,的大小关系是()(A )b a b a (B )ba ab (C )baba(D )a b ba7.已知关于x 的一次函数72m mx y在51x上的函数值总是正的,则m 的取值范围是()(A )7m (B )1m (C )71m (D )以上答案都不对8.如果方程组.33,13yxk y x 的解为x 、y ,且42k,则y x的取值范围是()(A )10yx (B )210yx (C )11yx(D )13yx9.若方程x xm x m 53113的解是负数,则的取值范围是()(A )45m(B )45m(C )45m(D )45m10.两个代数式1x 与3x的值的符号相同,则x 的取值范围是()(A )3x (B )1x (C )21x (D )1x 或3x 11.若不等式33a xa 的解集是1x ,则a 的取值范围是()(A )3a (B )3a(C )3a(D )3a 12.若4224m m ,那么m 的取值范围是()(A )不小于 2 (B )不大于 2 (C )大于 2 (D )等于 2 二、填空题(每题3分,共24分)13. 当x _____时,代数式43x 的值是非正数. 14. 若不等式.32,12bxa x 的解集为11x ,那么ab 的值等于_____. 15.若x 同时满足不等式032x 与02x,则x 的取值范围是_____.m16.已知x 关于的不等式组.0,125ax x 无解,则a 的取值范围是_____.17. 如果关于x 的不等式51a x a 和42x 的解集相同,则a 的值为_____.18. 小马用100元钱去购买笔记本和笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小马最多能买_____枝钢笔.19.一个两位数,十位上的数字比个位数上的数字小2,若这个两位数处在40至60之间,那么这个两位数是_____.20. 已知四个连续自然数的和不大于34,这样的自然数组有_____组.三、解答题(每题8分,共40分)21.解不等式3225332xxx x ,并把它的解集在数轴上表示出来.22.求不等式组)2(.3212)1(,133211x xx x 的偶数解.23.已知关于y x,的方程组)2(.2)1(,32m yxm y x 的解y x,均为负数,求m 的取值范围.24. 关于y 的不等式组253,7.236y yt y t y 的整数解是3,2,1,0,1,求参数t 的取值范围.25. 甲乙两人先后去同一家商场买了一种每块0.50元的小手帕.商场规定凡购买不少于10块小手帕可优惠20%,结果甲比乙多花了4元钱,又知甲所花的钱不超过8元,在充分享受优惠的条件下,甲乙两人各买了多少块小手帕?参考答案一、选择题(每小题3分,共36分)1.解:x 与y 的差的5倍是y x 5,再与2的和是25y x ,是一个非负数为:025y x .故选(B )2.解:32x ,根据不等式基本性质2,两边都除以2,得23x.由此,可知3x 只是32x 的一个解.故选(A )3. 解:去括号,得.242x x 解得.2x 所以原不等式的非负数整数解为,2,1,0x共3个.故选(C )4.解:因为点2221,,,y x B x x A 在函数x m y 12的图象上,所以1112x m y ,2212x m y . 所以212112x x m y y . 因为当21x x 时,有21y y ,即当21x x ,021y y ,所以.012m 所以.21m故选(A )5.解: 由(1)得3x . 由(2)得8x.所以不等式组的解集是38x 故选(C )6.解:由,0b a且0b,得0a且b a.又根据不等式的性质2,得0,0ba.b ab a,.所以a b b a 故选(D )7.解:根据题意,令1x,则07my,得7m;令5x ,则077m y ,得1m .综上,得7m.故选(A )8.解:两个不等式相减后整理,得221kyx .由42k,得220k .所以10yx故选(A )9.解:方程x x m x m 53113的解为541mx,要使解为负数,必须054m ,即45m.故选(A )10.解: 因为代数式1x 与3x 的值的符号相同,可得.03,01xx 或.03,01xx 由第一个不等式组得,3x;由第二个不等式组得, 1x .故选(D )11.解:因为不等式33a x a 的解集是1x,所以03a .所以3a.故选(C )12.解:由4224m m ,得042m ,所以2m .故选(A )二、填空题(每题3分,共24分)13.解:根据题意,得043x .解得.34x14.解:由.32,12bxa x 得.23,21b xa x 所以.2123axb 又因为11x ,所以.123,121ba解得.2,1ba 所以.221ab 15.解:由032x ,得23x,由02x ,得2x .所以223x.16.解:原不等式组可化为.,3a x x 若不等式组有解,则3xa.3a.故当3a时, 不等式组无解. 所以a 的取值范围是3a . 17.解:由42x 得2x .因为不等式51a x a 和42x 的解集相同,所以不等式51a xa 的解集为.15a ax 215a a .解得7a.18.解:设小马最多能买x 枝钢笔.根据题意,得1003025x x。
a t a
第一次课
第一章 三角形的证明
知识点一:等腰三角形1、全等三角形的性质及判定
全等三角形的性质:对应边相等,对应角相等。
判定三角形全等的四种方法:SSS, SAS, ASA, AAS.2、等腰三角形的性质定理:
①等腰三角形,两底角相等(等边对等角)。
②等腰三角形,底边的高,顶角的角平分线,底边的中线重合。
( “三线合一”)
③等腰三角形两底角的角平分线相等,两腰的中线相等,两腰的高相等。
(特殊线段相等)。
等腰三角形的判定定理:有两角相等的三角形是等腰三角形(等角对等边)。
知识点二:等边三角形
1、等边三角形的性质定理:等边三角形,三条边相等,三个内角都相等,且都等于60°。
2、等边三角形的判定定理:①有一个角是60°的等腰三角形是等边三角形。
②三个角都相等的三角形是等边三角形。
知识点三:反证法
步骤:①假设:假设结论不成立; ②推论:将假设当条件继续推论,得出与已知条件、公理、定义、定理相矛盾的结论;
③假设不成立; ④原命题成立。
知识点四:直角三角形 1、直角三角形性质定理:
①角的角度:直角三角形,两锐角互余。
②边的角度:勾股定理:直角三角形中,两直角边的平方和等于斜边的平方。
2、直角三角形的判定定理:
①角的角度:两锐角互余的三角形是直角三角形。
②边的角度:勾股定理的逆定理(在三角形中,若其中两边的平方等于第三边的平方,则此
三角形是直角三角形。
)3、特殊的直角三角形:
①①在直角三角形中,有一个角是30°,则它所对的直角边是斜边的一半。
②②在直角三角形中,若直角边是斜边的一半,那么直角边所对的角为30°。
4、“HL ”定理:斜边和一条直角边分别相等的两个三角形全等。
(注意:此定理只是用于直角三角形中,用之前要强调两个三角形是直角三角。
)知识点五:垂直平分线(点到点)
1、性质定理:垂直平分线上的点到这条线段两个端点的距离相等。
2、判定定理:到线段两个端点的距离相等的点在这条线段的垂直平分线上。
(垂直平分线点到点的距离相等)
3、三角形三边的垂直平分线:三角形的三条边的垂直平分线交于一点,并且这一点到三角形三个顶点的距离相等。
(证明“三点共线”:先作出其中两条边的交点,再证明该点在第三条线上)知识点六:角平分线(点到边)
1、角平分线性质定理:角平分线上的点到角两边的距离相等。
2、角平分线性质定理的符号语言:∵D 在∠ABC 的角平分线BM 上,且
DE ⊥AB ,DF ⊥BC ,∴DE=DF 。
3、角平分线判定定理:在一个角的内部,到角两边的距离相等的点在这个角的角平分线上。
4、平分线判定定理的符号语言(∠ABC ):∵DE ⊥AB ,DF ⊥BC ,且 DE=DF ,所以D 在∠ABC 的
角平分线。
3、三角形三内角的角平分线:三角形的三个内角的角平分线交于一点,并且这一点到三角形三条边的距离相等。
知识点七:尺规作图:
1、线段垂直平分线的画法:①分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到两个交点(两交点交于线段的两侧)。
②连接这两个交点。
2、等腰三角形的画法:①已知,求作②
例:已知等腰三角形的底和高,求作等腰三角形。
已知:线段a 和b.
求作:等腰三角形△ABC ,使BC=B ,高AD=a.解:作法:①.作射线BE ;
②.在射线BE 上取一点C ,使BC=b ;
③作线段BC 的垂直平分线MN ,交BC 于点D ;
④以点D 为圆心,以a 为半径画弧,交MN 于A ;⑤连接AB 、AC.
则△ABC 就是所求作的三角形。
4、角平分线的画法(∠ABC ):
①①以角的顶点B 为圆心,以任意长度为半径画弧,分别交AB 、BC 于点M 、N ;
判定定理
性质定理
判定定理
a t i m
e a
n d
A l l
t h
i
n g
s i
n
r
e i n
g a
②②分别以M、N分别为圆心,以大于1/2MN为半径画弧,两弧交于点O;
③③连接BO。
专题一:证明线段相等
1、如图,已知在△ABC中,AD为BC边上的中线,E为AC上一点,BE与AD交于点F,若AE=EF,求证:AC=BF.
2、已知:如图,△ABC是等边三角形,BD是AC边上的高,延长
BC到E,使CE=CD,求证:BD=DE 。
专题二:证明角相等
3、如图,已知等边△ABC,现将△ABC折叠,使A点落在BC边上D点,折痕为EF,求证:∠BED=∠FDC.
4.已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF//BA交AE于点F,DF=AC.求证:AE平分∠BAC 专题四:角平分线的应用
、如图,,,,若,则_____
BH与AC相等吗?若相等给予证明,若不相等请说明理由。
)求证:。
i n g
a t。