第四章 细胞培养与代谢调控
- 格式:ppt
- 大小:8.95 MB
- 文档页数:50
第四章代谢通量分析在传统的诱变技术可以得到高产目标产物的优良菌株,而且技术比较成熟,目前应用也比较广泛,但是,传统的诱变技术也存在着缺点:由于诱变作用存在非专一性,所以常常会出现基因突变的不可预见性,在育种过程中,很容易出现与目标向反的结果。
通过代谢通量的分析(MFA),可以确定代谢网络各个途径的通量,在不需知道代谢途径中各种酶的动力学特征的情况下就可以得到关于微生物代谢的特征信息。
通过代谢通量分析,可以指导基因工程技术对代谢流的改造、修饰、扩展以及构建新的代谢途径,改变细胞内部代谢通量的分配,并在条件优化之后得到更多的目标产物。
代谢通量分析系统的综合了底物吸收速率、产物生成速率、中间代谢物的物质平衡等数据,为代谢调节提供了重要的参数。
糖酵解(EMP)、磷酸戊糖途径(PP)以及三羧酸循环(TCA)为大分子的合成提供了前体物和能量,所以,以上三条途径及其相关的能量代谢、辅助因子等途径成为代谢通量分析中重要的研究对象。
在进行代谢通量分析之前,需要构建对象菌株的代谢通量模型。
为了达到这一目的,需要了解细胞内与代谢分析相关的各种途径反应的化学计量系数;另外,细胞系统与外界环境之间的包括生物量合成等交换信息也是需要清楚的。
4.1 S.inulinus发酵产酸种类的确定D-乳酸的发酵液中除了主要产物D-乳酸之外,还会存在其它有机酸,测定这些发酵副产物的生成量和生成速度对代谢通量分析有很重要的作用。
根据方法2.2.3.4,通过对发酵液中的有机酸谱峰的保留时间与标准有机酸样品进行逐一比对分析,来确定发酵液中的有机酸种类。
标准混合有机酸样品谱峰见图2-2。
经过对比甲酸、乙酸、苹果酸、柠檬酸和富马酸,发现S.inulinus 发酵过程中分泌出来的有机酸除了乳酸之外,主要还存在乙酸,其它几种有机酸含量很低。
按照方法2.2.3.4中混合有机酸的配比,去掉在发酵液中含量较少的有机酸,即仅有乳酸和乙酸的混合有机酸。
并利用外标法作出标准曲线。
生命科学中的细胞代谢研究总结分析细胞代谢是生命科学领域中的一个重要研究方向,涉及到生物体内各种化学反应的调控、能量的转换和物质的合成与降解。
本文将对细胞代谢的研究内容、研究方法及其在生命科学中的应用进行总结和分析。
一、细胞代谢的研究内容细胞代谢的研究主要包括以下几个方面:1.代谢途径的解析:研究细胞内各种代谢途径的组成、调控机制及其在能量和物质代谢中的作用。
例如,糖代谢、脂质代谢、蛋白质代谢等。
2.代谢酶的研究:酶是细胞代谢的关键因素,研究代谢酶的结构、功能和调控机制对于理解细胞代谢过程至关重要。
3.代谢调控:研究细胞内外环境变化对代谢途径的调控作用,包括激素调控、信号传导途径等。
4.代谢疾病:研究代谢紊乱导致的疾病,如糖尿病、肥胖、神经退行性疾病等,探索疾病的发病机制和治疗方法。
5.代谢与进化:研究代谢途径的进化历程,以及代谢差异在不同物种中的作用。
二、细胞代谢的研究方法细胞代谢的研究方法主要包括实验方法和计算方法两大部分:1.实验方法:包括细胞培养、遗传操作、生化实验、成像技术、代谢组学、转录组学等。
–细胞培养:通过体外培养细胞模型,研究代谢途径和调控机制。
–遗传操作:利用基因敲除、基因编辑等技术研究代谢酶的功能。
–生化实验:测定代谢物、酶活性等生化指标,研究代谢途径的调控。
–成像技术:如共聚焦显微镜、电子显微镜等,观察细胞内代谢过程。
–代谢组学:分析细胞内外的代谢物,揭示代谢变化和疾病关联。
–转录组学:研究基因表达调控与代谢的关系。
2.计算方法:包括系统生物学、生物信息学、机器学习等。
–系统生物学:构建代谢网络模型,研究代谢途径的相互作用。
–生物信息学:利用生物数据库和分析工具,挖掘代谢数据。
–机器学习:预测代谢变化趋势,发现新的代谢标志物。
三、细胞代谢研究的应用细胞代谢的研究在多个领域具有广泛的应用:1.疾病诊断与治疗:通过代谢组学分析,发现疾病相关的代谢标志物,为疾病的早期诊断提供依据。
细胞工程知识点1、细胞工程:以细胞为对象,应用生命科学理论,借助工程学原理与技术,有目的地利用或改造生物遗传性状,以获得特定的细胞、组织产品或新型物种的一门综合性科学技术。
2、细胞工程的应用:1)动植物快速繁殖技术:植物组织培养、人工种子、试管动物、克隆动物2)新品种的培育:细胞融合、细胞水平的重组3)细胞工程生物制品:单克隆抗体制备、疫苗生产4)细胞疗法与组织修复:2细胞工程理论基础1、细胞全能性:每个活的体细胞都具有像胚性细胞那样,经过诱导能分化发育成为一个新个体的潜在能力,并且具有母体的全部的遗传信息。
2、细胞分化:指细胞在形态、结构和功能上发生差异的过程。
3、细胞的脱分化:在一定营养和刺激因素作用下,具有特定结构与功能的植物组织的细胞被诱导而改变原来的发育途径,逐步失去原来的分化状态,细胞特性消失,转变为具有分生机能的细胞,并进行活跃的细胞分裂,这一过程称为去分化。
3细胞工程技术1、实验室条件:组成:准备室、无菌间、操作间、培养室、分析室。
2、无菌技术、显微技术、细胞观察与分析、细胞分离、细胞保存与复苏(1)细胞保存方法传代培养保存法低温冷冻保存法(低温、超低温保存)液体固化的方式(形成冰晶、形成无定型的玻璃化状态)玻璃化指液体转变为非晶态(玻璃态)的固定化过程,在此状态时,水分子没有发生重排,不产生结构和体积的变化,因此不会由于机械或溶液效应造成组织和细胞伤害,化冻后的细胞仍有活力。
冷冻方法(缓慢冷冻法、快速冷冻法预冷冻法包括逐级冷冻和两部冷冻)细胞复苏按一定复温速度将细胞悬液由冻存状态恢复到常温的过程。
复苏细胞一般采用快速融化法。
以保证细胞外结晶快速融化,以避免慢速融化水分渗入细胞内,再次形成胞内结晶损伤细胞。
细胞培养和代谢调控:1、细胞培养:模拟机体内生理条件,将细胞从机体中取出,在人工条件下使其生存、生长、繁殖和传代,进行细胞生命过程、细胞癌变、细胞工程等问题的研究。
2、细胞培养的操作方式:分批式培养、流加式培养、半连续式培养、连续式培养、灌流式培养。
《细胞生物学教案》word版一、引言1. 教学目标:使学生了解细胞生物学的研究对象和意义,激发学生对细胞生物学的学习兴趣。
2. 教学内容:细胞生物学的基本概念、研究内容和研究方法。
3. 教学方式:讲授、互动讨论。
二、细胞的概念与起源1. 教学目标:使学生理解细胞的基本概念,掌握细胞起源的理论。
2. 教学内容:细胞的概念、细胞的起源与发展。
3. 教学方式:讲授、实例分析。
三、细胞的结构与功能1. 教学目标:使学生熟悉细胞的主要结构,了解细胞的功能。
2. 教学内容:细胞膜、细胞质、细胞核、细胞器等结构及其功能。
3. 教学方式:讲授、实物展示、互动讨论。
四、细胞分裂与生长1. 教学目标:使学生掌握细胞分裂和生长的基本过程,了解其生物学意义。
2. 教学内容:有丝分裂、无丝分裂、细胞生长与细胞周期。
3. 教学方式:讲授、实例分析、互动讨论。
五、细胞分化与发育1. 教学目标:使学生了解细胞分化的概念与机制,掌握细胞发育的基本过程。
2. 教学内容:细胞分化的概念、机制与生物学意义,细胞发育的过程。
3. 教学方式:讲授、实例分析、互动讨论。
六、细胞膜与细胞外环境1. 教学目标:使学生理解细胞膜的结构与功能,掌握细胞与外部环境相互作用的基本原理。
2. 教学内容:细胞膜的组成、结构与功能,细胞膜的物质交换机制,细胞信号传递。
3. 教学方式:讲授、实验演示、互动讨论。
七、细胞内信号传递1. 教学目标:使学生掌握细胞内信号传递的基本途径和机制,了解其在细胞生物学中的重要性。
2. 教学内容:细胞内信号传递的途径、第二信使的作用,信号传递途径在细胞调控中的作用。
3. 教学方式:讲授、图解分析、互动讨论。
八、细胞代谢1. 教学目标:使学生了解细胞代谢的基本过程,掌握细胞能量转换和物质代谢的关键环节。
2. 教学内容:细胞呼吸、光合作用、代谢途径与代谢调控。
3. 教学方式:讲授、实验演示、互动讨论。
九、细胞遗传与基因表达1. 教学目标:使学生理解细胞遗传物质DNA的结构与功能,掌握基因表达调控的基本原理。
《细胞工程》考试大纲第一章绪论一、名词高技术、生物技术、细胞工程、生化工程.二、知识点现代生物技术是一项高技术;生物技术的基本内容;细胞工程在整个生物工程中的地位;细胞工程主要的技术领域;细胞工程的主要应用。
第二章细胞工程理论基础一、名词细胞、细胞周期、细胞凋亡、细胞分化、奢侈基因、管家基因.二、知识点细胞共性。
第三章细胞工程基本技术一、名词生物安全、p1级实验室、清洁液、干热灭菌、湿热灭菌、无菌操作技术、细胞贴壁率、细胞计数、MTT法、活体染色、成集落试验、污染。
二、知识点细胞工程实验室主要的仪器设备;细胞培养室的基本要求;p1级实验室的基本要求;细胞培养室常见的消毒方法;玻璃器皿的清洗方法;判断清洁液失效的方法及延长其寿命的方法;无菌操作的技术要领与要求;培养细胞的观察技术;培养细胞的主要污染与排除;细胞计数应注意的问题;细胞冻存与复苏的技术要点及注意事项。
第四章细胞培养与代谢调控一、名词分批式培养、流加式培养、半连续式培养、连续式培养、灌流式培养。
二、知识点分批式培养、连续式培养、灌流式培养的特点。
第五章植物人工繁殖一、名词植物细胞工程、植物组织培养、外植体、脱分化、再分化、愈伤组织、胚状体、大量元素、微量元素、器官发生途径、胚状体发生途径、植物快速无性繁殖、植物脱毒、胚培养、胚乳培养、人工种子、体细胞胚。
二、知识点植物细胞工程的主要内容;植物组织培养的理论基础;植物细胞工程的技术手段;植物组织再分化的两条途径;植物组织培养的主要步骤与技术要点;影响植物细胞脱分化和再分化因素;愈伤组织有的特点及其在细胞工程中的重要性;愈伤组织再生植株的途径;植物组织与动物细胞的超低温保存原理及方法的不同;植物细胞的几种大规模培养系统的特点及其影响因素;生长素、细胞分裂素的生理作用及其在组织培养中的意义。
成熟胚培养与幼胚培养在技术上的异同;植物胚乳培养的类型;植物胚胎培养的意义及影响因素;愈伤组织的形成的三个阶段及主要特征;人工种子的组成、构建与应用;体细胞胚胎发生的同步控制;植物脱毒的方法;植物快繁技术的主要步骤;微繁殖中芽的增殖方式;植物脱毒时外植体的预处理途径。
《普通生物学》课程笔记第一章:生命与生命科学一、什么是生命1. 生命的定义与特征- 生命的定义:生命是一种复杂的化学系统,它能够进行自我复制、自我调节、自我修复,并且能够对外界环境做出反应。
- 生命的基本特征:a. 新陈代谢:生物体通过代谢过程摄取营养物质,释放能量,维持生命活动。
b. 生长:生物体通过细胞分裂和细胞增大等方式实现体积和质量的增加。
c. 繁殖:生物体能够产生后代,确保物种的延续。
d. 适应性:生物体能够通过进化适应不断变化的环境。
e. 应激性:生物体能够对各种内外界刺激做出反应。
f. 稳态性:生物体能够维持相对稳定的内部环境,即稳态。
2. 生命的起源- 生命的起源尚未完全明确,以下是几种主要的假说:a. 自然发生说:认为生命可以直接从非生命物质中产生。
b. 化学进化说:认为生命起源于地球早期海洋中的化学反应,逐渐形成了复杂的有机分子和生命体系。
c. 宇宙生命说:认为生命的种子可能来自外太空,通过陨石或彗星等途径传播到地球。
二、生命科学的内涵1. 研究对象与范围- 生命科学研究生命现象和生命活动规律,包括生物的形态、结构、功能、发生、发展、遗传、进化等各个方面。
- 研究层次从分子、细胞、组织、器官、个体到种群、群落和生态系统。
2. 研究方法- 观察法:通过肉眼、显微镜等工具观察生物体的形态、行为等特征。
- 实验法:通过实验操作和控制变量来探究生命现象的因果关系。
- 比较法:通过比较不同生物或同一生物在不同环境下的差异,揭示生命现象的本质。
- 系统分析法:从系统的角度分析生物体的结构与功能,以及生物与环境的关系。
- 数理统计法:运用数学和统计学方法对生命现象进行定量分析。
3. 分支学科- 细胞生物学:研究细胞的结构、功能和生命活动规律。
- 遗传学:研究遗传信息的传递、变异和表达。
- 发育生物学:研究生物体从受精卵到成熟个体的发育过程。
- 生态学:研究生物与环境之间的相互关系和生态系统的功能。
细胞工程知识点汇总第一章细胞工程简介细胞工程(Cell engineering)是指主要以细胞为对象,应用生命科学理论,借助工程学原理与技术,有目的地利用或改造生物遗传性状,以获得特定的细胞、组织产品或新型的一门综合性科学技术。
主要人物或事件:1)温特(Went)、高特里特(Gautheret)和诺比考特(Nobercourt)一起成为植物组织培养的奠基人。
2)1958年,史都华德和赖纳特发现胡萝卜体细胞可以分化成体细胞胚。
也即是说可以从细胞水平上到组织器官水平上的分化。
从而验证了细胞全能性学说。
3)1953年,沃森(Watson)和克里克(Crick)提出DNA双螺旋结构模型,标志着分子生物学诞生。
4)1997年,英国利用成年动物体细胞克隆出绵羊“多莉”,证明了高等动物体细胞的全能性,这是细胞工程历史上的一个里程碑式的成果。
细胞工程的应用(可出分析题)第二章细胞工程理论基础细胞全能性(totipotency):是指分化细胞保留着全部的核基因组,具有生物个体生长、发育所需要的全部遗传信息具有发育成完整个体的潜能。
细胞分化:(理解)是指细胞在形态、结构和功能上发生差异的过程,包括时间上和空间上的分化和空间上的分化。
时间上的分化:是指一个细胞在不同的发育阶段可以形成不同的形态和功能空间上的分化:是指同一种细胞由于所处的环境或部位不同可以形成不同的形态和功能细胞分化能力的强弱称为发育潜能。
形态发生(Morphogenesis):是指通过细胞增殖、分化和行为塑造组织、器官和个体形态的过程。
细胞分化与形态发生是相互联系在起的。
细胞分化的实质:是奢侈基因按照一定顺序表达的结果,是基因的差异表达(Differential expression)脱分化(Dedifferentiation):又称去分化,是指分化细胞失去特有的结构和功能变为具有未分化细胞特性的过程,即分化的细胞在适当条件下转变为胚性状态而重新获得分裂能力的过程。
《细胞生物学》题库第四章细胞膜与细胞表面一、名词解释1. 脂质体——脂质体是根据磷脂分子可在水相中形成稳定的脂双层膜的趋势而制备的人工膜,脂质体中可以裹入不同的药物或酶等具有特殊功能的生物大分子。
2. 流体镶嵌模型——主要强调:1.膜的流动性,膜脂和膜蛋白均可侧向运动2.膜蛋白分布的不对称性3. 细胞膜——又称质膜,是指围绕在细胞最外层,由脂质和蛋白质组成的生物膜。
4. 去垢剂——是一端亲水一端疏水的两性小分子,是分离与研究膜蛋白的常用试剂。
5. 膜内在蛋白——又称整合蛋白,多数为跨膜蛋白,与膜紧密结合。
6. 细胞外被——又称糖萼,曾用来指细胞膜外表面覆盖的一层粘多糖基质,实际上细胞外被中的糖与细胞膜的蛋白分子或脂质分子是共价结合的,形成糖蛋白和糖脂,所以,细胞外被应是细胞膜的正常结构组分,它不仅对膜蛋白起保护作用,而且在细胞识别中起重要作用。
7. 细胞外基质——是指分布于细胞外空间,由细胞分泌的蛋白和多糖所构成的网络结构。
细胞外基质将细胞粘连在一起构成组织,同时,提供一个细胞外网架,在组织中或组织之间起支持作用。
8. 透明质酸——是一种重要的糖胺聚糖,是增殖细胞和迁移细胞胞外基质的主要成分,尤其在胚胎组织中。
9. 细胞连接——是多细胞有机体中相邻细胞之间通过细胞质膜相互联系,协同作用的重要组织方式。
10. 细胞粘着——在细胞识别的基础上,同类细胞发生聚集,形成细胞团或组织的过程。
11. 整联蛋白家族——细胞膜上能够识别并结合各种能够含RGD三肽顺序的受体称整联蛋白家族。
12. 连接子——构成间隙连接的基本单位。
13. 免疫球蛋白超家族的CAM——分子结构中具有与免疫球蛋白类似的结构域的CAM超家族。
6.C7.A8.C9.C 10. B 11.C 12.C 13.B 14.D 15.A 16.B 17.B 18.D 19.C 20.D 21.B 22.C1. 膜脂的主要成分包括①磷脂②糖脂③胆固醇④中性脂质2. 膜脂分子有4种运动方式,其中生物学意义最重要的是.侧向运动3. 与细胞质基质接触的膜面称为质膜的.PS4. 细胞外被又称D.糖萼5. 胶原是胞外基质最基本成分之一。