对焊接裂纹的种类和基本特征的分析共25页文档
- 格式:ppt
- 大小:422.50 KB
- 文档页数:25
铜电阻焊焊缝裂纹
铜电阻焊焊缝裂纹的原因如下:
1.结晶裂纹:焊接熔池凝固结晶时,在液相与固相并存的温度区间,由于结晶偏析和收缩应力应变的作用,焊接金属沿一次结晶晶界形成的裂纹。
2.液化裂纹:焊接过程中,在焊接热循环峰值温度作用下,在多层焊缝的层间金属与母材近缝区金属中,由于晶间金属受热重新熔化,在一定的收缩应力作用下,沿奥氏体晶界开裂的现象。
3.高温低塑性裂纹:在液相结晶完成以后,焊接金属从材料的塑性恢复温度开始冷却,对于某些材料,当冷却到一定的温度范围内,由于应变速率和一些冶金因素的相互作用,引起塑性下降,导致焊接金属沿晶界开裂。
4.焊接温度过高或过低:焊接温度过高时,会导致焊点热裂;焊接温度过低时,会导致焊缝太窄,无法达到合适的强度。
5.热处理不当:热处理的过程和温度也会影响焊点的质量和强度。
6.材料质量问题:铜线本身的质量也是影响焊点质量的重要因素。
7.焊接过程中振动或应力过大:焊接过程中,若受到振动或者应力过大的作用,也会导致焊点开裂。
钢结构焊接裂纹的种类及对策根据裂纹发生的时间大致可以将裂纹分成高温裂纹和低温裂纹两大类。
1、低温裂纹根据裂纹是低温裂纹常见的一种形态,其产生原因如下:(1)主要是由于焊接金属含氢量较高所致氢的来源有多种途径,如焊条中的有机物,结晶水,焊接坡口和它的附近粘有水份、油污及来自空气中的水份等。
(2)焊接拉头的约束力较大,例如厚板焊接时接头固定不牢、焊接顺序不当等均有可能产生较大的约束应力而导致裂纹的发生。
(3)当母材碳当量较高,冷却速度较快,热影响区的硬化从而导致裂纹的发生。
对于根部裂纹的防止措施:(1)选用低氢或超低氢焊条或其他焊接材料。
(2)对焊条或焊剂等进行必要的烘焙,使用时注意保管。
(3)焊前,应将焊接坡口及其附近的水份、油污、铁锈等杂质清理干净。
(4)选择正确的焊接顺序和焊接方向,一般长构件焊接时最好采用由中间向两端对称施焊的方法。
(5)进行焊前预热及后热控制冷却速度,以防止热影响区硬化。
2、高温裂纹焊道下梨状裂纹是常见的高温裂纹的一种,主要发生在埋弧焊或二氧化碳气体保护焊中,手工电弧焊则很少发生。
焊道下梨状裂纹的产生原因主要是焊接条件不当,如电压过低、电流过高,在焊缝冷却收缩时使焊道的断面形状呈现梨形。
防止措施:选择适当的焊接电压、焊接电流;焊道的成形一般控制在宽度与高度之比为1:1.4较适宜。
弧坑裂纹也是高温裂纹的一种,其产生原因主要是弧坑处的冷却速度过快,弧坑处的凹形未充分填满所致。
防止措施是安装必要的引弧板和引出板,在焊接因故中断或在焊缝终端应注意填满弧坑。
焊接裂纹的修补措施如下:(1)通过超声波或磁粉探险伤检查出裂纹的部位和界限。
(2)沿焊接裂纹界限各向焊缝两端延长50mm,将焊缝金属或部分母材用碳弧气刨等刨去。
(3)选择正确的焊接规范,焊接材料,以及采取预热、控制层间温度和后热等工艺措施进行补焊。
焊接裂纹的剖析与办理我们在厂修车体、车架、转向架构架时常常会碰到焊缝或母材的裂纹。
我们已经讲过裂纹的判断,判断出裂纹此后就需要对裂纹进行办理。
假如我们在办理从前对裂纹没有一个正确的剖析,就不行能拟订出最正确的办理方案。
所以一定要对裂纹进行仔细的分折。
依据焊接生产中采纳的钢材和构造种类不一样,可能碰到各样裂纹,裂纹多产生在焊缝上,如焊缝上的纵向裂,焊缝上的横向裂。
也能够产生在焊缝双侧的热影响区,焊缝热影响区的纵向裂,焊接影响的横向裂纹,焊接热影响区的焊缝贯串裂纹,有时产生在金属表面,有时产生在金属内部,如焊缝根部裂、焊趾裂,有的裂纹用肉眼能够看到,有的则一定借助显微镜才能发现,有的裂纹焊后立刻出现,有的则是搁置或运转一段时间以后才出现。
1.焊缝裂纹的分类依据裂纹的实质和特点,可分为五种种类:即热裂纹、冷裂纹、再热裂纹、层状扯破及应力腐化裂纹。
1.1 热裂纹热裂纹是在高温状况下产生的,并且是沿奥氏体晶界开裂,就当前的理解,把裂纹又分为结晶裂纹、液化裂纹、多边化裂纹三类。
(1)结晶裂纹—结晶裂纹的形成期,是在焊缝结晶过程中且温度处在固相线邻近的高温阶段,即处于焊缝金属的凝结末期固液共存阶段,因为凝结金属缩短时残余液相不足,以致沿晶开裂,故称结晶裂纹,因为这种裂纹是在焊缝金属凝结过程中产生的,所以也称为凝结裂纹。
结晶裂纹的特点:存在的部位主要在焊缝上,也有少许的在热影响区,最常有的是沿焊缝中心长度方向上开裂,即纵向裂,断口有较显然的氧化色,表面无光彩,也是结晶裂纹在高温下形成的一个特点。
(2)液化裂纹—焊接过程中,在焊接热循环峰值温度作用下,在多层焊缝的层间金属以及母材近缝区金属中,因为晶间层金属被从头融化,在必定的缩短应力的作用下,沿奥氏体晶界产生的开裂,称为“液化裂纹”也称“热扯破” 。
液化裂的特点:①易产生在母材近缝区中紧靠熔合线的地方(部分熔解区),或多层焊缝的层间金属中。
②裂纹的走向,在母材近缝区中,裂纹沿过热奥氏体晶间发展;在多层焊缝金属中,裂纹沿原始柱状晶界发展,裂纹的扩展方向,视应力的最大方向而定,能够是横向或纵向;并在多层焊焊缝金属中,液化裂纹能够贯串层间;在近缝区中的液化裂纹能够穿越熔合线进入焊缝金属中。
裂纹的基本形式
裂纹的基本形式主要可以按照几何特征和受力特征进行分类。
按照几何特征,裂纹可以分为穿透裂纹、表面裂纹和深埋裂纹。
穿透裂纹是指裂纹贯穿构件厚度(或深度延伸到构件厚度的一半以上),通常处理成理想尖裂纹。
表面裂纹位于构件表面,或其深度远小于构件厚度,常简化为半椭圆形裂纹。
深埋裂纹位于构件内部,常简化为椭圆片状裂纹或圆片裂纹。
按照受力特征,裂纹可以分为张开型(Ⅰ型)、滑开型(Ⅱ型)和撕开型(Ⅲ型)。
Ⅰ型裂纹是由与裂纹面正交的拉应力作用造成的,裂纹面产生张开位移。
Ⅱ型裂纹是由在裂纹面内且与裂纹尖端线垂直的剪应力作用造成的,裂纹面产生沿该剪应力方向的相对滑动。
Ⅲ型裂纹是由在裂纹面内且与裂纹尖端线平行的剪应力作用造成的,裂纹面产生沿裂纹面外的相对滑动。
请注意,实际工程中的裂纹并不是上述三种基本形式的简单情况,而是可能由上述多种基本型裂纹共同作用而成,称为复合型裂纹。
复合型裂纹的断裂模式可能包括张开型、滑移型和撕开型等多种形式的组合,如I-II型、I-III型等。
总的来说,了解裂纹的基本形式对于研究裂纹的产生、扩展和防止具有重要的指导意义。
钢箱梁焊缝疲劳裂纹原因分析与维护技术分析摘要:本文钢箱梁实际使用环境的基础上,简要阐述了钢箱梁的常见病害,之后对主要病害,即钢箱梁焊缝疲劳裂纹从分类与分布上进行了详细分析,最后,提出了一些检测疲劳裂纹的方法以及检修钢箱梁疲劳裂纹的措施,提供相关单位进行参考。
关键词:钢箱梁焊缝;疲劳裂纹;维护技术前言:钢箱梁具备着吊装方便快捷、加工方便、抗扭刚度大、抗风稳定性较强以及自重轻等优势,近几年来随着科技水平的进步,被广泛的应用于大跨度桥梁建设。
然而,在极为恶劣的周边自然环境以及钢箱梁自身的受力特点和材料特性的影响下,钢箱梁会因风荷载、车辆荷载等动力荷载的影响下,产生一系列的病害,最为典型的就是疲劳损伤。
疲劳断裂是一种主要的金属结构失效形式,在循环载荷的强烈影响下,钢结构会因腐蚀、应力集中等状况出现裂纹,归根结底,这种裂纹是由于疲劳强度引起的,而扩展的裂纹将会引发结构的失效。
根据美国土木工程学会 (ASCE)近几年的相关数据,由于疲劳损伤而引发的钢结构破坏占到了钢结构总破坏的80% ~ 90%。
目前,钢箱梁桥疲劳开裂以及成为了设计维护关键问题。
1钢箱梁的常见病害1.1 涂装劣化钢箱梁通常都是直接接触到海洋大气及周边空气的,而这种长期暴露会对钢箱梁产生一定的侵蚀,对钢箱梁安全造成不良影响。
为保护钢箱梁外部的完整性,通常会对桥梁钢结构表面进行一定的维护,而其中最具有效力及最为经济型的就是涂装。
但是观察长期服役的钢箱梁表面涂层可以发现,其仍出现大量生锈、脱落、裂纹、起泡、粉化问题,涂层的劣化将导致进一步的腐蚀。
1.2 腐蚀同一桥梁的不同位置所面临的环境有所区别,但工业废气中含有的大量盐粒子、水分、氮化物及硫化物会对钢箱梁焊缝产生一定的腐蚀作用,而桥梁所处位置周边空气通常会存在大量工业废气。
腐蚀的焊缝会出现承载力下降、刚度降低以及截面减小的情况。
另外,腐蚀严重情况下出现的锈坑将会引发钢结构脆性破坏,对于钢结构耐久性产生严重的损害。
焊接裂纹的特征范文焊接裂纹是指焊接工艺过程中产生的裂纹,它是焊接质量问题的重要指标之一、焊接裂纹的特征主要包括裂纹的形态、位置、扩展性和分类等。
下面将详细介绍焊接裂纹的特征。
首先,焊接裂纹的形态主要有线状裂纹、面状裂纹和孔状裂纹。
线状裂纹指裂纹呈线状,通常沿焊缝轴向延伸;面状裂纹指裂纹呈面状,通常分布在焊缝或热影响区域;孔状裂纹指裂纹呈孔状,通常位于焊缝内部。
不同形态的裂纹对焊接结构的影响程度不同,其中孔状裂纹对焊接结构的强度影响最大。
其次,焊接裂纹的位置主要分布在焊缝和热影响区。
焊接缝是焊接过程中最易产生裂纹的地方,尤其是焊接接头的根部和角部等应力集中区。
热影响区是指焊接过程中热输入造成的材料组织和性能发生变化的区域,裂纹往往在热影响区的边缘产生,因为该区域的应力状态复杂且易于产生应力集中。
再次,焊接裂纹的扩展性是指裂纹在作用力下的扩展能力。
焊接结构在工作过程中会受到各种力的作用,如果焊接裂纹具有扩展性,则可能导致裂纹的扩展,最终导致焊接结构的破坏。
因此,评估焊接裂纹的扩展性对于焊接结构的安全性具有重要意义。
最后,焊接裂纹的分类主要有冷裂纹、热裂纹和残余应力裂纹等。
冷裂纹是指在焊接后的冷却过程中产生的裂纹,通常是由于焊接材料的共晶相变引起的,可以通过焊接过程控制和后续热处理来减少冷裂纹的发生。
热裂纹是指在焊接过程中产生的裂纹,通常是由于焊接区域的残余应力和塑性应力引起的,可以通过合理设计焊接工艺和补偿焊接来减少热裂纹的发生。
残余应力裂纹是指在焊接后的冷却过程中产生的裂纹,通常是由于焊接结构的残余应力超过了材料的承载能力而引起的,可以通过合理的焊接变形控制和后续的热处理来减少残余应力裂纹的发生。
综上所述,焊接裂纹的特征包括裂纹的形态、位置、扩展性和分类等。
了解焊接裂纹的特征有助于识别焊接质量问题,采取相应的措施进行修复和预防,保证焊接结构的安全性和可靠性。
第一类焊接裂纹概述一. 焊接裂纹的定义:GB/T3375——94“焊接术语”这样解释的:在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区的金属原子结合力遭到破坏而形成的新界面所产生的缝隙。
它具有尖锐的缺口和大的长宽比的特征。
焊接裂纹是焊接结构最危险的一种缺陷,不仅会使产品报废,而且还可能引起严重事故。
裂纹也是日常生产中经常遇到的问题,尤其在采用的材料种类繁多,焊接结构复杂的产品中。
出现裂纹的可能性更大。
当我们在鉴定一种新材料的可焊性时,也常将其形成裂纹的倾向作为判断其可焊性好坏的一个重要标志。
由此可见,裂纹是焊接生产中一个重要问题,这就要求我们掌握焊接生产中产生裂纹的规律,并结合具体的生产条件,提出经济、科学、有效的防止裂纹的措施。
二、裂纹分类:1、在焊接生产中出现的焊接裂纹是多种多样的有的出现在焊缝表面,有的隐藏在焊缝内部,有的则产生在熔合线、热影响区或母材中。
GB6417——86将其规定如下表:1011011 1012 1013 1014 Ea 纵向裂纹基本上与焊缝轴线平行的裂纹,可能存在于:——焊缝金属中;——熔合线上;——热影响区中;——母材金属中1021021 1023 1024 Eb 横向裂纹基本上与焊缝轴线垂直的裂纹,可能存在于:——焊缝金属中;——热影响区中;——母材金属中1031031 1033 1034 E 放射状裂纹具有某一公共点的放射状裂纹可能位于:——焊缝金属中;——热影响区中;——母材金属中注:这种类型的小裂纹内也可以叫做星形裂纹。
1041045 1046 1047 Ec 弧坑裂纹在焊缝收弧弧坑处的裂纹,可能是:——横向的;——纵向的;——星形的。
1051051 1053 1054 E 间断裂纹群一组间断的裂纹可能位于:——焊缝金属中;——热影响区中;——母材金属中。
106 E 枝状裂纹由某一公共裂纹派生出的一组裂1061 1063 1064 纹,它与间断裂纹群(105)和放射裂纹(103)不同,可能位于:——焊缝金属中;——热影响区;——母材金属区。
焊接裂纹产生原因及防治焊接裂纹是在焊接过程中或焊接完成后在焊缝或母材中产生的开裂缺陷。
焊接裂纹的产生原因多种多样,主要包括以下几个方面:1.焊接过程中的温度应力:焊接时,因为焊接区域发生了局部加热和冷却,导致焊接接头中的温度差异,从而造成了焊接区域的应力。
如果这种应力超过了焊接材料的强度极限,就会产生裂纹。
2.冶金因素:焊接过程中,由于温度升高,焊接材料和母材之间发生相互作用,形成了互溶区。
如果溶液比较富含低熔点的物质,就会导致物质从高温区流向低温区,从而增大了焊接接头的收缩量,引起裂纹。
3.废气、含氧量过高:当焊接环境中的氧气含量过高时,焊接时会发生氧化反应,在焊接接头中产生大量的氧化物,增大了焊接接头的收缩量,从而导致了裂纹的产生。
4.焊接过程中的振动:焊接过程中的振动会使焊接接头中的晶粒发生变化,从而影响了焊接材料的性能,使其发生了裂纹。
针对焊接裂纹的防治措施主要包括以下几个方面:1.提高焊接工艺:合理选择焊接工艺参数,如焊接电流、焊接电压和焊接速度等,以控制焊接过程中的温度和应力。
2.控制焊接过程中的温度升降速度:控制焊接过程中的升温速度和冷却速度,以避免焊接接头产生过大的应力。
3.控制焊接环境:减少焊接环境中的含氧量,避免产生氧化反应和氧化物。
4.优化焊接材料:合理选择焊接材料,根据焊接接头的要求选择合适的材料,以提高焊接接头的性能。
5.加强材料的前处理:在焊接前进行必要的预处理工作,如去污、除锈、磷化等,以提高焊接接头的质量。
综上所述,焊接裂纹的产生原因多种多样,需要综合考虑多个方面的因素来进行防治。
通过合理选择焊接工艺参数、控制焊接过程中的温度和应力、控制焊接环境、优化焊接材料以及加强材料的前处理等措施,可以有效预防和防治焊接裂纹的产生,提高焊接接头的质量。