六年级上册《空间与图形》
- 格式:ppt
- 大小:2.07 MB
- 文档页数:26
六年级数学空间与图形试题答案及解析1.以小明家为观测点,根据下面条件在平面上标出各地的位置。
(1)学校在小明家北偏东30°的方向上,距离小明家2千米处。
(2)书店在小明家西偏南60°的方向上,距离小明家3千米处。
【答案】【解析】注意书店是在西偏南60度方向上,而不是南偏西60度方向上。
2.把棱长为6分米的正方体木块削成一个最大的圆锥,这个圆锥的体积是( )立方分米。
【答案】56.52【解析】本题考查圆锥体积公式的应用。
要先分析出圆锥体积最大时的底面直径与高,再作进一步计算,解决问题。
当圆锥的体积最大时,圆锥的底面直径与高分别与正方体的棱长相等。
底面半径:6÷2=3(分米),圆锥的体积:3.14×3×3×6×=56.52(立方分米)3.求下列阴影部分的面积。
(单位:厘米)(1)(2)(3)(4)【答案】48平方厘米,703.36平方厘米,21.5平方厘米,15.25平方厘米【解析】本题考查复杂图形面积的计算方法。
阴影部分若为规则图形,可利用规则图形的面积计算公式;若阴影不是规则图形或虽是规则图形,但相关量不易找出时,可把阴影部分的面积转化为其它图形面积的和差倍积关系来计算。
(1)图形中空白三角形与平行四边形等底等高,空白三角形面积占平行四边形面积一半,则阴影部分也占平行四边形面积的一半:12×8÷2=48(平方厘米);图形(2)中阴影部分面积可用大圆面积减去小圆面积计算得出:3.14×18×18-3.14×10×10=703.36(平方厘米);图形(3)中阴影部分面积可用正方形面积减去4个扇形面积,而4个扇形正好组成一个直径为10的圆,所以阴影面积可用正方形面积减去一个直径为10厘米的圆的面积:1010-3.14 44="21.5" (平方厘米);图形(4)中阴影部分面积可以表示成两个半圆的面积减去一个直角三角形的面积。
六年级上册数学教案第3课时空间与图形(人教版)作为一名经验丰富的教师,我对于六年级上册数学教案第3课时空间与图形(人教版)有着深入的理解和独到的见解。
下面,我将按照教学内容、教学目标、教学难点与重点、教具与学具准备、教学过程、板书设计、作业设计以及课后反思及拓展延伸的顺序,为您详细阐述我的教学思路和方法。
一、教学内容本节课的教学内容主要包括人教版六年级上册数学教材的第3课时空间与图形。
在这一章节中,学生将学习长方体和正方体的特征,包括它们的面的数量、形状和大小,以及它们的对角线长度等。
学生还将学习如何计算长方体和正方体的体积,以及如何利用这些知识解决实际问题。
二、教学目标1. 知识与技能:使学生能够掌握长方体和正方体的特征,包括它们的面的数量、形状和大小,以及它们的对角线长度等。
2. 过程与方法:通过观察、操作、想象和推理等数学活动,培养学生的空间观念和逻辑思维能力。
3. 情感态度价值观:激发学生对数学的兴趣和好奇心,培养学生积极主动探索问题的习惯。
三、教学难点与重点本节课的教学难点主要是长方体和正方体的体积计算方法,以及如何利用这些知识解决实际问题。
教学重点则是长方体和正方体的特征,包括它们的面的数量、形状和大小,以及它们的对角线长度等。
四、教具与学具准备1. 教具:长方体和正方体的模型、卡片、直尺、圆规等。
2. 学具:学生每人一份长方体和正方体的模型、卡片、直尺、圆规等。
五、教学过程1. 实践情景引入:我拿出一个长方体和正方体的模型,让学生观察并描述它们的特点。
2. 知识讲解:我通过卡片、直尺、圆规等教具,向学生讲解长方体和正方体的特征,包括它们的面的数量、形状和大小,以及它们的对角线长度等。
3. 例题讲解:我通过一个具体的例题,向学生讲解如何计算长方体和正方体的体积。
4. 随堂练习:我给出几个计算长方体和正方体体积的题目,让学生独立完成。
5. 解决问题:我给学生出一个实际问题,让他们利用所学的知识解决。
六年级数学空间与图形试题答案及解析1.你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶6个面积相等的三角形.【答案】(1)(2)(3)【解析】⑴如下图,D、E是BC的三等分点,F、G分别是对应线段的中点,答案不唯一:⑵如下图,答案不唯一,以下仅供参考:⑶如下图,答案不唯一,以下仅供参考:2.如图,三角形的面积为1,其中,,三角形的面积是多少?【答案】4【解析】连接,∵,∴,又∵,∴.3.如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形的面积;⑵?【答案】6;1:3【解析】⑴根据蝴蝶定理,,那么;⑵根据蝴蝶定理,.4.如图,平行四边形的对角线交于点,、、、的面积依次是2、4、4和6.求:⑴求的面积;⑵求的面积.【答案】2/3【解析】⑴根据题意可知,的面积为,那么和的面积都是,所以的面积为;⑵由于的面积为8,的面积为6,所以的面积为,根据蝴蝶定理,,所以,那么.5.(仙游县)如图中平行四边形ABCD的面积是32平方厘米,AE=5厘米,CE=4厘米,求阴影部分的面积.【答案】阴影部分的面积是6平方厘米.【解析】分析:观察图与题意,知道平行四边形ABCD的面积是AD×CE=32平方厘米,由此用32÷CE求出AD的长度,再减去AE的长度就是ED的长度;再根据三角形的面积公式S=ah,即可求出阴影部分的面积.解答:解:AD的长度:32÷4=8(厘米),ED的长度:8﹣5=3(厘米),阴影部分的面积是:×ED×CE=×3×4=6(平方厘米),答:阴影部分的面积是6平方厘米.点评:此题主要考查了平行四边形的面积公式与三角形的面积公式的灵活应用.6.(2013•东莞市)如图是一个直角三角形.(单位:厘米)①用两个这样的三角形拼成一个平行四边形,要使拼成的平行四边形周长最长,怎样拼?请在方格中画图(每格表示1厘米)表示你的拼法.②拼成的平行四边形的周长是厘米,面积是平方厘米.【答案】18,12【解析】(1)要使拼成的平行四边形周长最长就把最短的边3厘米的对在一起就可以;(2)根据拼成的图形可知:平行四边形边的长度分别是2个4厘米,2个5厘米,由此求出周长;原来的是三角形是一个直角三角形,它的两个直角边相互垂直,所以它的底是4厘米,高是3厘米,由此求出面积.解答:解:(1)拼法如下:(2)周长:(4+5)×2,=9×2,=18(厘米);面积:4×3=12(平方厘米);故答案为:18,12.点评:本题关键是拼出图形,理解把最短的边拼在一起周长最大.7.(西乡县)求出下面三角形中各角的度数.∠1=°;∠2=°.【答案】60,30【解析】(1)因为三角形的内角和是180°,所以∠1=180°﹣90°﹣30°;(2)因为65度角和三角形里面的一个角组成直角,所以这个角=180°﹣65°,又因为三角形的内角和是180°,所以∠2=180°﹣(180﹣65°)﹣35°,计算即可.解答:解:(1)∠1=180°﹣90°﹣30°=60°;(2)∠2=180°﹣35°﹣(180°﹣65°)=30°.故答案为:60;30.点评:解决本题的关键是根据三角形的内角和是180°.8.(南山区)量出需要的数据,计算梯形的周长和面积.【答案】梯形的周长是10厘米,面积是5.1平方厘米【解析】测量出梯形的各个腰和底以及高的长度,使用梯形的周长和面积公式可直接进行计算.解答:解:由测量得知,梯形的上底是2厘米,腰是2厘米,下底是4厘米,高是1.7厘米.周长:2+2+2+4=10(厘米);面积:(2+4)×1.7÷2,=6×1.7÷2,=5.1(平方厘米);答:梯形的周长是10厘米,面积是5.1平方厘米.点评:准确测量梯形的上下底、腰、高的长度,正确使用梯形的周长和面积公式.9.(旅顺口区)在如图中按要求操作.(1)画出梯形的高,测量高cm(精确到0.1cm);(2)画一条线段,把梯形变成一个平行四边形和一个三角形;(3)测量∠A=.【答案】(1)2.1;(2)(3)115°【解析】(1)过梯形上底的一个顶点向下底作垂线,顶点和垂足之间的线段就是梯形形的一条高;用刻度尺即可度量出这条高的长度.(2)过三角形上底的一个顶点,作另一腰的平行线,交梯形下底于一点,即可把梯形变成一个平行四边形和一个三角形.(3)把量角器的0°刻度线与∠A的一边重合,顶点与量角器的中心重合,另一边与量角器的刻度线重合,量角器的读数就是这个角的度数.解答:解:(1)画梯形的高如下图,经测量,高是2.1cm;(2)画线如下图,线段BE把梯形ABCD分成平行四边ADEB和三角形BEC;(3)经测量,∠A=115°;故答案为: 2.1,115°.点评:本题是考查作梯形的高、线段的度量、角的度量等.注意,画图形的高时要有虚线;度量角时,注意“三重合”.10.(葫芦岛)在图中画三个与涂色三角形面积相等、形状不同的图形,其中一条边必须在BC上.【答案】【解析】根据等底同高的三角形的面积相等,所以过A点做BC的平行线,在平行线上任找一点,与B、C两点连接即可.解答:解:由分析作图如下:点评:本题主要是根据等底同高的三角形的面积相等,确定作图的方法.11.(2013•广州)如图所示,求甲比乙的面积少多少平方厘米?【答案】甲比乙的面积少3平方厘米【解析】根据图形可知,甲加上空白梯形的面积是长6厘米,宽4厘米的长方形的面积,乙加上空白梯形的面积是一个底6厘米,高(4+5)厘米的三角形,而甲与乙的面积差即是大三角形与长方形的面积差.据此解答.解答:解:6×(4+5)÷2﹣6×4=6×9÷2﹣24=27﹣24=3(平方厘米);答:甲比乙的面积少3平方厘米.点评:本题考查了几何问题中的等量代换,即根据两个面积同时加上或减去相同的面积,差不变.12.(2012•成都)如图,E是平行四边形ABCD边CD的中点,AC和BE相交于F,如果△EFC的面积是1平方厘米,则平行四边形ABCD的面积是平方厘米.【答案】12【解析】试题分许:要求平行四边形的面积,如图,根据三角形和平行四边形的面积公式可得:只要求出△ABC的面积即可(△ABC=△BFA+△BFC);利用△EFC的面积是1平方厘米,根据相似三角形的性质可以求得△BFA和△BFC的面积,分析如下:根据相似三角形的定义可知,在平行四边形内,△EFC和△BFA相似:(1)因为E是CD的中点,所以相似比是1:2,根据相似三角形的性质可得:面积的比是:1:4,由此即可求得△BFA的面积为:4×1=4平方厘米;(2)因为EF:BF=1:2,(相似三角形的对应边成比例),根据高相等时,三角形的面积与底成正比的关系可得:△EFC与△BFC的面积比是1:2,由此即可得出△BFC的面积:2×1=2平方厘米;综上所述,即可求得△ABC的面积,从而求出平行四边形的面积.解答:解:根据题干分析可得:△EFC和△BFA相似,相似比是1:2,(1)相似三角形的面积比等于相似比的平方,所以它们的面积比是1:4,所以△BFA的面积为:4×1=4(平方厘米),(2)又因为EF:BF=1:2,所以△BFC的面积为:2×1=2(平方厘米),(3)故△ABC的面积为:4+2=6(平方厘米),6×2=12(平方厘米),答:平行四边形ABCD的面积是12平方厘米.故答案为:12.点评:此题考查了利用相似三角形的面积比等于相似比的平方以及高一定时,三角形的面积与底成正比的关系这两条性质,进行图形的面积计算的方法.13.如图,长方形内有两个三角形①和②,那么①的面积()②的面积.A.< B.> C. =【答案】C【解析】如图所示,三角形ABC和三角形DBC等底等高,则二者的面积相等,二者分别减去公共部分三角形BOC,则剩余的部分仍然相等,即三角形①和三角形②的面积相等,据此即可判断.解答:解:三角形ABC和三角形DBC等底等高,则二者的面积相等,二者分别减去公共部分三角形BOC,则剩余的部分仍然相等,即三角形①和三角形②的面积相等,故选:C.点评:解答此题的主要依据是:等底等高的三角形面积相等.14.如图,三角形ABC的面积是56平方米,BD=DC,DE垂直于AC,AC=14米.求图中阴影部分的面积.【答案】阴影部分的面积是28平方米【解析】三角形的面积=底×高÷2,根据等底等高的三角形的面积相等进行计算即可.解答:解:因为BD=DC,所以三角形ABD和三角形ADC的面积相等,因为三角形ABC的面积是56平方米,所以图中阴影部分的面积为:56÷2=28(平方米)答:阴影部分的面积是28平方米.点评:明确等底等高的三角形的面积相等,是解答此题的关键.15.用a表示梯形的上底,b表示下底,h表示高,S表示面积.梯形面积的计算公式是.【答案】S=(a+b)h÷2【解析】梯形的面积=(上底+下底)×高÷2,进而把对应的字母代入等式即可.解答:解:因为梯形的面积=(上底+下底)×高÷2,所以S=(a+b)h÷2.故答案为:S=(a+b)h÷2.点评:此题考查用字母表示计算公式,熟记梯形的面积计算公式,是解决此题的关键.16.要求如图图形的面积,请先画出相关的线段;量取某些数据(保留整厘米数),再计算出面积.【答案】三角形的面积为5平方厘米.【解析】依据过直线外一点作已知直线的垂线的方法,即可作出底上的高;再据量得底和高的值,利用三角形的面积公式即可求其面积.解答:解:如图所示,即为所要求画的三角形的底和高的长度:量得三角形的底约为5厘米,高约为2厘米,则三角形的面积为:5×2÷2=5(平方厘米);答:三角形的面积为5平方厘米.点评:此题主要考查:过直线外一点作已知直线的垂线的方法,以及三角形面积的计算方法.17.要求如图图形的面积,请先画出相关的线段;量取某些数据(保留整厘米数),再计算出面积.【答案】三角形的面积为5平方厘米【解析】依据过直线外一点作已知直线的垂线的方法,即可作出底上的高;再据量得底和高的值,利用三角形的面积公式即可求其面积.解答:解:如图所示,即为所要求画的三角形的底和高的长度:量得三角形的底约为5厘米,高约为2厘米,则三角形的面积为:5×2÷2=5(平方厘米);答:三角形的面积为5平方厘米.点评:此题主要考查:过直线外一点作已知直线的垂线的方法,以及三角形面积的计算方法.18.在右图中,三角形DEF比三角形ABF面积小15平方厘米,求DE的长。
空间与图形知识点六年级上空间与图形知识点是六年级上学期数学的重要内容之一,它包含了一系列与空间和图形相关的知识和概念。
通过学习和掌握这些知识点,学生将能够提高他们的几何思维能力和问题解决能力。
本文将对六年级上学期的空间与图形知识点进行综述,并提供一些相关的练习题供学生们巩固和复习。
一、平面图形的认识在六年级上学期,学生将进一步学习和认识不同的平面图形,如三角形、四边形、圆等。
他们需要了解每种图形的特点、性质和命名规则。
例如,学生应该知道三角形有三条边和三个内角,并且根据边的长度和角的大小可以将三角形分为等边三角形、等腰三角形和一般三角形。
二、图形的周长和面积计算学生在学习了不同图形的特点后,应该学会如何计算图形的周长和面积。
对于任何一个四边形,学生需要掌握计算周长的方法,即将四条边的长度相加。
而对于三角形和圆形,学生需要学会计算其周长和面积的特殊方法。
例如,学生可以通过计算底边乘以高的一半来计算三角形的面积,而圆的面积可以通过半径的平方乘以π来计算。
三、立体图形的认识在六年级上学期,学生还将学习和认识一些常见的立体图形,如长方体、正方体、圆柱体等。
他们需要了解每种立体图形的特点、性质和命名规则。
例如,学生应该知道长方体有六个面、八个顶点和十二条棱,并且能够通过计算面积和体积来解决与长方体相关的问题。
四、图形的投影投影是指将一个物体在光线的照射下所形成的影子或者在某个平面上的投射。
六年级上学期,学生将学习如何通过观察和绘制图形的投影来判断图形的形状和位置。
他们需要了解正投影和侧投影的概念,并能够根据给定的图形和光源方向来画出相应的投影图。
五、图形的折叠与展开折纸是六年级上学期空间与图形中一个有趣且重要的内容。
学生将学习如何通过折纸来制作不同的图形,并能够根据已折好的图形还原出原始的平面图形。
这将培养学生的几何思维和操作能力,提高他们的学习兴趣和动手能力。
练习题:1. 有一个正方形的边长为5厘米,计算它的周长和面积。
六年级空间与图形总复习教案以及反思一、教学目标1. 知识与技能:使学生掌握小学阶段空间与图形的基本知识和技能,能够灵活运用所学知识解决实际问题。
2. 过程与方法:通过复习,让学生经历自主探究、合作交流的过程,培养学生的空间想象能力、逻辑思维能力和创新能力。
3. 情感态度与价值观:激发学生对空间与图形的兴趣,培养学生的自信心和自主学习能力,使学生感受数学与生活的密切联系。
二、教学内容1. 第一课时:平面图形复习(1)三角形、四边形、五边形、六边形的性质和分类。
(2)圆的性质和圆周率的概念。
2. 第二课时:立体图形复习(1)长方体、正方体的性质。
(2)圆柱、圆锥的性质。
(3)立体图形的展开与折叠。
3. 第三课时:图形变换复习(1)平移、旋转的性质和应用。
(2)轴对称的概念和应用。
4. 第四课时:位置与方向复习(1)坐标系的认识。
(2)位置与方向的表示方法。
(3)坐标与图形变换。
5. 第五课时:面积与体积复习(1)平面图形的面积计算。
(2)立体图形的体积计算。
(3)面积和体积在实际应用中的意义。
三、教学策略1. 采用复习提问的方式导入新课,激发学生的学习兴趣。
2. 运用多媒体课件辅助教学,直观展示图形变换过程,提高学生的空间想象力。
3. 注重练习设计,分层提问,让不同程度的学生在复习中提高。
4. 组织小组讨论,培养学生的合作交流能力。
5. 联系生活实际,让学生感受数学与生活的紧密联系。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、思维活跃度和合作交流能力。
2. 练习完成情况:检查学生对复习内容的掌握程度。
3. 课后反馈:听取学生的意见和建议,了解复习效果。
五、教学反思1. 反思教学内容:是否全面、系统地复习了空间与图形的相关知识。
2. 反思教学方法:是否激发了学生的学习兴趣,培养了学生的动手操作能力和空间想象力。
3. 反思教学评价:是否全面、客观地评价了学生的学习情况。
4. 针对反思结果,调整教学策略,为下一步的教学做好准备。
第3课时空间与图形【教学内容】空间与图形(教材第112页及练习二十三第14~16题)。
【教学目标】1.进一步学习使用方向和距离确定物体的位置。
2.理解和掌握圆的有关概念,圆的周长和面积的计算公式,并能正确地计算圆的周长与面积。
3.经历空间与图形知识的整理运用过程,体验应用知识,归纳概括的方法。
【重点难点】1.掌握物体的位置表示方法,圆的特征、特性。
2.掌握圆的周长和面积的计算。
【复习知识】一、复习物体的位置确定物体位置的两种方法:(1)按方向、距离确定;(2)用数对确定。
二、复习圆的知识(出示一个圆)师:我们已经学习了有关圆的知识,你知道哪些呢?组织学生在小组中交流、讨论,相互说一说,教师根据学生的汇报板书:1.圆的认识圆心:用字母O表示,确定圆的位置。
半径:用字母r表示,从圆心到圆上任意一点的线段叫半径。
决定圆的大小。
直径:用字母d表示,通过圆心并且两端都在圆上的线段叫做直径。
半径与直径的关系:在同一个圆里,所有半径都相等,所有直径都相等。
直径等于半径的2倍,即d=2r或r=12d。
2.圆的周长圆周率:圆的周长与直径的比值叫圆周率。
用字母π表示,是一个无限不循环小数。
圆的周长的计算公式。
C=πd或C=2πr。
3.圆的面积知道近似长方形的长求圆的面积。
4.环形的面积环形的面积=大圆面积-小圆面积5.扇形的认识【课堂作业】1.完成教材第113页第4题。
(1)分析:求公园围墙的长度就是求圆形围墙的周长。
C=2πr=2×3.14×1=6.28(km)(2)正北,2km(3)3.14×1×1-3.14×0.2×0.2=3.0144(km2)(4)答案不唯一,合理即可。
2.完成练习二十三第14~16题。
第14题。
(1)略。
(2)小猴住在小熊的东偏南50°,距离是400m;小象先向西偏南40°走300m到小猴家,再往东走400m到小鹿家。