两个重要极限练习题
- 格式:docx
- 大小:216.42 KB
- 文档页数:10
1-7 两个重要极限练习题教学过程:引入:考察极限xx x sin lim 0→当x 取正值趋近于0时,x x sin →1,即+→0lim x xx sin =1;当x 取负值趋近于0时,-x →0, -x >0, sin(-x )>0.于是)()sin(limsin lim 00x x x x x x --=+-→-→. 综上所述,得一.1sin lim0=→x xx .1sin lim 0=→xxx 的特点:(1)它是“00”型,即若形式地应用商求极限的法则,得到的结果是0;(2)在分式中同时出现三角函数和x 的幂.推广 如果ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则 ax →lim()[]()x x ϕϕsin =()()[]()x x x ϕϕϕsin lim 0→=1.例1 求xxx tan lim0→.解 x x x tan lim 0→=111cos 1lim sin lim cos 1sin lim cos sin lim 0000=⋅=⋅=⋅=→→→→xx x x x x x x x x x x x .例2 求x xx 3sin lim 0→.解 x x x 3sin lim 0→=3sin lim 3)3(33sin 3lim 00==→→ttt x x x t x 令.例3 求20cos 1lim x xx -→.解 20cos 1limx xx -→=2122sin22sin 21lim )2(22sin lim 2sin 2lim0220220=⋅⋅==→→→x xx x x x x x x x x .例4 求xxx arcsin lim0→.解 令arcsin x =t ,则x =sin t 且x →0时t →0.所以x x x arcsin lim0→=1sin lim 0=→ttt .例5 求30sin tan lim xxx x -→. 解 30sin tan lim x x x x -→=3030cos cos 1sin lim sin cos sin lim xx xx x x x x x x -⋅=-→→ =21cos 1lim cos 1lim sin lim2000=-⋅⋅→→→xx x x x x x x . 考察极限e xx x =+∞→)11(lim当x 取正值并无限增大时,x x )11(+是逐渐增大的,但是不论x 如何大,x x )11(+的值总不会超过3.实际上如果继续增大x .即当x →+∞时,可以验证x x)11(+是趋近于一个确定的无理数e =2.8....当x →-∞时,函数x x)11(+有类似的变化趋势,只是它是逐渐减小而趋向于e .综上所述,得二.x x x)11(lim +∞→=e .xx x)11(lim +∞→=e 的特点:(1)lim(1+无穷小)无穷大案;(2)“无穷小”与“无穷大”的解析式互为倒数.推广 (1)若ax →lim ϕ(x )= ∞,(a 可以是有限数x 0, ±∞或∞),则 ()[])()()(11lim ))(11(lim x x x ax x x ϕϕϕϕϕ+=+∞→→=e ;(2)若ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则[()]()[()])(10)(11lim1lim x x x ax x x ϕϕϕϕϕ+=+→→=e .变形 令x1=t ,则x →∞时t →0,代入后得到 ()e t t t =+→101lim .如果在形式上分别对底和幂求极限,得到的是不确定的结果1∞,因此通常称之为1∞不定型.例6 求x x x)21(lim -∞→.解 令-x 2=t ,则x =-t2.当x →∞时t →0,于是 x x x)21(lim -∞→=21020])1(lim [)1(lim -→-→+=+t t t t t t =e –2.例7 求xx x x )23(lim --∞→.解 令x x --23=1+u ,则x =2-u1.当x →∞时u →0, 于是 xx xx )23(lim --∞→=])1()1[(lim )1(lim 210120u u u u u u u +⋅+=+-→-→=])1(lim [])1(lim [2011u u u uu +⋅+→-→=e -1.例8 求x x x cot 0)tan 1(lim +→.解 设t =tan x ,则t1=cot x . 当x →0时t →0,于是 x x x cot 0)tan 1(lim +→=tt t 10)1(lim +→=e .小结:两个重要极限在求极限过程中有着很重要的作用,特别要注意其变式。
1-7 两个重要极限练习题教学过程:引入:考察极限xx x sin lim 0→当x 取正值趋近于0时,x x sin →1,即+→0lim x xx sin =1;当x 取负值趋近于0时,-x →0, -x >0, sin(-x )>0.于是)()sin(lim sin lim 00x x x x x x --=+-→-→. 综上所述,得一.1sin lim0=→x xx .1sin lim 0=→xxx 的特点:(1)它是“00”型,即若形式地应用商求极限的法则,得到的结果是0;(2)在分式中同时出现三角函数和x 的幂.推广 如果ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则 ax →lim()[]()x x ϕϕsin =()()[]()x x x ϕϕϕsin lim 0→=1.例1 求xxx tan lim0→.解 x x x tan lim 0→=111cos 1lim sin lim cos 1sin lim cos sin lim 0000=⋅=⋅=⋅=→→→→xx x x x x x x x x x x x .例2 求x xx 3sin lim 0→.解 x x x 3sin lim 0→=3sin lim 3)3(33sin 3lim 00==→→ttt x x x t x 令.例3 求20cos 1lim xxx -→. 解 20cos 1limx xx -→=2122sin22sin 21lim )2(22sin lim 2sin 2lim0220220=⋅⋅==→→→x xx x x x x x x x x .例4 求xxx arcsin lim0→.解 令arcsin x =t ,则x =sin t 且x →0时t →0. 所以x x x arcsin lim0→=1sin lim 0=→ttt .例5 求30sin tan lim xxx x -→. 解 30sin tan lim x x x x -→=3030cos cos 1sin lim sin cos sin lim xx xx x x x x x x -⋅=-→→ =21cos 1lim cos 1lim sin lim2000=-⋅⋅→→→xx x x x x x x . 考察极限e xx x =+∞→)11(lim当x 取正值并无限增大时,x x )11(+是逐渐增大的,但是不论x 如何大,x x )11(+的值总不会超过3.实际上如果继续增大x .即当x →+∞时,可以验证x x)11(+是趋近于一个确定的无理数e =2.718281828....当x →-∞时,函数x x)11(+有类似的变化趋势,只是它是逐渐减小而趋向于e .综上所述,得二.x x x)11(lim +∞→=e .xx x)11(lim +∞→=e 的特点:(1)lim(1+无穷小)无穷大案;(2)“无穷小”与“无穷大”的解析式互为倒数.推广 (1)若ax →lim ϕ(x )= ∞,(a 可以是有限数x 0, ±∞或∞),则 ()[])()()(11lim ))(11(lim x x x ax x x ϕϕϕϕϕ+=+∞→→=e ;(2)若ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则[()]()[()])(10)(11lim1lim x x x ax x x ϕϕϕϕϕ+=+→→=e .变形 令x1=t ,则x →∞时t →0,代入后得到 ()e t t t =+→101lim .如果在形式上分别对底和幂求极限,得到的是不确定的结果1∞,因此通常称之为1∞不定型.例6 求x x x )21(lim -∞→.解 令-x 2=t ,则x =-t2.当x →∞时t →0,于是 x x x)21(lim -∞→=21020])1(lim [)1(lim -→-→+=+t t t t t t =e –2.例7 求xx x x )23(lim --∞→.解 令x x --23=1+u ,则x =2-u1.当x →∞时u →0, 于是 xx xx )23(lim --∞→=])1()1[(lim )1(lim 210120u u u u u u u +⋅+=+-→-→=])1(lim [])1(lim [2011u u u uu +⋅+→-→=e -1.例8 求x x x cot 0)tan 1(lim +→.解 设t =tan x ,则t1=cot x . 当x →0时t →0, 于是 xx x cot 0)tan 1(lim +→=tt t 10)1(lim +→=e .小结:两个重要极限在求极限过程中有着很重要的作用,特别要注意其变式。
1.计算下列极限: ⑴0tan 3limx xx→;【解】这是“”型含三角函数极限,可考虑套用极限公式()0sin ()lim1()f x f x f x →=: 为将tan3x 化出sin3x ,利用sin 3tan 3cos3xx x=,得:0tan 3lim x x x →0sin 33lim 3cos3x x x x →=⋅313cos0=⨯=。
⑵1lim sin x x x→∞; 【解】由于1lim sin x x→∞sin 00==,这是“0⨯∞”型极限,应化为商式极限求解:1lim sin x x x →∞101sinlim1xx x→=, 这又成为了“”型含三角函数极限,可考虑套用极限公式()0sin ()lim1()f x f x f x →=: 101sinlim 11xx x→=,亦即1lim sin 1x x x →∞=。
⑶0lim cot x x x →;【解】由于0limcot x x →=∞,这是“0⨯∞”型极限,应化为商式极限求解:0lim cot x x x →0limtan x xx→=,这又成为了“”型含三角函数极限,可考虑套用极限公式()0sin ()lim1()f x f x f x →=: 同样利用sin tan cos xx x=,得: 00lim lim cos tan sin x x x x x x x→→=⋅1cos01=⨯=, 亦即0lim cot 1x x x →=。
⑷01cos 2limsin x xx x→-;【解】这是“”型含三角函数极限,可考虑套用极限公式()0sin ()lim1()f x f x f x →=: 为将1cos2x -化出正弦函数,利用2cos 212sin x x =-,得:01cos 2lim sin x x x x →-202sin lim sin x x x x →=0sin 2lim x xx→=212=⨯=。
1-7 两个重要极限练习题教学过程:引入:考察极限xx x sin lim 0→当x 取正值趋近于0时,x x sin →1,即+→0lim x xx sin =1;当x 取负值趋近于0时,-x →0, -x >0, sin(-x )>0.于是)()sin(limsin lim 00x x x x x x --=+-→-→. 综上所述,得 一.1sin lim 0=→xxx .1sin lim0=→xxx 的特点:(1)它是“00”型,即若形式地应用商求极限的法则,得到的结果是0;(2)在分式中同时出现三角函数和x 的幂.推广 如果ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则 ax →lim()[]()x x ϕϕsin =()()[]()x x x ϕϕϕsin lim 0→=1.例1 求xxx tan lim0→.解 x x x tan lim 0→=111cos 1lim sin lim cos 1sin lim cos sin lim 0000=⋅=⋅=⋅=→→→→xx x x x x x x x x x x x .例2 求x xx 3sin lim 0→.解 x x x 3sin lim 0→=3sin lim 3)3(33sin 3lim 00==→→ttt x x x t x 令.例3 求20cos 1lim x xx -→.解 20cos 1limxxx -→=2122sin22sin 21lim )2(22sin lim 2sin 2lim 0220220=⋅⋅==→→→x xx x x x x x x x x .例4 求xxx arcsin lim0→.解 令arcsin x =t ,则x =sin t 且x →0时t →0. 所以x x x arcsin lim0→=1sin lim 0=→ttt .例5 求30sin tan lim x xx x -→.解 30sin tan lim x x x x -→=3030cos cos 1sin lim sin cos sin lim xx xx x x x x x x -⋅=-→→ =21cos 1lim cos 1lim sin lim2000=-⋅⋅→→→xx x x x x x x . 考察极限e xx x =+∞→)11(lim当x 取正值并无限增大时,x x )11(+是逐渐增大的,但是不论x 如何大,x x )11(+的值总不会超过3.实际上如果继续增大x .即当x →+∞时,可以验证x x)11(+是趋近于一个确定的无理数e =2.718281828....当x →-∞时,函数x x)11(+有类似的变化趋势,只是它是逐渐减小而趋向于e .综上所述,得 二.x x x )11(lim +∞→=e .x x x)11(lim +∞→=e 的特点: (1)lim(1+无穷小)无穷大案;(2)“无穷小”与“无穷大”的解析式互为倒数.推广 (1)若ax →lim ϕ(x )= ∞,(a 可以是有限数x 0, ±∞或∞),则 ()[])()()(11lim ))(11(lim x x x ax x x ϕϕϕϕϕ+=+∞→→=e ;(2)若ax →lim ϕ(x )=0,(a 可以是有限数x 0, ±∞或∞),则[()]()[()])(10)(11lim1lim x x x ax x x ϕϕϕϕϕ+=+→→=e .变形 令x1=t ,则x →∞时t →0,代入后得到 ()e t t t =+→101lim .如果在形式上分别对底和幂求极限,得到的是不确定的结果1∞,因此通常称之为1∞不定型.例6 求x x x)21(lim -∞→.解 令-x 2=t ,则x =-t2. 当x →∞时t →0,于是 x x x)21(lim -∞→=21020])1(lim [)1(lim -→-→+=+t t t t t t =e –2.例7 求xx x x )23(lim --∞→.解 令x x --23=1+u ,则x =2-u1.当x →∞时u →0, 于是 xx xx )23(lim --∞→=])1()1[(lim )1(lim 210120u u u u u u u +⋅+=+-→-→=])1(lim [])1(lim [2011u u u uu +⋅+→-→=e -1.例8 求x x x cot 0)tan 1(lim +→.解 设t =tan x ,则t1=cot x . 当x →0时t →0, 于是 xx x cot 0)tan 1(lim +→=tt t 10)1(lim +→=e .小结:两个重要极限在求极限过程中有着很重要的作用,特别要注意其变式。
1-7 两个重要极限练习题教学过程:引入:考察极限xx x sin lim 0→当x 取正值趋近于0时,x x sin ?1,即+→0lim x xx sin =1;当x 取负值趋近于0时,-x ?0, -x >0, sin(-x )>0.于是)()sin(limsin lim 00x x x x x x --=+-→-→. 综上所述,得一.1sin lim0=→x xx .1sin lim 0=→xxx 的特点:(1)它是“00”型,即若形式地应用商求极限的法则,得到的结果是0;(2)在分式中同时出现三角函数和x 的幂.推广 如果ax →lim ?(x )=0,(a 可以是有限数x 0, ??或?),则 ax →lim()[]()x x ϕϕsin =()()[]()x x x ϕϕϕsin lim 0→=1.例1 求xxx tan lim0→.解 x x x tan lim 0→=111cos 1lim sin lim cos 1sin lim cos sin lim 0000=⋅=⋅=⋅=→→→→xx x x x x x x x x x x x .例2 求x xx 3sin lim 0→.解 x x x 3sin lim 0→=3sin lim 3)3(33sin 3lim 00==→→ttt x x x t x 令.例3 求20cos 1lim x xx -→.解 20cos 1limx xx -→=2122sin22sin 21lim )2(22sin lim 2sin 2lim0220220=⋅⋅==→→→x xx x x x x x x x x .例4 求xxx arcsin lim0→.解 令arcsin x =t ,则x =sin t 且x ?0时t ?0.所以x x x arcsin lim0→=1sin lim 0=→ttt .例5 求30sin tan lim xxx x -→. 解 30sin tan lim x x x x -→=3030cos cos 1sin lim sin cos sin lim xx xx x x x x x x -⋅=-→→ =21cos 1lim cos 1lim sin lim2000=-⋅⋅→→→xx x x x x x x . 考察极限e xx x =+∞→)11(lim当x 取正值并无限增大时,x x )11(+是逐渐增大的,但是不论x 如何大,x x )11(+的值总不会超过3.实际上如果继续增大x .即当x ?+?时,可以验证x x)11(+是趋近于一个确定的无理数e =.当x ?-?时,函数x x)11(+有类似的变化趋势,只是它是逐渐减小而趋向于e .综上所述,得二.x x x)11(lim +∞→=e .xx x)11(lim +∞→=e 的特点:(1)lim(1+无穷小)无穷大案;(2)“无穷小”与“无穷大”的解析式互为倒数.推广 (1)若ax →lim ?(x )= ?,(a 可以是有限数x 0, ??或?),则 ()[])()()(11lim ))(11(lim x x x ax x x ϕϕϕϕϕ+=+∞→→=e ;(2)若ax →lim ?(x )=0,(a 可以是有限数x 0, ??或?),则[()]()[()])(10)(11lim1lim x x x ax x x ϕϕϕϕϕ+=+→→=e .变形 令x1=t ,则x ??时t ?0,代入后得到 ()e t t t =+→101lim .如果在形式上分别对底和幂求极限,得到的是不确定的结果1?,因此通常称之为1?不定型.例6 求x x x)21(lim -∞→.解 令-x 2=t ,则x =-t2.当x ??时t ?0,于是 x x x)21(lim -∞→=21020])1(lim [)1(lim -→-→+=+t t t t t t =e –2.例7 求xx x x )23(lim --∞→.解 令x x --23=1+u ,则x =2-u1.当x ??时u ?0, 于是 xx xx )23(lim --∞→=])1()1[(lim )1(lim 210120u u u u u u u +⋅+=+-→-→=])1(lim [])1(lim [2011u u u uu +⋅+→-→=e -1.例8 求x x x cot 0)tan 1(lim +→.解 设t =tan x ,则t1=cot x . 当x ?0时t ?0,于是 x x x cot 0)tan 1(lim +→=tt t 10)1(lim +→=e .小结:两个重要极限在求极限过程中有着很重要的作用,特别要注意其变式。
作业:见首页§2-1 导数的概念教学过程: 引入:一、两个实例实例1 瞬时速度考察质点的自由落体运动.真空中,质点在时刻t =0到时刻t 这一时间段内下落的路程s 由公式s =21g t 2来确定.现在来求t =1秒这一时刻质点的速度. 当?t 很小时,从1秒到1+?t 秒这段时间内,质点运动的速度变化不大,可以这段时间内的平均速度作为质点在t =1时速度的近似.上表看出,平均速度t s ∆∆随着?t 变化而变化,当?t 越小时,ts ∆∆越接近于一个定值—9.8m/s .考察下列各式: ?s =21g ?(1+?t )2-21g ?12=21g [2??t +(?t )2], t s ∆∆=21g ?t t t ∆∆+∆2)(2=21g (2+?t ),思考: 当?t 越来越接近于0时,ts∆∆越来越接近于1秒时的“速度”.现在取?t ?0的极限,得=→t s ∆∆∆0lim()=+→t g ∆∆221lim 0g =9.8(m/s ). 为质点在t =1秒时速度为瞬时速度.一般地,设质点的位移规律是s =f (t ),在时刻t 时时间有改变量?t ,s 相应的改变量为?s =f(t +?t )-f (t ),在时间段t 到t +?t 内的平均速度为v =()()tt f t t f t s ∆∆∆∆-+=, 对平均速度取?t ?0的极限,得v (t )=()()tt f t t f t s t t ∆-∆+=∆∆→∆→∆00lim lim, 称v (t )为时刻t 的瞬时速。
研究类似的例子 实例2 曲线的切线设方程为y =f (x )曲线为L .其上一点A 的坐标为(x 0,f (x 0)).在曲线上点A 附近另取一点B ,它的坐标是(x 0+?x , f (x 0+?x )).直线AB 是曲线的割线,它的倾斜角记作?.由图中的R t ?ACB ,可知割线AB 的斜率tan ?=()()xx f x x f x y AC CB ∆∆∆∆00-+==. 在数量上,它表示当自变量从x 变到x +?x 时函数f (x )关于变量x 的平均变化率(增长率或减小率). 现在让点B 沿着曲线L 趋向于点A ,此时?x ?0, 过点A 的割线AB 如果也能趋向于一个极限位置—— 直线AT ,我们就称L 在点A 处存在切线AT .记AT 的倾斜角为?,则?为?的极限,若??90?,得切线AT 的斜率为 tan ?=0lim →x ∆ tan ?=xx f x x f x yx x ∆∆∆∆∆∆)()(limlim 0000-+=→→. 在数量上,它表示函数f (x )在x 处的变化率.上述两个实例,虽然表达问题的函数形式y =f (x )和自变量x 具体内容不同,但本质都是要求函数y 关于自变量x 在某一点x 处的变化率.1. 自变量x 作微小变化?x ,求出函数在自变量这个段内的平均变化率y =xy ∆∆,作为点x 处变化率的近似;f (x 0+?f (x2. 对y 求?x ?0的极限xy x ∆∆∆0lim→,若它存在,这个极限即为点x 处变化率的的精确值. 二、导数的定义1. 函数在一点处可导的概念定义 设函数y =f (x )在x 0的某个邻域内有定义.对应于自变量x 在x 0处有改变量?x ,函数y =f (x )相应的改变量为?y =f (x 0+?x )-f (x 0),若这两个改变量的比当?x ?0时存在极限,我们就称函数y =f (x )在点x 0处可导,并把这一极限称为函数y =f (x )在点x 0处的导数(或变化率),记作0|x x y ='或f ?(x 0)或0x x dxdy=或0)(x x dx x df =.即 0|x x y ='=f ?(x 0)=xx f x x f x yx x ∆∆∆∆∆∆)()(limlim 0000-+=→→ (2-1) 比值xy ∆∆表示函数y =f (x )在x 0到x 0+?x 之间的平均变化率,导数0|x x y ='则表示了函数在点x 0处的变化率,它反映了函数y =f (x )在点x 0处的变化的快慢. 如果当?x ?0时xy ∆∆的极限不存在,我们就称函数y =f (x )在点x 0处不可导或导数不存在.在定义中,若设x =x 0+?x ,则(2-1)可写成f ?(x 0)=()()000limx x x f x f x x --→ (2-2) 根据导数的定义,求函数y =f (x )在点x 0处的导数的步骤如下: 第一步 求函数的改变量?y =f (x 0+?x )-f (x 0);第二步 求比值xx f x x f x y ∆∆∆∆)()(00-+=;第三步 求极限f ?(x 0)=xy x ∆∆∆0lim→.例1 求y =f (x )=x 2在点x =2处的导数. 解 ?y =f (2+?x )-f (2)=(2+?x )2-22=4?x +(?x )2;()x x x x y ∆∆∆∆∆24+==4+?x ; x y x ∆∆∆0lim →=lim →x ∆(4+?x )=4.所以y ?|x =2=4. 当()()xx f x x f x ∆∆∆000lim -+-→存在时,称其极限值为函数y =f (x )在点x 0处的左导数,记作)(0x f -';当()()xx f x x f x ∆∆∆000lim -++→存在时,称其极限值为函数y =f (x )在点x 0处的右导数,记作)(0x f +'. 据极限与左、右极限之间的关系f ?(x 0) ? 存在)(0x f -',)(0x f +',且)(0x f -'=)(0x f +'= f ?(x 0). 2. 导函数的概念如果函数y =f (x )在开区间(a ,b )内每一点处都可导,就称函数y =f (x )在开区间(a ,b )内可导.这时,对开区间(a ,b )内每一个确定的值x 0都有对应着一个确定的导数f ?(x 0),这样就在开区间(a ,b )内,构成一个新的函数,我们把这一新的函数称为f (x )的导函数,记作等f ?(x )或y ?等.根据导数定义,就可得出导函数 f ?(x )=y ?=()()xx f x x f x y x x ∆∆∆∆∆∆-+=→→00lim lim(2-3) 导函数也简称为导数.注意 (1)f ?(x )是x 的函数,而f ?(x 0)是一个数值(2)f (x )在点处的导数f ?(x 0)就是导函数f ?(x )在点x 0处的函数值.例2 求y =C (C 为常数)的导数.解 因为?y =C -C =0,xx y ∆∆∆0==0,所以y ?=0lim →x ∆x y ∆∆=0. 即 (C )?=0常数的导数恒等于零). 例3 求y =x n (n ?N , x ?R )的导数.解 因为?y =(x +?x )n -x n =nx n -1?x +2n C x n -2(?x )2+...+(?x )n ,xy ∆∆= nx n -1 +2nC x n -2??x +...+(?x )n -1,从而有 y ?=0lim →x ∆x y ∆∆=lim →x ∆[ nx n -1 +2n C x n -2??x +...+(?x )n-1]= nx n -1.即 (x n )?=nx n -1.可以证明,一般的幂函数y =x ?, (??R, x >0)的导数为 (x ?)?=? x ?-1.例如 (x )?=(21x )?=x x 212121=-;(x 1)?=(x -1)?=-x -2=-21x .例4 求y =sin x , (x ?R )的导数.解 x y ∆∆=xxx x ∆∆sin )sin(-+,在§1-7中已经求得0lim →x ∆xy∆∆=cos x ,即 (sin x )?=cos x .用类似的方法可以求得y =cos x , (x ?R )的导数为 (cos x )?=-sin x .例5 求y =log a x 的导数(a >0, a ?1, x >0).解 对a =e 、y =ln x 的情况,在§1-7中已经求得为 (ln x )?=x1. 对一般的a ,只要先用换底公式得y =log a x =axln ln ,以下与§1-7完全相同推导,可得 (log a x )?=ax ln 1. 三、导数的几何意义方程为y =f (x )的曲线,在点A (x 0,f (x 0))处存在非垂直切线AT 的充分必要条件是f (x )在x 0存在导数f ?(x 0),且AT 的斜率k =f ?(x 0).导数的几何意义——函数y =f (x )在x 0处的导数f ?(x 0),是函数图象在点(x 0,f (x 0))处切线的斜率,另一方面也可立即得到切线的方程为y -f (x 0)=f ?(x 0)(x -x 0) (2-4) 过切点A (x 0,f (x 0))且垂直于切线的直线,称为曲线y =f (x )在点A (x 0,f (x 0))处的法线,则当切线非水平(即f ?(x 0)?0)时的法线方程为y -f (x 0)=-)(10x f '(x -x 0) (2-5) 例6 求曲线y =sin x 在点(6π,21)处的切线和法线方程. 解 (sin x )?6π=x =cos x6π=x =23. 所求的切线和法线方程为 y -21=23(x -6π), 法线方程 y -21=-332(x -6π). 例7 求曲线y =ln x 平行于直线y =2x 的切线方程.解 设切点为A (x 0, y 0),则曲线在点A 处的切线的斜率为y ?(x 0),y ?(x 0)=(ln x )?0x x ==01x ,因为切线平行于直线y =2x ,,所以01x =2,即x 0=21;又切点位于曲线上,因而y 0=ln 21=-ln2.故所求的切线方程为y +ln2=2(x -21),即y =2x -1-ln2. 四、可导和连续的关系如果函数y =f (x )在点x 0处可导,则存在极限0lim →x ∆x y ∆∆=f ?(x 0),则xy∆∆=f ?(x 0)+? (0lim →x ∆?=0),或?y = f ?(x 0) ?x +???x (0lim →x ∆?=0),所以 0lim →x ∆?y =0lim →x ∆[f ?(x 0) ?x +???x ]=0.这表明函数y =f (x )在点x 0处连续.但y =f (x )在点x 0处连续,在x 0处不一定是可导的. 例如:(1)y =|x |在x =0处都连续但却不可导.(2)y =3x 在x =0处还存在切线,只是切线是垂直的.学生思考:设函数f (x )=⎩⎨⎧+ ,1,2x x作业:见首页§4-2 换元积分法教学过程 复习引入1. 不定积分的概念;2. 不定积分的基本公式和性质。