感知器模型及其学习算法
- 格式:docx
- 大小:22.10 KB
- 文档页数:3
单层感知机模型和原理
在人工智能领域,感知机是一种最简单的神经网络模型,它由一层神经元组成,被称为单层感知机。
单层感知机模型的提出是由美国心理学家弗兰克·罗森布拉特在20世纪50年代提出的,它被认为是神经网络和机器学习领域的开山之作。
单层感知机模型的原理基于生物神经元的工作原理。
每个神经元接收来自其他神经元的输入信号,并通过一个激活函数处理这些输入,然后产生一个输出。
在单层感知机中,输入信号被赋予不同的权重,然后通过加权求和的方式得到输出。
如果这个输出超过了一个阈值,神经元就会被激活,否则它就保持不激活状态。
单层感知机模型的学习过程就是通过调整权重和阈值,使得神经元能够正确地对输入进行分类。
这个过程就是通过监督学习算法来完成的,最著名的就是罗森布拉特提出的感知机学习规则。
简单来说,就是当感知机对输入进行分类错误时,就调整权重和阈值,直到它能够正确地分类所有的输入。
然而,单层感知机模型存在一个严重的局限性,即它只能解决线性可分问题。
也就是说,如果输入数据不是线性可分的,单层感
知机就无法正确地对其进行分类。
这个问题在当时成为了人工智能领域的一个难题,直到后来出现了多层感知机模型和更加复杂的神经网络模型才得以解决。
总的来说,单层感知机模型虽然简单,但它为神经网络和机器学习的发展奠定了基础。
它的原理和学习规则为后来更加复杂的神经网络模型提供了重要的思想基础,因此在人工智能领域仍具有重要的意义。
感知器算法的基本原理与应用感知器算法是一种简单而有效的机器学习算法,于1957年被Frank Rosenblatt所提出。
在过去几十年里,感知器算法一直被广泛应用在识别模式,分类数据和垃圾邮件过滤等领域。
本文将会介绍感知器算法的基本原理,如何使用感知器完成模式分类,以及如何优化感知器算法。
感知器算法的基本原理感知器算法基于神经元(Perceptron)模型构建,神经元模型的基本原理是对输入信号进行加权,然后通过激活函数的计算输出结果。
通常情况下,神经元被认为是一个输入层节点,一个或多个输入是接收的,以及一个输出层。
感知器算法的核心思想是,给定一组输入和对应的输出(通常成为标签),通过多个迭代来调整模型中的权重,以最大限度地减少模型的误差,并尽可能准确地预测未知输入的输出。
感知器算法的主要流程如下:1. 初始化感知器参数,包括权重(最初为随机值)和偏置(通常为零)。
2. 对于每个输入,计算预测输出,并将预测输出与实际标签进行比较。
3. 如果预测输出与实际标签不同,则更新权重和偏置。
更新规则为$\omega_{j} \leftarrow \omega_{j} + \alpha(y-\hat{y})x_{j}$,其中$x_{j}$是输入的第$j$个特征,$\alpha$是学习率(控制权重和偏置的更新量),$y$是实际标签,而$\hat{y}$是预测输出。
4. 重复步骤2和步骤3,直到满足停止条件(例如,经过N次重复迭代后误差不再显著降低)。
如何使用感知器完成分类让我们考虑一个简单的情况:我们要学习使用感知器进行两类别(正面和负面)的文本情感分类。
我们可以将文本转换为一组数字特征,例如文本中出现特定单词的频率或数量,并将每个文本的情感作为输入,正面或负面情感被记为1或0。
我们可以将感知器视为一个二元分类器,用它来预测每个输入文本的情感值。
对于每个输入,我们计算出感知器的输出,并将其与实际情感进行比较。
如果它们没有匹配,那么我们将使用上面提到的更新规则调整每个特征的权重,重复该过程,直到达到收敛为止。
感知模型算法感知模型算法是机器学习领域中一种常用的算法,它主要用于模拟和复制人类的感知过程,从而实现对输入数据的理解和分析。
在这篇文章中,我将介绍感知模型算法的原理、应用和优缺点。
感知模型算法是一种二分类模型,它通过学习输入数据的特征和标签之间的关系,来预测新数据的标签。
算法的核心思想是将输入数据映射到一个多维空间中,并在该空间中寻找一个超平面,将不同类别的数据点完全分开。
在这个过程中,感知模型通过迭代计算权重和偏置,不断调整超平面的位置,使得误分类点的数量最小化。
感知模型算法的应用非常广泛,特别是在图像识别、自然语言处理和推荐系统等领域。
在图像识别中,感知模型可以识别不同类别的物体或图像,从而实现自动化的图像分类和标注。
在自然语言处理中,感知模型可以识别文本中的情感、主题或实体,从而为用户提供更加个性化和精准的服务。
在推荐系统中,感知模型可以根据用户的历史行为和偏好,预测用户可能喜欢的物品或内容。
然而,感知模型算法也有一些局限性。
首先,感知模型只能处理线性可分的数据集,对于非线性可分的数据集效果不佳。
其次,感知模型对数据的初始权重和偏置值非常敏感,可能会陷入局部最优解。
此外,感知模型算法对于噪声数据非常敏感,可能会导致误分类。
为了克服感知模型算法的局限性,研究者们提出了许多改进和扩展的算法。
比如,多层感知机(Multilayer Perceptron,简称MLP)通过引入隐藏层和非线性激活函数,可以处理复杂的非线性问题。
支持向量机(Support Vector Machine,简称SVM)通过引入核函数,可以处理非线性可分的数据集。
卷积神经网络(Convolutional Neural Network,简称CNN)通过引入卷积操作和池化操作,可以处理图像和语音等具有空间结构的数据。
总结来说,感知模型算法是机器学习领域中一种重要的算法,它可以模拟和复制人类的感知过程,实现对输入数据的理解和分析。
一、实验背景感知器算法是一种简单的线性二分类模型,由Frank Rosenblatt于1957年提出。
它是一种基于误分类项进行学习,以调整权重来拟合数据集的算法。
感知器算法适用于线性可分的数据集,能够将数据集中的样本正确分类。
本次实验旨在通过编程实现感知器算法,并使用iris数据集进行验证。
通过实验,我们能够熟悉感知器算法的基本原理,了解其优缺点,并掌握其在实际应用中的使用方法。
二、实验目的1. 理解感知器算法的基本原理;2. 编程实现感知器算法;3. 使用iris数据集验证感知器算法的性能;4. 分析感知器算法的优缺点。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 机器学习库:Scipy、Numpy、Matplotlib、sklearn四、实验步骤1. 导入必要的库```pythonimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import datasetsfrom sklearn.model_selection import train_test_split```2. 读取iris数据集```pythoniris = datasets.load_iris()X = iris.datay = iris.target```3. 将数据集划分为训练集和测试集```pythonX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)```4. 编写感知器算法```pythondef perceptron(X, y, w, b, learning_rate):for i in range(len(X)):if np.dot(X[i], w) + b <= 0:w += learning_rate y[i] X[i]b += learning_rate y[i]return w, b```5. 训练感知器模型```pythonlearning_rate = 0.1max_iter = 100w = np.zeros(X.shape[1])b = 0for _ in range(max_iter):w, b = perceptron(X_train, y_train, w, b, learning_rate)```6. 评估感知器模型```pythondef predict(X, w, b):return np.sign(np.dot(X, w) + b)y_pred = predict(X_test, w, b)accuracy = np.mean(y_pred == y_test)print("感知器算法的准确率:", accuracy)```7. 可视化感知器模型```pythondef plot_decision_boundary(X, y, w, b):plt.figure(figsize=(8, 6))plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired,edgecolors='k', marker='o')x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1))Z = np.dot(np.c_[xx.ravel(), yy.ravel()], w) + bZ = Z.reshape(xx.shape)plt.contourf(xx, yy, Z, alpha=0.4)plt.xlabel("Sepal length (cm)")plt.ylabel("Sepal width (cm)")plt.title("Perceptron Decision Boundary")plt.show()plot_decision_boundary(X_train, y_train, w, b)```五、实验结果与分析1. 感知器算法的准确率为约0.9,说明感知器算法在iris数据集上表现良好。
感知器算法原理
感知器是一种最简单的人工神经网络模型,它模拟了人类大脑神经元的工作原理,能够实现简单的分类任务。
感知器算法的原理是基于线性分类器的思想,通过不断迭代更新权重和偏置,使得感知器能够找到一个能够将输入数据正确分类的超平面。
在本文中,我们将详细介绍感知器算法的原理及其应用。
首先,让我们来了解一下感知器的结构。
感知器由输入层、权重、偏置、激活
函数和输出层组成。
输入层接收外部输入数据,每个输入数据都有一个对应的权重,权重表示了输入数据对输出的影响程度。
偏置用于调整模型的灵活性,激活函数则用于引入非线性因素,输出层则输出最终的分类结果。
感知器算法的原理是基于误差驱动的学习规则,即通过不断调整权重和偏置,
使得感知器的输出尽可能接近真实标签。
具体来说,感知器接收输入数据,计算加权和并经过激活函数处理得到输出,然后与真实标签进行比较,如果预测错误,则根据误差调整权重和偏置,直到达到一定的精度要求。
在实际应用中,感知器算法可以用于解决二分类问题,如判断一张图片是猫还
是狗,或者判断一封邮件是垃圾邮件还是正常邮件。
感知器算法的优点是简单易懂,训练速度快,适用于线性可分的数据集。
然而,感知器也存在一些局限性,比如无法解决非线性可分的问题,对噪声敏感等。
总之,感知器算法是一种简单而有效的分类算法,它通过模拟人脑神经元的工
作原理,实现了简单的分类任务。
在实际应用中,感知器算法可以用于解决二分类问题,具有训练速度快等优点。
然而,感知器也存在一些局限性,需要根据具体问题选择合适的算法。
希望本文能够帮助您更好地理解感知器算法的原理及其应用。
感知器和ADLINE 网络一、感知器和ADLINE 网络的工作原理1.感知器工作原理感知器由MP 模型加上学习算法构成,用于分类,是一个线性分类器。
可以分为单神经元感知器和多神经元感知器,单神经元感知器用于两类分类,多神经元感知器用于多类分类。
图1 单神经元感知器 图2 多神经元感知器 以单神经元感知器为例,设{}11,t x ,{}22,t x ,…,{}Q Q t ,x 是线性可分两类训练样本, 其中,n i R ∈x 为感知器的输入,1i t =或0为对应于i x 的目标输出。
感知器的原理是模拟人的神经元工作原理,先将带有权重的输入n i R ∈x 进行线性加和,接着阈值处理,最后通过一个非线性函数得到对应于i x 的实际输出i y ,公式表示为:实际输出:()1n T i i i y f w x f θθ=⎛⎫=-=- ⎪⎝⎭∑w x ,()1, 00, if x f x otherwise≥⎧=⎨⎩ ,θw 分别为权值和阈值。
运用感知器进行分类,实际上就是求解感知器的权值和阈值,θw ,使()T i i i y f t θ=-=w x ,其中f 为硬限幅函数。
而感知器的学习规则为:(1)()()()(1)()()()()()k k e k k k k e k e k t k y k θθ+=+⎧⎪+=-⎨⎪=-⎩w w x其中()()[]()()()()()()()0(0)1,1T t k k y k f k k k k f θθ⎧⎪⎪=-⎨⎪-⎪⎩x w x x w 是的目标输出为的实际输出,为硬限幅函数初值,取较小的随机数,如在中随机选取, 为了加速算法的收敛,可以使用带步长2)(1 ≤≤αα的感知器学习算法:(1)()()()(1)()()()()()k k e k k k k e k e k t k y k αθθα+=+⎧⎪+=-⎨⎪=-⎩w w x 2.ADLINE 网络工作原理ADALINE 网络,即自适应线性神经元,它与感知器不同之处在于它给出了MP 神经元模型的另一种学习算法:LMS 算法,即极小化均方误差法,又称随机梯度法。
感知器模型及其学习算法1感知器模型感知器模型是美国学者罗森勃拉特(rosenblatt)为研究大脑的存储、学习和认知过程而提出的一类具有自学习能力的神经网络模型,它把神经网络的研究从纯理论探讨引向了从工程上的实现。
rosenblatt明确提出的感知器模型就是一个只有单层排序单元的前向神经网络,称作单层感知器。
2单层感知器模型的自学算法算法思想:首先把连接权和阈值初始化为较小的非零随机数,然后把有n个连接权值的输入送入网络,经加权运算处理,得到的输出如果与所期望的输出有较大的差别,就对连接权值参数按照某种算法进行自动调整,经过多次反复,直到所得到的输出与所期望的输出间的差别满足要求为止。
?为简单起见,仅考虑只有一个输出的简单情况。
设xi(t)是时刻t感知器的输入(i=1,2,......,n),ωi(t)是相应的连接权值,y(t)是实际的输出,d(t)是所期望的输出,且感知器的输出或者为1,或者为0。
3线性不可分问题单层感知器无法抒发的问题被称作线性不容分后问题。
1969年,明斯基证明了“异或”问题就是线性不容分后问题:“异或”(xor)运算的定义如下:由于单层感知器的输出为y(x1,x2)=f(ω1×x1+ω2×x2-θ)所以,用感知器实现简单逻辑运算的情况如下:(1)“与”运算(x1∧x2)令ω1=ω2=1,θ=2,则y=f(1×x1+1×x2-2)显然,当x1和x2均为1时,y的值1;而当x1和x2有一个为0时,y的值就为0。
(2)“或”运算(x1∨x2)令ω1=ω2=1,θ=0.5y=f(1×x1+1×x2-0.5)显然,只要x1和x2中有一个为1,则y的值就为1;只有当x1和x2都为0时,y的值才为0。
(3)“非”运算(~x1)令ω1=-1,ω2=o,θ=-0.5,则y=f((-1)×x1+1×x2+0.5))显然,无论x2为何值,x1为1时,y的值都为0;x1为o时,y的值为1。
介绍建立感知机模型的思路,求解感知机模型的方法
感知机是一种二分类模型,可以用来解决线性可分的问题。
其思路是从一系列的训练样本中学习一个权重向量和一个阈值,用来划分样本空间中的两个类别。
建立感知机模型的思路如下:
1. 定义问题:确定需要解决的问题是一个二分类问题,并假设问题是线性可分的,即存在一个超平面可以将两个类别完全分开。
2. 确定模型结构:感知机的模型结构由权重向量和阈值组成。
权重向量表示了不同特征的重要性,而阈值则用来调整分类的阈值。
3. 初始化参数:首先需要对权重向量和阈值进行初始化。
一般可以将权重向量初始化为0,阈值初始化为0或一个较小的正数。
4. 迭代更新参数:通过迭代的方式不断更新参数,使得模型能够更好地分类样本。
在每次迭代中,对于输入的每个训练样本,根据当前的参数计算输出,然后根据输出与实际标签的差异来更新参数。
5. 判断停止条件:可以设置一个停止条件,当满足条件时停止迭代,如达到最大迭代次数或参数变化较小时停止。
求解感知机模型的方法主要有两种:
1. 基于原始形式:通过最小化损失函数来求解权重向量和阈值。
常用的方法是梯度下降法或随机梯度下降法,通过不断调整参数来最小化损失函数。
2. 基于对偶形式:通过求解对偶问题来求解权重向量和阈值。
通过计算训练样本之间的内积,可以得到一个Gram矩阵,然
后通过解一个二次规划问题来求解权重向量和阈值。
以上就是建立感知机模型的思路和求解感知机模型的方法的介绍。
机器学习算法--Perceptron(感知器)算法概括Perceptron(感知器)是⼀个⼆分类线性模型,其输⼊的是特征向量,输出的是类别。
Perceptron的作⽤即将数据分成正负两类的超平⾯。
可以说是机器学习中最基本的分类器。
模型Perceptron ⼀样属于线性分类器。
对于向量X=x1,x2,...x n,对于权重向量(w)相乘,加上偏移(b),于是有:f(x)=N∑i=1w i x i+b设置阈值threshold之后,可以的到如果f(x)>threshold,则y(标签)设为1如果f(x)<threshold,则y(标签)设为0即,可以把其表⽰为:y=sign(w T x+b)参数学习我们已经知道模型是什么样,也知道Preceptron有两个参数,那么如何更新这两个参数呢?⾸先,我们先Preceptron的更新策略:1. 初始化参数2. 对所有数据进⾏判断,超平⾯是否可以把正实例点和负实例点完成正确分开。
3. 如果不⾏,更新w,b。
4. 重复执⾏2,3步,直到数据被分开,或者迭代次数到达上限。
那么如何更新w,b呢?我们知道在任何时候,学习是朝着损失最⼩的地⽅,也就是说,我的下⼀步更新的策略是使当前点到超平⾯的损失函数极⼩化。
在超平⾯中,我们定义⼀个点到超平⾯的距离为:(具体如何得出,可以⾃⾏百度~~~ ),此外其中1|w|是L2范数。
意思可表⽰全部w向量的平⽅和的开⽅。
1‖w‖w T x+b 这⾥假设有M个点是误差点,那么损失函数可以是:L(w,b)=−1‖w‖∑x i∈M yi(w T x+b)当然,为了简便计算,这⾥忽略1|w|。
1|w|不影响-y(w,x+b)正负的判断,即不影响学习算法的中间过程。
因为感知机学习算法最终的终⽌条件是所有的输⼊都被正确分类,即不存在误分类的点。
则此时损失函数为0,则可以看出1|w|对最终结果也⽆影响。
既然没有影响,为了简便计算,直接忽略1|w|。
感知器算法原理感知器算法是一种二分类的分类算法,基于线性模型的思想。
其原理是通过输入的特征向量和权重向量的线性组合,经过阈值函数进行判别,实现对样本的分类。
具体来说,感知器算法的输入为一个包含n个特征的特征向量x=(x₁, x₂, ..., xn),以及对应的权重向量w=(w₁, w₂, ..., wn),其中wi表示特征xi对应的权重。
感知器算法的目标是找到一个超平面,将正负样本正确地分离开来。
如果超平面上方的点被判为正样本,超平面下方的点被判为负样本,则称超平面为正类超平面;反之,则称超平面为负类超平面。
感知器算法的具体步骤如下:1. 初始化权重向量w和阈值b。
2. 对于每个样本(xᵢ, yᵢ),其中xᵢ为特征向量,yᵢ为样本的真实标签。
3. 计算样本的预测输出值y_pred=sign(w·x + b),其中·表示向量内积操作,sign为符号函数,将预测值转化为+1或-1。
4. 如果预测输出值与真实标签不一致(y_pred ≠ yᵢ),则更新权重向量w和阈值b:- w:=w + η(yᵢ - y_pred)xᵢ- b:=b + η(yᵢ - y_pred),其中η为学习率,用于控制权重的更新速度。
5. 重复步骤3和4,直到所有样本都被正确分类,或达到预定的迭代次数。
感知器算法的核心思想是不断地通过训练样本来优化权重向量和阈值,使得模型能够将正负样本准确地分开。
然而,感知器算法只对线性可分的问题有效,即存在一个超平面能够完全分开正负样本。
对于线性不可分问题,感知器算法无法收敛。
因此,通常需要通过特征工程或使用其他复杂的分类算法来解决线性不可分的情况。
感知器算法原理及应用随着人工智能应用领域不断扩大,越来越多的算法被使用。
其中,感知器算法是一种经典的机器学习算法,广泛应用于图像、语音、自然语言处理等领域。
本文将介绍感知器算法的原理和应用。
一、感知器算法原理感知器算法是一种以 Rosenblatt 为代表的机器学习算法,最初用于二元分类。
它的基本工作原理是通过对输入数据进行加权和,并与一个阈值进行比较,来决定输出结果。
另外,感知器算法是一种基于梯度下降优化的算法,通过不断调整权值和阈值,以使分类的效果更好。
1.1 基本模型感知器模型通常用于二元分类任务,如将一个输入数据分为两类。
模型的输入是一个特征向量 x 和一个阈值θ,这两者加权后的结果通过一个激活函数 f(x) 来得到输出 y。
感知器模型可以表示为:其中,w 是权重向量,f(x) 是激活函数,可以是阶跃函数、线性函数或者 sigmoid 函数等等。
1.2 误差更新感知器算法的关键是误差更新问题。
在二元分类任务中,我们将预测值 y 限制在 0 和 1 之间。
对于一个正确的预测 y_hat 和一个错误的预测 y,我们定义误差为:error = y_hat - y误差可以用于更新权重向量 w 和阈值θ。
为了最小化误差,我们需要在每一轮训练中更新权重和阈值,以使误差最小化。
通俗的说,就是调整权重和阈值来训练模型。
在 Rosenblatt 的感知器算法中,权重和阈值的调整如下:w = w + α(error)x其中,α 是学习率,它控制着权重和阈值的更新速率,可以视作一种步长。
它的取值通常是一个较小的正数,如 0.01。
1.3 二元分类感知器算法最初用于二元分类任务,如将输入数据分为正类和负类。
实际运用中,只有两种不同的输出可能,1 和 -1,用 y ∈{-1, 1} 来表示分类结果。
分类器的训练过程可以是迭代的,每一次迭代会调整权重和偏差,以使分类效果更好。
二、感知器算法应用感知器算法是一种简单而有效的机器学习算法,可以广泛应用于图像、语音、自然语言处理等领域,以下是几个典型的应用场景。
⼀.单层感知器单层感知器属于单层前向⽹络,即除输⼊层和输出层之外,只拥有⼀层神经元节点。
特点:输⼊数据从输⼊层经过隐藏层向输出层逐层传播,相邻两层的神经元之间相互连接,同⼀层的神经元之间没有连接。
感知器(perception)是由美国学者F.Rosenblatt提出的。
与最早提出的MP模型不同,神经元突触权值可变,因此可以通过⼀定规则进⾏学习。
可以快速、可靠地解决线性可分的问题。
1.单层感知器的结构 单层感知器由⼀个线性组合器和⼀个⼆值阈值元件组成。
输⼊向量的各个分量先与权值相乘,然后在线性组合器中进⾏叠加,得到⼀个标量结果,其输出是线性组合结果经过⼀个⼆值阈值函数。
⼆值阈值元件通常是⼀个上升函数,典型功能是⾮负数映射为1,负数映射为0或负⼀。
输⼊是⼀个N维向量 x=[x1,x2,...,xn],其中每⼀个分量对应⼀个权值wi,隐含层输出叠加为⼀个标量值:随后在⼆值阈值元件中对得到的v值进⾏判断,产⽣⼆值输出:可以将数据分为两类。
实际应⽤中,还加⼊偏置,值恒为1,权值为b。
这时,y输出为:把偏置值当作特殊权值: 单层感知器结构图: 单层感知器进⾏模式识别的超平⾯由下式决定:当维数N=2时,输⼊向量可以表⽰为平⾯直⾓坐标系中的⼀个点。
此时分类超平⾯是⼀条直线:这样就可以将点沿直线划分成两类。
2.单层感知器的学习算法(1)定义变量和参数,这⾥的n是迭代次数。
N是N维输⼊,将其中的偏置也作为输⼊,不过其值恒为1,。
x(n)=N+1维输⼊向量=[+1,x1(n),x2(n),...,xN(n)]T w(n)=N+1维权值向量=[b(n),w1(n),w2(n),...,wN(n)]T b(n)=偏置 y(n)=实际输出 d(n)=期望输出 η(n)=学习率参数,是⼀个⽐1⼩的正常数所以线性组合器的输出为:v(n)=w T(n)x(n)(2)初始化。
n=0,将权值向量w设置为随机值或全零值。
(3)激活。
感知器模型及其学习算法
1 感知器模型
•感知器模型是美国学者罗森勃拉特(Rosenblatt)为研究大脑的存储、学习和认知过程而提出的一类具有自学习能力的神经网络模型,它把神经网络的研究从纯理论探讨引向了从工程上的实现。
• Rosenblatt提出的感知器模型是一个只有单层计算单元的前向神经网络,称为单层感知器。
2 单层感知器模型的学习算法
•算法思想:首先把连接权和阈值初始化为较小的非零随机数,然后把有n 个连接权值的输入送入网络,经加权运算处理,得到的输出如果与所期望的输出有较大的差别,就对连接权值参数按照某种算法进行自动调整,经过多次反复,直到所得到的输出与所期望的输出间的差别满足要求为止。
•为简单起见,仅考虑只有一个输出的简单情况。
设x i(t)是时刻t感知器的输入(i=1,2,......,n),ω
i
(t)是相应的连接权值,y(t)是实际的输出,d(t)是所期望的输出,且感知器的输出或者为1,或者为0。
3 线性不可分问题
•单层感知器不能表达的问题被称为线性不可分问题。
1969年,明斯基证明了“异或”问题是线性不可分问题:
“异或”(XOR)运算的定义如下:
由于单层感知器的输出为
y(x
1,x
2
)=f(ω
1
×x
1
+ω
2
×x
2
-θ)
所以,用感知器实现简单逻辑运算的情况如下:
(1)“与”运算(x
1∧x
2
)
令ω
1= ω
2
=1,θ=2,则
y=f(1×x
1+1×x
2
-2)
显然,当x
1和x
2
均为1时,y的值1;而当x
1
和x
2
有一个为0时,y的值就为0。
(2)“或”运算(x
1∨x
2
)
令ω
1= ω
2
=1, θ =0.5
y=f(1×x
1+1×x
2
-0.5)
显然,只要x
1和x
2
中有一个为1,则y的值就为1;只有当x
1
和x
2
都为0时,y
的值才为0。
(3)“非”运算(~X
1
)
令ω
1 =-1,ω
2
=O,θ=-0.5,则
y=f((-1)×x
1+1×x
2
+0.5))
显然,无论x
2为何值,x
1
为1时,y的值都为0;x
1
为O时,y的值为1。
即y总
等于~x
1。
(4)“异或”运算(x
1 XOR x
2
)
如果“异或”(XOR)问题能用单层感知器解决,则由XOR的真值表9-1可知,ω1、ω2和θ必须满足如下方程组:
ω1+ω2-θ<0
ω
1
+0-θ≥0
0+0-θ<0
0+ω
2
-θ≥0
显然,该方程组是无解,这就说明单层感知器是无法解决异或问题的。
异或问题是一个只有两个输入和一个输出,且输入输出都只取1和0两个值的问题,分析起来比较简单。
对于比较复杂的多输入变量函数来说,到底有多少是线性可分的?多少是线性不可分的呢?相关研究表明(参见文献[19]),线性不可分函数的数量随着输入变量个数的增加而快速增加,甚至远远超过了线性可分函数的个数。
也就是说,单层感知器不能表达的问题的数量远远超过了它所能表达的问题的数量。
这也难怪当Minsky给出单层感知器的这一致命缺陷时,会使人工神经网络的研究跌入漫长的黑暗期。
4 多层感知器
•在单层感知器的输入部分和输出层之间加入一层或多层处理单元,就构成了二层或多层感知器。
•在多层感知器模型中,只允许某一层的连接权值可调,这是因为无法知道网络隐层的神经元的理想输出,因而难以给出一个有效的多层感知器学习算法。
多层感知器克服了单层感知器的许多缺点,原来一些单层感知器无法解决的问题,在多层感知器中就可以解决。
例如,应用二层感知器就可以解决异或逻辑运算问题。