第一章 气体放电的基本物理过程
- 格式:ppt
- 大小:4.52 MB
- 文档页数:99
高电压技术第二版习题答案(部分)第一章气体放电的基本物理过程(1)在气体放电过程中,碰撞电离为什么主要是由电子产生的?答:气体中的带电粒子主要有电子和离子,它们在电场力的作用下向各自的极板运动,带正电荷的粒子向负极板运动,带负电荷的粒子向正极板运动。
电子与离子相比,它的质量更小,半径更小,自由行程更大,迁移率更大,因此在电场力的作用下,它更容易被加速,因此电子的运动速度远大于离子的运动速度。
更容易累积到足够多的动能,因此电子碰撞中性分子并使之电离的概率要比离子大得多。
所以,在气体放电过程中,碰撞电离主要是由电子产生的。
(2)带电粒子是由哪些物理过程产生的,为什么带电粒子产生需要能量?答:带电粒子主要是由电离产生的,根据电离发生的位置,分为空间电离和表面电离。
根据电离获得能量的形式不同,空间电离又分为光电离、热电离和碰撞电离,表面电离分为正离子碰撞阴极表面电离、光电子发射、热电子发射和强场发射。
原子或分子呈中性状态,要使原子核外的电子摆脱原子核的约束而成为自由电子,必须施加一定的外加能量,使基态的原子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能。
(3)为什么SF6气体的电气强度高?答:主要因为SF6气体具有很强的电负性,容易俘获自由电子而形成负离子,气体中自由电子的数目变少了,而电子又是碰撞电离的主要因素,因此气体中碰撞电离的能力变得很弱,因而削弱了放电发展过程。
1-2 汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论的基本观点:电子碰撞电离是气体电离的主要原因;正离子碰撞阴极表面使阴极表面逸出电子是维持气体放电的必要条件;阴极逸出电子能否接替起始电子的作用是自持放电的判据。
它只适用于低气压、短气隙的情况。
气体放电流注理论以实验为基础,它考虑了高气压、长气隙情况下空间电荷对原有电场的影响和空间光电离的作用。
在初始阶段,气体放电以碰撞电离和电子崩的形式出现,但当电子崩发展到一定程度之后,某一初始电子的头部集聚到足够数量的空间电荷,就会引起新的强烈电离和二次电子崩,这种强烈的电离和二次电子崩是由于空间电荷使局部电场大大增强以及发生空间光电离的结果,这时放电即转入新的流注阶段。
第一章 气体放电的基本物理过程(1)在气体放电过程中,碰撞电离为什么主要是由电子产生的?答:气体中的带电粒子主要有电子和离子,它们在电场力的作用下向各自的极板运动,带正电荷的粒子向负极板运动,带负电荷的粒子向正极板运动。
电子与离子相比,它的质量更小,半径更小,自由行程更大,迁移率更大,因此在电场力的作用下,它更容易被加速,因此电子的运动速度远大于离子的运动速度。
更容易累积到足够多的动能,因此电子碰撞中性分子并使之电离的概率要比离子大得多。
所以,在气体放电过程中,碰撞电离主要是由电子产生的。
(2)带电粒子是由哪些物理过程产生的,为什么带电粒子产生需要能量 ?答:带电粒子主要是由电离产生的,根据电离发生的位置,分为空间电离和表面电离。
根据电离获得能量的形式不同,空间电离又分为光电离、热电离和碰撞电离,表面电离分为正离子碰撞阴极表面电离、光电子发射、热电子发射和强场发射。
原子或分子呈中性状态,要使原子核外的电子摆脱原子核的约束而成为自由电子,必须施加一定的外加能量,使基态的原子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能。
(3)为什么SF6气体的电气强度高?答:主要因为SF6气体具有很强的电负性,容易俘获自由电子而形成负离子,气体中自由电子的数目变少了,而电子又是碰撞电离的主要因素,因此气体中碰撞电离的能力变得很弱,因而削弱了放电发展过程。
1-2 汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论的基本观点:电子碰撞电离是气体电离的主要原因;正离子碰撞阴极表面使阴极表面逸出电子是维持气体放电的必要条件;阴极逸出电子能否接替起始电子的作用是自持放电的判据。
它只适用于低气压、短气隙的情况。
气体放电流注理论以实验为基础,它考虑了高气压、长气隙情况下空间电荷对原有电场的影响和空间光电离的作用。
在初始阶段,气体放电以碰撞电离和电子崩的形式出现,但当电子崩发展到一定程度之后,某一初始电子的头部集聚到足够数量的空间电荷,就会引起新的强烈电离和二次电子崩,这种强烈的电离和二次电子崩是由于空间电荷使局部电场大大增强以及发生空间光电离的结果,这时放电即转入新的流注阶段。
第一章气体放电的基本物理过程基本内容和知识点带电粒子的产生和消失电子崩自持放电及其条件汤逊理论和流注理论不均匀电场中的放电过程电子崩:设外界电离因子在阴极附近产生了一个初始电子,如果空间的电场强度足够大,那么该电子在向阳极运动时就会引起碰撞电离,产生一个新电子,初始电子和新电子继续向阳极运动,又会引起新的碰撞电离,产生出更多的电子。
依次类推,电子将按几何级数不断增多,像雪崩似地发展,因而这种急剧增大的空间电子流被称为电子崩。
电子崩过程是汤逊理论、流注理论的共同基础。
气体游离的类型主要有哪几种?试作解释。
答气体游离的类型有 4 种,具体为:(1)碰撞游离:电子在电场作用下加速向阳极运动的过程中,获得足够的能量,运动加快并不断与途中其他中性原子发生碰撞,从而激发出自由电子。
这种由于碰撞而产生游离的形式称为碰撞游离。
(2)光游离:正、负带电粒子复合时,都以光子的形式释放出能量,其他中性原子内的电子吸收此能量后变为自由电子。
这种由于光辐射而产生游离的形式称为光游离。
(3)热游离:在高温下,气体内的各种粒子动能增加,当动能超过一定值时,粒子相互碰撞而产生游离。
这种由气体热状态引起的游离方式称为热游离。
(4)表面游离气体中带电粒子的消失有哪几种形式?答气体中带电粒子的消失有以下几种形式:(1)在电场驱动下作定向运动,在到达电极时,消失于电极上而形成外电路中的电流;(2)因扩散现象而逸出气体放电空间;(3)复合。
气体放电的基本特点是什么?解释气体放电现象常用的理论有哪两个?答(1)气体放电的基本特点是:在外电场作用下,气体间隙中带电粒子数增加,气隙击穿时,其中带电粒子数剧增,而在撤去外电场后,气体间隙中带电粒子又消失并恢复其原有的绝缘强度。
(2)解释气体放电现象常用的理论是:汤逊理论和流注理论。
什么叫流注?流注形成的条件是什么?答(1)初始电子崩头部成为辐射源后,就会向气隙空间各处发射光子而引起光电离,如果这时产生的光电子位于崩头前和崩尾附近的强场区内,那么它们所造成的二次电子崩将以大得多的电离强度向阳极发展或汇入崩尾的正离子群中。
第一章气体放电的基本物理过程(1)在气体放电过程中,碰撞电离为什么主要是由电子产生的?答:气体中的带电粒子主要有电子和离子,它们在电场力的作用下向各自的极板运动,带正电荷的粒子向负极板运动,带负电荷的粒子向正极板运动。
电子与离子相比,它的质量更小,半径更小,自由行程更大,迁移率更大,因此在电场力的作用下,它更容易被加速,因此电子的运动速度远大于离子的运动速度。
更容易累积到足够多的动能,因此电子碰撞中性分子并使之电离的概率要比离子大得多。
所以,在气体放电过程中,碰撞电离主要是由电子产生的。
(2)带电粒子是由哪些物理过程产生的,为什么带电粒子产生需要能量?答:带电粒子主要是由电离产生的,根据电离发生的位置,分为空间电离和表面电离。
根据电离获得能量的形式不同,空间电离又分为光电离、热电离和碰撞电离,表面电离分为正离子碰撞阴极表面电离、光电子发射、热电子发射和强场发射。
原子或分子呈中性状态,要使原子核外的电子摆脱原子核的约束而成为自由电子,必须施加一定的外加能量,使基态的原子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能。
(3)为什么SF6气体的电气强度高?答:主要因为SF6气体具有很强的电负性,容易俘获自由电子而形成负离子,气体中自由电子的数目变少了,而电子又是碰撞电离的主要因素,因此气体中碰撞电离的能力变得很弱,因而削弱了放电发展过程。
1-2 汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论的基本观点:电子碰撞电离是气体电离的主要原因;正离子碰撞阴极表面使阴极表面逸出电子是维持气体放电的必要条件;阴极逸出电子能否接替起始电子的作用是自持放电的判据。
它只适用于低气压、短气隙的情况。
气体放电流注理论以实验为基础,它考虑了高气压、长气隙情况下空间电荷对原有电场的影响和空间光电离的作用。
在初始阶段,气体放电以碰撞电离和电子崩的形式出现,但当电子崩发展到一定程度之后,某一初始电子的头部集聚到足够数量的空间电荷,就会引起新的强烈电离和二次电子崩,这种强烈的电离和二次电子崩是由于空间电荷使局部电场大大增强以及发生空间光电离的结果,这时放电即转入新的流注阶段。
高电压技术学期学习总结通过一学期对高电压技术的学习,有一下重点难点总结:第一章气体的绝缘强度1、气体放电的基本物理过程⑴带电粒子的产生气体分子或原子产生的三种状态厂原态(中性)<激发态(激励态)从外界获得能量,电子发生轨道跃迁。
J电离态(游离态)当获得足够能量时,电子变带电电子,原来变正离子。
电离种类:A:碰撞电离B:光电离C:热电离D:表面电离⑵带电离子的消失A:扩散,会引起浓度差。
B:复和(中和)正负电荷相遇中和,释放能量。
C:附着效应,部分电负性气体分子对负电荷有较强吸附能力,使之变为负离子。
⑶汤逊理论的使用条件和自持放电条件使用条件:均匀电子,低电压s自持放电条件:(e 1) 1⑷巴申定律的物理意义及应用A:巴申定律的物理意义①p s (s 一定)p 增大,U f 增大。
②p s (s 一定)p 减小,U f 减小。
③p s不变:p增大,密度增大,无效碰撞增加,提高了电量的强度,U增大。
P减小,密度减小,能碰撞的数量减小,能量提高,U增大。
P s 不变,U f 不变。
B:巴申定律的应用通过增加或者减少气体的压力来提高气体的绝缘强度。
如:高压直流二极管(增加气体的压力)减小气体的压力用真空断路器。
⑸流柱理论的使用范围及与汤逊理论的关系流柱理论的使用范围:a、放电时间极短b、放电的细分数通道c、与阴极的材料无关d、当ps 增大的时候,U f 值与实测值差别大。
流柱理论与汤逊理论的关系:a、流柱理论是对汤逊理论的一个补充b、发生碰撞电离c、有光电离,电场⑹极不均匀电场的 2 个放电特点(电晕放电,极性效应)电晕放电的特点:a、电晕放电是极不均匀电场所持有的一种自持放电形式,是极不均匀电场的特征之一。
b、电晕放电会引起能量消耗。
c 、电晕放电的脉冲现象会产生高频电磁波,对无线电通讯造成干扰。
d、电晕放电还使空气发生化学反应,生成臭氧、氮氧化物是强氧化剂和腐蚀剂,会对气体中的固体介质及金属电极造成损伤或腐蚀。