气体放电基本物理过程
- 格式:ppt
- 大小:2.22 MB
- 文档页数:29
第5篇 高壓電與絕緣技術第35章 氣體放電的基本物理過程35.1 氣體中帶電指點的產生與消失35.1.1 氣體的電離原子在外界因素作用下,使其一個或幾個電子脫離原子核的束縛而形成自由電子和正離子的過程稱為原子的電離,它是氣體放電的首要前提。
其所需要的能量成為電離能。
原子在外界因素作用下,其電子躍遷到能量較高的狀態,所需的能量稱為激勵能,原子處於激勵態e W 電離電位為i U ,C e 19106.1-⨯=;激勵態恢復到正常狀態時,輻射出相應能量的光子,光子的頻率v h 普朗克常數ii eU hvW == 電離過程的表示:e A E A +→++为波尔茨曼常数k K J k W kT i /1038.12323-⨯=≥(熱電離)是普朗克常数光辐射波频率h v W hv i,≥ (光輻射電離) 度是碰撞质点的质量、速、v m W mv i ≥221 (碰撞電離)走过的距离为电子或离子在碰撞前x W eEx i ≥常溫下的放電過程,碰撞電離是最重要的電離方式35.1.2 氣體的分級電離氣體的原子或分子在激勵態(激勵能為e W )再獲得能量而發生電離稱為分級電離,這種情況下電離所需的能量僅為e i W W -亞穩原子有很長的平均壽命(10-3 秒或更長)。
在混合氣體中,當一種氣體的亞穩原子同另一種氣體的原子或分子碰撞時,即使它們的動能較低,只要前者的激發能大於後者的電離能,後者將被電離,前者則返回基態。
多餘的能量就轉變為電子的動能,或使離子激發。
這種過程,稱彭寧電離,或稱彭寧效應。
由於惰性氣體的亞穩原子有較大的激發能,在含有惰性氣體的混合氣體放電中,彭寧電離比較有效。
彭寧效應還可以使放電管的點火電壓降低。
從絕緣角度看,彭寧效應不利35.1.3 電極表面的電子逸出逸出功:金屬的微觀結構、金屬表面狀態(小於電離能):①熱電子發射②二次發射③強場發射④光電子發射35.1.4 帶電質點的擴散和複合帶電粒子的擴散帶電粒子從濃度較大的區域運動到濃度較小的區域。
第一章 气体放电的基本物理过程(1)在气体放电过程中,碰撞电离为什么主要是由电子产生的?答:气体中的带电粒子主要有电子和离子,它们在电场力的作用下向各自的极板运动,带正电荷的粒子向负极板运动,带负电荷的粒子向正极板运动。
电子与离子相比,它的质量更小,半径更小,自由行程更大,迁移率更大,因此在电场力的作用下,它更容易被加速,因此电子的运动速度远大于离子的运动速度。
更容易累积到足够多的动能,因此电子碰撞中性分子并使之电离的概率要比离子大得多。
所以,在气体放电过程中,碰撞电离主要是由电子产生的。
(2)带电粒子是由哪些物理过程产生的,为什么带电粒子产生需要能量 ?答:带电粒子主要是由电离产生的,根据电离发生的位置,分为空间电离和表面电离。
根据电离获得能量的形式不同,空间电离又分为光电离、热电离和碰撞电离,表面电离分为正离子碰撞阴极表面电离、光电子发射、热电子发射和强场发射。
原子或分子呈中性状态,要使原子核外的电子摆脱原子核的约束而成为自由电子,必须施加一定的外加能量,使基态的原子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能。
(3)为什么SF6气体的电气强度高?答:主要因为SF6气体具有很强的电负性,容易俘获自由电子而形成负离子,气体中自由电子的数目变少了,而电子又是碰撞电离的主要因素,因此气体中碰撞电离的能力变得很弱,因而削弱了放电发展过程。
1-2 汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论的基本观点:电子碰撞电离是气体电离的主要原因;正离子碰撞阴极表面使阴极表面逸出电子是维持气体放电的必要条件;阴极逸出电子能否接替起始电子的作用是自持放电的判据。
它只适用于低气压、短气隙的情况。
气体放电流注理论以实验为基础,它考虑了高气压、长气隙情况下空间电荷对原有电场的影响和空间光电离的作用。
在初始阶段,气体放电以碰撞电离和电子崩的形式出现,但当电子崩发展到一定程度之后,某一初始电子的头部集聚到足够数量的空间电荷,就会引起新的强烈电离和二次电子崩,这种强烈的电离和二次电子崩是由于空间电荷使局部电场大大增强以及发生空间光电离的结果,这时放电即转入新的流注阶段。
第二章 气体放电的基本物理过程一、带电质点的产生与消失产生带电质点的物理过程称为电离(游离),是气体放电的首要前提。
激励(激发):当原子获得外部能量,一个或若干个外层电子跃迁到离原子核较远的轨道上去的现象。
激励需要外界给原子一定的能量,称为激励能。
电离(游离):若原子从外界获得的能量足够大,以致使一个或几个电子摆脱原子核的束缚形成自由电子和正离子,这一过程称为电离。
电离所需的能量称为电离能Wi ,通常用电子伏(eV)表示,有时也用电离电位Ui 表示, Ui = Wi /e (e 为电子的电荷量)。
1、电离的方式:碰撞电离、光电离、热电离、分级电离属于空间游离。
金属表面电离 电极表面带电质点的产生2、带电质点的消失与两电极的电量中和、带电质点的扩散、带电质点的复合3、放电的电子崩阶段1)非自持放电和自持放电的不同特点各种高能辐射射线(外界电离因素)引起:阴极表面光电离气体中的空间光电离因此:气体空间中存在一定浓度的带电质点。
在气隙的电极间施加电压时,可检测到很微小的电流。
外施电压小于U0时的放电是非自持放电。
电压到达U0后,电流剧增,间隙中电离过程只靠外施电压已能维持,不再需要外电离因素,此时的放电为自持放电。
2)电子崩的形成外界电离因素在阴极附近产生了一个初始电子,如果空间电场强度足够大,该电子在向阳极运动时就会引起碰撞电离,产生一个新的电子,初始电子和新电子继续向阳极运动,又会引起新的碰撞电离,产生更多电子。
依此,电子将按照几何级数不断增多,类似雪崩似地发展,这种急剧增大的空间电子流称为电子崩。
放电由非自持向自持转化的机制与气体的压强和气隙长度的乘积(pd)有关:汤逊理论(pd 值较小)流注理论(pd 值较大)共同理论基础:电子碰撞电离形成电子崩。
3)自持放电条件要达到自持放电的条件,必须在气隙内初始电子崩消失前产生新的电子(二次电子)来取代外电离因素产生的初始电子。
实验现象表明,二次电子产生的机制与气压和气隙长度的乘积(pd )有关:汤逊理论 (pd 值较小): b()U f pd1903年,由英国人汤逊(J.S.Townsend)根据试验事实,提出了比较系统的气体放电理论,阐述了气体放电过程,并确定出放电电流和击穿电压之间的函数关系。
第一章气体放电的基本物理过程(1)在气体放电过程中,碰撞电离为什么主要是由电子产生的?答:气体中的带电粒子主要有电子和离子,它们在电场力的作用下向各自的极板运动,带正电荷的粒子向负极板运动,带负电荷的粒子向正极板运动。
电子与离子相比,它的质量更小,半径更小,自由行程更大,迁移率更大,因此在电场力的作用下,它更容易被加速,因此电子的运动速度远大于离子的运动速度。
更容易累积到足够多的动能,因此电子碰撞中性分子并使之电离的概率要比离子大得多。
所以,在气体放电过程中,碰撞电离主要是由电子产生的。
(2)带电粒子是由哪些物理过程产生的,为什么带电粒子产生需要能量?答:带电粒子主要是由电离产生的,根据电离发生的位置,分为空间电离和表面电离。
根据电离获得能量的形式不同,空间电离又分为光电离、热电离和碰撞电离,表面电离分为正离子碰撞阴极表面电离、光电子发射、热电子发射和强场发射。
原子或分子呈中性状态,要使原子核外的电子摆脱原子核的约束而成为自由电子,必须施加一定的外加能量,使基态的原子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能。
(3)为什么SF6气体的电气强度高?答:主要因为SF6气体具有很强的电负性,容易俘获自由电子而形成负离子,气体中自由电子的数目变少了,而电子又是碰撞电离的主要因素,因此气体中碰撞电离的能力变得很弱,因而削弱了放电发展过程。
1-2 汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论的基本观点:电子碰撞电离是气体电离的主要原因;正离子碰撞阴极表面使阴极表面逸出电子是维持气体放电的必要条件;阴极逸出电子能否接替起始电子的作用是自持放电的判据。
它只适用于低气压、短气隙的情况。
气体放电流注理论以实验为基础,它考虑了高气压、长气隙情况下空间电荷对原有电场的影响和空间光电离的作用。
在初始阶段,气体放电以碰撞电离和电子崩的形式出现,但当电子崩发展到一定程度之后,某一初始电子的头部集聚到足够数量的空间电荷,就会引起新的强烈电离和二次电子崩,这种强烈的电离和二次电子崩是由于空间电荷使局部电场大大增强以及发生空间光电离的结果,这时放电即转入新的流注阶段。
气体放电的基本物理过程气体放电是指在气体中一些条件下产生的电流和光辐射现象。
它是由于电流穿过气体时,气体分子与电子碰撞而产生的。
1.电离阶段:当气体中存在电场时,电场的作用下,电子受到电场力的作用而受激,能量增加,然后具有足够的能量与气体分子发生碰撞。
这些高能电子与气体分子碰撞后会将气体分子中的电子击出,产生自由电子和正离子。
这个过程称为电离。
2.生长阶段:在电离阶段后,自由电子会与气体分子重新碰撞形成新的电子和正离子。
这个过程称为复合。
而新产生的电子又与其他气体分子发生碰撞,形成更多的正离子和自由电子。
这种电子的产生和复合的过程不断重复,直到达到一个动态平衡,产生了足够的自由电子和离子。
3.暴击阶段:当电子和正离子的数量进一步增加时,电子会与正离子再次碰撞,使其能量增加。
而当电子进一步与气体分子发生碰撞时,能量超过分子的离解能,就会导致气体分子的电离和激发,产生更多的自由电子和离子。
这个过程会导致电流和电压的增加。
4.衰减阶段:当电压继续升高时,电离和激发的过程会不断增强,导致放电区域中电子和气体分子的密度变得非常高。
这会使得电子和离子发生更多的碰撞,将能量转移给气体分子并使其激发或电离。
然而,当电子和正离子的能量损失超过其再激发或电离的能量时,放电区域中电子和离子的数量会逐渐减少,最终放电将停止。
这个过程称为电流的衰减。
总体来说,气体放电的基本物理过程是通过电场的作用将气体分子电离,产生自由电子和正离子。
这些电子和离子通过与气体分子的碰撞产生更多的电离和激发,导致电流和电压的增加。
最终放电区域中电子和离子的能量损失超过再激发或电离的能量,导致电流的衰减。
第5篇 高压电与绝缘技术第35章 气体放电的基本物理过程35.1 气体中带电指点的产生与消失35.1.1 气体的电离原子在外界因素作用下,使其一个或几个电子脱离原子核的束缚而形成自由电子和正离子的过程称为原子的电离,它是气体放电的首要前提。
其所需要的能量成为电离能。
原子在外界因素作用下,其电子跃迁到能量较高的状态,所需的能量称为激励能,原子处于激励态e W 电离电位为i U ,C e 19106.1-⨯=;激励态恢复到正常状态时,辐射出相应能量的光子,光子的频率v h 普朗克常数ii eU hvW == 电离过程的表示:e A E A +→++为波尔茨曼常数k K J k W kT i /1038.12323-⨯=≥(热电离)是普朗克常数光辐射波频率h v W hv i,≥ (光辐射电离) 度是碰撞质点的质量、速、v m W mv i ≥221 (碰撞电离)走过的距离为电子或离子在碰撞前x W eEx i ≥常温下的放电过程,碰撞电离是最重要的电离方式35.1.2 气体的分级电离气体的原子或分子在激励态(激励能为e W )再获得能量而发生电离称为分级电离,这种情况下电离所需的能量仅为e i W W -亚稳原子有很长的平均寿命(10-3 秒或更长)。
在混合气体中,当一种气体的亚稳原子同另一种气体的原子或分子碰撞时,即使它们的动能较低,只要前者的激发能大于后者的电离能,后者将被电离,前者则返回基态。
多余的能量就转变为电子的动能,或使离子激发。
这种过程,称彭宁电离,或称彭宁效应。
由于惰性气体的亚稳原子有较大的激发能,在含有惰性气体的混合气体放电中,彭宁电离比较有效。
彭宁效应还可以使放电管的点火电压降低。
从绝缘角度看,彭宁效应不利35.1.3 电极表面的电子逸出逸出功:金属的微观结构、金属表面状态(小于电离能):①热电子发射②二次发射③强场发射④光电子发射35.1.4 带电质点的扩散和复合带电粒子的扩散带电粒子从浓度较大的区域运动到浓度较小的区域。
第一章 气体放电的基本物理过程(1)在气体放电过程中,碰撞电离为什么主要是由电子产生的?答:气体中的带电粒子主要有电子和离子,它们在电场力的作用下向各自的极板运动,带正电荷的粒子向负极板运动,带负电荷的粒子向正极板运动。
电子与离子相比,它的质量更小,半径更小,自由行程更大,迁移率更大,因此在电场力的作用下,它更容易被加速,因此电子的运动速度远大于离子的运动速度。
更容易累积到足够多的动能,因此电子碰撞中性分子并使之电离的概率要比离子大得多。
所以,在气体放电过程中,碰撞电离主要是由电子产生的。
(2)带电粒子是由哪些物理过程产生的,为什么带电粒子产生需要能量 ?答:带电粒子主要是由电离产生的,根据电离发生的位置,分为空间电离和表面电离。
根据电离获得能量的形式不同,空间电离又分为光电离、热电离和碰撞电离,表面电离分为正离子碰撞阴极表面电离、光电子发射、热电子发射和强场发射。
原子或分子呈中性状态,要使原子核外的电子摆脱原子核的约束而成为自由电子,必须施加一定的外加能量,使基态的原子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能。
(3)为什么SF6气体的电气强度高?答:主要因为SF6气体具有很强的电负性,容易俘获自由电子而形成负离子,气体中自由电子的数目变少了,而电子又是碰撞电离的主要因素,因此气体中碰撞电离的能力变得很弱,因而削弱了放电发展过程。
1-2 汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论的基本观点:电子碰撞电离是气体电离的主要原因;正离子碰撞阴极表面使阴极表面逸出电子是维持气体放电的必要条件;阴极逸出电子能否接替起始电子的作用是自持放电的判据。
它只适用于低气压、短气隙的情况。
气体放电流注理论以实验为基础,它考虑了高气压、长气隙情况下空间电荷对原有电场的影响和空间光电离的作用。
在初始阶段,气体放电以碰撞电离和电子崩的形式出现,但当电子崩发展到一定程度之后,某一初始电子的头部集聚到足够数量的空间电荷,就会引起新的强烈电离和二次电子崩,这种强烈的电离和二次电子崩是由于空间电荷使局部电场大大增强以及发生空间光电离的结果,这时放电即转入新的流注阶段。