绝对值与相反数
- 格式:doc
- 大小:28.00 KB
- 文档页数:3
相反数:①只有符号不同的两个数,叫做互为相反数。
例如:2与-2,3与-3.特殊地,0的相反数是0.②互为相反数的两个数的和是0;③负负得正,正负得负,负正得负,正正得正;④符号偶数个,得正,符号奇数个,得负;强化训练1:1.32-的相反数是_______.2.下列说法正确的是:_________①的相反数是55-;②的相反数是432411-;③互为相反数与21212-;④互为相反数与2125.2-;⑤14.3-∏的相反数是;3.一个数的相反数是非负数,这个数一定是________4.下列说法正确的是_______A.正数和负数互为相反数; B.任何一个数的相反数都与它本身不同;C.因为相反数是成对出现的,所以0没有相反数;D.相反数等于它本身的数是0;5.互为相反数是指()A.意义相反的两个量; B.一个负数前面加上“+”所得的数与原数C.数轴上原点两侧的两个点所表示的两个数;D.只有符号不同的两个数(0的相反数是0)6.____)2(=+-_____)2019(=--_____)2019(=+-______)]2019([=+--______)]}2019([{=+---7.下列各数互为相反数的是()A.)8)8(-++-(和 B.8-8-)和(+ C.8-)8(和+- D.)8()8(-+--和8.给出下面各数:)]4([41([)],41([41(),4(--++-+-+-+--+,其中,正数有_________个。
9.已知:,0,0,0=-=+=+q m p n n m 则()A.相等与q p ; B.互为相反数与q m C.相等与n m ; D.相等与n p 10.在研究相反数时,同学们有如下结论:①有理数a 的相反数是负数;②在数轴上,如果两个数所对应的点到原点的距离相等,且位于原点两侧,那么这两个数互为相反数;③符号不同的两个数,一定互为相反数;④非负数的相反数等于它本身;错误的结论是_______11.有理数a -一定是()A.负数;B.正数C.0D.正数,负数或0绝对值:①表示一个数到原点的距离,故一个数的绝对值是非负数(0≥),0≥a 。
回答下列问题.问题1:如果盈利10元记作+10元,那么亏损10元记作什么?问题2:如果河道中的水位比正常水位高4厘米记作+4厘米,那么比正常水位低4厘米记作什么?问题3:在数轴上与原点距离是2的点有几个?这些点各表示哪个数?【课堂引入】观察回顾上面问题中所画数轴,可发现:数轴上与原点距离是2的点有两个,它们表示的数是2和-2.观察这两个数,有什么相同和不同?结论:正数的相反数是负数,负数的相反数是正数,a的相反数是-a.规定:0的相反数是0.注意:(1)数a的相反数记为-a,这里的a表示任意一个数,它可以是正数也可以是负数或零.(2)两个互为相反数的数,在数轴上的所表示的点(0除外)在原点两旁,并且与原点距离相等的两个点.思考:设a表示一个数,-a一定是负数吗?师生活动:学生在教师引导下主动学习并积极思考相关问题,培养学生主动探究数学规律的能力.3.绝对值的认识(1)将问题抽象为数学问题,教师用几何画板动画演示画数轴,O是原点.(2)学生观察并思考,点A,B与原点O的距离分别是多少?(3)学生思考并完成填空:①在数轴上,表示数+1的点与原点的距离是________;②在数轴上,表示数-1的点与原点的距离是________.(4)教师说明:数轴上表示某数的点到原点的距离与它所表示的数的正负性无关.(5)教师指出绝对值的概念.一般地,在数轴上,一个数所对应的点与原点的距离,叫做这个数的+2=2;-3的绝对值等于绝对值.如+2的绝对值是等于2,记作||-3=3.3,记作||想一想:(1)互为相反数的两个数的绝对值有什么关系?(2)一个数的绝对值与这个数有什么关系?师生活动:教师引导学生动手画数轴,解决问题(1)并总结结论,继续引导学生在原点的左右各找几个点,计算它们的绝对值,并尝试归纳问题(2),教师最后完善总结.【典型例题】例1 写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.4,-12,-(-23),+(-4.5),0,-(+3).解:它们的相反数分别是-4,12,-23,4.5,0,3.在数轴上表示如图所示.例2 (教材第30页例1)求下列各数的绝对值: -21,49,0,-7.8,21.解:||-21=21,⎪⎪⎪⎪⎪⎪49=49,||0=0,||-7.8=7.8,||21=21.例3 (教材第31页例2)比较下列每组数的大小: (1)-1和-5;(2)-56和-2.7.解:(1)-1>-5.(2)-56>-2.7.例3 已知|x -3|+|y -2|=0,求x +y 的值.解析:一个数的绝对值总是大于或等于0,即为非负数,若两个非负【课堂检测】1.如图,点O 为数轴原点,则数轴上表示互为相反数的点是(B)A .点A 和点CB .点C 和点D C .点A 和点D D .点B 和点D 2.-74的相反数是74;13的相反数是-13;0的相反数是0.3.在数轴上距离原点2个单位长度的点表示的数是±2,也就是说绝对值等于2的数是±2.4.在数轴上表示下列各数,并求它们的绝对值: -32,6,-3,-8.6. 解:32;6;3;8.6.图略.5.比较下列各组数的大小:(1)-110,-27;(2)-0.5,-23;(3)0,|-23|;(4)|-7|,|7|.解:(1)-110>-27.(2)-0.5>-23.(3)0<|-23|.(4)|-7|=|7|.师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.。
相反数和绝对值的定义嘿,朋友们!今天咱来聊聊相反数和绝对值,这可都是数学里超有意思的概念呀!你想想,相反数不就像是一对欢喜冤家嘛!一个正数,一个负数,它们俩呀,数值一样,就是符号相反。
就好比一个人向东走,那他的相反数就是向西走,方向完全相反,但距离是一样的哟!比如说 5 和-5,它们不就是这样的一对嘛!这多有趣呀,明明是一样的数字,却因为符号不同,就有了完全不同的意义。
这就好像生活中,有时候我们做一件事情,换个角度去看,可能就会有截然不同的感受呢!再来说说绝对值,它就像是给数字穿上了一件“保护衣”。
不管这个数字本身是正是负,绝对值都能让它变得“阳光”起来。
无论正数负数,绝对值都是它们的“正身”。
就好像一个人不管经历了多少挫折,他的本质和价值是不会变的呀!比如|-3|和|3|都是 3 呢。
你说这相反数和绝对值是不是特别神奇?它们就像是数学世界里的小精灵,总是能给我们带来意想不到的惊喜和发现。
咱再深入想想,相反数其实也能让我们看到事物的两面性呢。
就像一枚硬币有正反两面一样,每个事情也都有不同的角度去看待。
有时候我们可能只看到了一面,却忽略了另一面。
而绝对值呢,它让我们明白,不管遇到什么情况,都要看到事物最核心的东西,不要被表面的正负所迷惑。
在生活中,我们也会遇到各种各样类似相反数和绝对值的情况呀。
比如说,遇到困难的时候,我们可以把它看成是一个“负”的情况,但换个角度想想,这也许就是让我们成长和进步的机会,不就是它的“相反数”嘛!而无论我们处于什么样的境遇,我们自身的价值,就像那个绝对值一样,是不会改变的呀!所以啊,相反数和绝对值可不仅仅是数学里的概念,它们还能给我们的生活带来很多启示呢!它们让我们学会用不同的视角去看待问题,学会在任何情况下都能保持自己的价值和信心。
这不就是数学的魅力所在嘛,它不仅仅是一堆数字和公式,还蕴含着深刻的道理和智慧。
朋友们,让我们好好去理解和运用相反数和绝对值吧,让它们成为我们生活中的好帮手,带我们去发现更多的美好和可能!这就是我对相反数和绝对值的理解啦,你们觉得呢?原创不易,请尊重原创,谢谢!。
专题02 绝对值与相反数知识点一相反数只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)注意:1、通常a与-a互为相反数;2、a表示任意一个数,可以是正数、负数,也可以是0;3、特别注意,0的相反数是0.知识点二绝对值正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
(互为相反数的两个数的绝对值相等。
)考查题型考查题型一求一个数的相反数典例1.﹣25的相反数是()A.﹣25B.25C.﹣52D.52【答案】B 【解析】详解:-25的相反数是:25.故选:B.变式1-1.如果a表示有理数,那么下列说法中正确的是( )A.+a和一(-a)互为相反数B.+a和-a一定不相等C.-a一定是负数D.-(+a)和+(-a)一定相等【答案】D【解析】试题解析:A.()a a--=,两个数相等,故错误.B.当0a =时,a +与a -相等,故错误.C.a -可以是正数,也可以是负数,还可以是0.故错误.D .正确.故选D.变式1-2.-(-6)的相反数是 ( )A .|-6|B .-6C .0.6D .6【答案】B【详解】解:−(−6)=6,∴6的相反数是−6.答案为:−6.故选B.变式1-3已知1=a ,b 是2的相反数,则+a b 的值为( )A .-3B .-1C .-1或-3D .1或-3 【答案】C【详解】 ∵1=a ,b 是2的相反数,∴1a =或1a =﹣,2b =﹣,当1a =时,121a b +==﹣﹣;当1a =﹣时,123a b +==﹣﹣﹣;综上,+a b 的值为-1或-3,故选C .考查题型二 判断两个数是否互为相反数典例2.下列各组数中,互为相反数的是( )A .-(-1)与1B .(-1)2与1C .|1|-与1D .-12与1 【答案】D【解析】试题分析:选项A ,-(-1)与1不是相反数,选项A 错误;选项B ,(-1)2与1不是互为相反数,选项B 错误;选项C ,|-1|与1不是相反数,选项C 错误;选项D ,-12与1是相反数,选项正确.故答案选D .变式2-1.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )A.B.C.D.【答案】B【解析】试题分析:根据互为相反数的两个数到原点的距离相等,并且在原点的两侧,可知只有B答案正确.故选B.变式2-2.(2020·沈阳市期末)如图,数轴上有A,B,C,D 四个点,其中到原点距离相等的两个点是()A.点B 与点D B.点A 与点C C.点A 与点D D.点B 与点C【答案】C【解析】试题分析:到原点距离相等的两个点所表示的数互为相反数.变式2-3.下列各对数互为相反数的是()A.+(+3)与-(-3) B.+(-3)与-(+3)C.+|+3|与+|-3| D.+|-3|与-|+3|【答案】D【详解】A、+(+3)=3,-(-3)=3,两者相等,故本选项错误;B、+(-3)=-3,-(+3)=-3,两者相等,故本选项错误;C、+|+3|=3,+|-3|=3,两者相等,故本选项错误;D、+|-3|=3,-|+3|=-3,两者互为相反数,故本选项正确;故选D.考查题型三多重符号化简典例3.下列化简,正确的是()A.﹣(﹣3)=﹣3B.﹣[﹣(﹣10)]=﹣10C.﹣(+5)=5D.﹣[﹣(+8)]=﹣8【答案】B【解析】试题分析:A、-(-3)=3,故错误;B、-[-(-10)]=-10,故正确;C、-(+5)=-5,故错误;D、-[-(+8)]=8,故正确.故选B.变式3-1.化简-(+2)的结果是()A .-2B .2C .±2D .0【答案】A【详解】-(+2)=-2.故选A .变式3-2.下列各数中互为相反数的是( )A .(5)+- 与 5-B .(5)-+ 与 5-C .(5)-+ 与 |5|--D .(5)-- 与 (5)+-【答案】D【详解】解:A 、+(-5)=-5,选项错误;B 、-(+5)=-5,选项错误;C 、-(+5)=-5,-|-5|=-5,选项错误;D 、-(-5)=5,+(-5)=-5,5与-5互为相反数,选项正确.故选D .变式3-3.﹣(﹣3)的绝对值是( )A .﹣3B .13 C .3 D .﹣13 【答案】C【详解】解:∵﹣(﹣3)=3,3的绝对值等于3,∴﹣(﹣3)的绝对值是3,即|﹣(﹣3)|=3.故选:C .考查题型四 相反数的应用典例4.已知x ﹣4与2﹣3x 互为相反数,则x=( )A .1B .﹣1C .32 D .﹣32【答案】B【详解】因为x ﹣4与2﹣3x 互为相反数,所以x ﹣4+2﹣3x =0,解得:x=-1.故选B. 变式4-1.若37m -和9m -互为相反数,则m 的值是( )A .4B .1C .1-D .4-【答案】C【详解】由题意知3790m m -+-=,则379m m -=-, 22m =-,1m =-,故选:C .变式4-2.(2020·大石桥市期中)如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-1 【答案】C【详解】由a 与1互为相反数,得a+1=0,即a=-1,故|a+2|=|-1+2|=1.故选C考查题型五 求一个数的绝对值典例5.2019-=( )A .2019B .-2019C .12019D .12019- 【答案】A【详解】 20192019-=.故选A .变式5-1.如图,在数轴上点A 所表示的数的绝对值为( )A .1B .﹣1C .0D .2【答案】A由数轴可得:点A 表示的数是﹣1.∵|﹣1|=1,∴数轴上点A 所表示的数的绝对值为1.故选A .变式5-2.已知a 与1的和是一个负数,则|a |=( )A .aB .﹣aC .a 或﹣aD .无法确定【答案】B【解析】试题解析:∵a 与1的和是一个负数,∴a <-1.∴|a|=-a .故选B .变式5-3.在0,1-,2,3-这四个数中,绝对值最小的数是( )A .0B .1-C .2D .3-【答案】A【详解】解:∵|−1|=1,|0|=0,|2|=2,|−3|=3,∴这四个数中,绝对值最小的数是0;故选:A .考查题型六 化简绝对值典例6.实数a 、b 、c 在数轴上的位置如图所示,则代数式|c ﹣a |﹣|a +b |的值等于()A .c +bB .b ﹣cC .c ﹣2a +bD .c ﹣2a ﹣b【答案】A【详解】由数轴可知,b <a <0<c ,∴c-a >0,a+b <0,则|c-a|-|a+b|=c-a+a+b=c+b ,故选A .变式6-1.当1<a<2时,代数式|a -2|+|1-a|的值是( )A .-1B .1C .3D .-3【答案】B解:当1<a <2时,|a ﹣2|+|1﹣a |=2﹣a +a ﹣1=1.故选B .变式6-2.已知5,2a b ==,且||a b b a -=-,则a+b 的值为( )A .3或7B .-3或-7C .-3D .-7【答案】B【解析】试题分析:由|a -b |=b -a ,知b >a ,又由|a |=5,|b |=2,知a =-5,b =2或-2,当a =-5,b =2时,a +b =-3,当a =-5,b =-2时,a +b =-7,故a +b =-3或-7. 解:∵|a -b |=b −a , ∴b >a ,∵|a |=5,|b |=2,∴a =−5,b =2或−2,当a =−5,b =2时,a +b =−3,当a =−5,b =−2时,a +b =−7,∴a +b =−3或−7.故选B.考查题型七 绝对值非负性的应用典例7.已知,则a+b 的值是( ) A .-4B .4C .2D .-2【答案】D【详解】解:根据题意得,a +3=0,b−1=0,解得a =−3,b =1,所以a +b =−3+1=−2.故选:D .变式7-1.已知|1|a +与|4|b -互为相反数,则b a 的值是( )。
第3讲 绝对值与相反数1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系; 3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小; 4.通过应用绝对值解决实际问题,体会绝对值的意义和作用.考点01:相反数1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0. 要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同. (2)“0的相反数是0”是相反数定义的一部分,不能漏掉. (3)相反数是成对出现的,单独一个数不能说是相反数. (4)求一个数的相反数,只要在它的前面添上“-”号即可. 2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.考法01:20161-的相反数是( ) A .2016 B .﹣2016 C .20161 D .20161-【思路】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数. 【答案】C【解析】解:∵20161-与20161只有符号不同, ∴﹣20161的相反数是20161.故选:C .【总结】求一个数的相反数,只改变这个数的符号,其他部分都不变.考点02:多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 . 要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.考法02:(本溪校级月考)化简:(1)﹣{+[﹣(+3)]}; (2)﹣{﹣[﹣(﹣|﹣3|)]}. 【答案】解:(1)原式=﹣{+[﹣3]}=﹣{﹣3}=3;(2)原式=﹣{﹣[﹣(﹣3)]}=﹣{﹣[+3]}=﹣{﹣3}=3.【总结】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.考点03:绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的. 2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.考法03:求下列各数的绝对值. 112-,-0.3,0,132⎛⎫-- ⎪⎝⎭【思路】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解. 【答案】 方法1:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3. 因为0到原点距离为0个单位长度,所以|0|=0. 因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭.方法2:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3. 因为0的绝对值是它本身,所以|0|=0 因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭【总结】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.考点04:有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b . 2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:两数同号同为正号:绝对值大的数大同为负号:绝对值大的反而小两数异号 正数大于负数 -数为0正数与0:正数大于0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1ab<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.考法04:比较下列有理数大小:(1)-1和0; (2)-2和|-3| ; (3)13⎛⎫-- ⎪⎝⎭和12- ; (4)1--______0.1-- 【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简1133⎛⎫--=⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭.(4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>,所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【总结】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断.考向01:绝对值的非负性已知|2-m|+|n-3|=0,试求m-2n 的值.【思路】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3. 【答案】解:因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0 所以|2-m|=0,|n-3|=0 即2-m =0,n-3=0 所以m =2,n =3 故m-2n =2-2×3=-4.【解析】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a =b =…=m =0.考向02:绝对值的应用正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】 因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大. 【总结】绝对值越小,越接近标准.考向03:化简已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:【答案】由图所示,可得.∴ 30a c ->,,,∵.∴ 原式.【易错01】若|x ﹣2|与(y+3)2互为相反数,则x+y= . 【答案】-1.∵|x ﹣2|与(y+3)2互为相反数, ∴|x ﹣2|+(y+3)2=0, ∴x ﹣2=0,y+3=0, 解得x=2,y=﹣3, ∴x+y=2+(﹣3)=﹣1. 故答案为:﹣1. 【易错02】如果|x|=6,|y|=4,且x <y .试求x 、y 的值.四、考场失分防范【思路】6和-6的绝对值都等于6,4和-4的绝对值都等于4,所以要注意分类讨论.【答案】因为|x|=6,所以x=6或x=-6;因为|y|=4,所以y=4或y=-4;由于x<y,故x只能是-6,因此x=-6,y=±4.【总结】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法但要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.此外,此题x=-6,y=±4,就是x=-6,y=4或x=-6,y=-4.【易错03】若﹣1<x<4,则|x+1|﹣|x﹣4|= .【思路】根据绝对值的性质:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数﹣a,可得|x+1|=x+1,|x﹣4|=﹣x+4,然后再合并同类项即可.【答案】2x﹣3.【解析】解:原式=x+1﹣(﹣x+4),=x+1+x﹣4,=2x﹣3.【总结】此题主要考查了绝对值,关键是掌握绝对值的性质,正确判断出x+1,x﹣4的正负性.【易错04】已知a、b为有理数,且满足:12,则a=_______,b=________.【答案】由,,,可得∴【总结】由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0.五、考试真题探秘【真题01】一只可爱的小虫从点O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm 就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【思路】总路程应该为小虫爬行的距离和,和方向无关. 【答案】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm) 小虫得到的芝麻数为54×2=108(粒) 答:小虫一共可以得到108粒芝麻.【总结】此题是绝对值的应用问题,当求爬行路程是即为各数的绝对值之和,如果求最后所在的位置时即为各数之和,最后看正负来决定方向.【真题02】已知|a|=2,|b|=2,|c|=3,且有理数a ,b ,c 在数轴上的位置如图所示,计算a+b+c 的值.【答案】解:由数轴上a 、b 、c 的位置知:b <0,0<a <c ; 又∵|a|=2,|b|=2,|c|=3, ∴a=2,b=﹣2,c=3; 故a+b+c=2﹣2+3=3.【真题03】已知有理数a ,b 满足ab 2<0,a +b >0,且|a |=2,|b |=3,求⎪⎪⎪⎪⎪⎪a -13+(b -1)2的值.【答案】解:由ab 2<0,知a <0.因为a +b >0,所以b >0.又因为|a |=2,|b |=3, 所以a =-2,b =3.所以⎪⎪⎪⎪⎪⎪a -13+(b -1)2=⎪⎪⎪⎪⎪⎪-2-13+(3-1)2=73+4 =613. 【真题04】如图,A ,B ,C 三点在数轴上,A 表示的数为-10,B 表示的数为14,点C 在点A 与点B 之间,且AC =BC .(1)求A ,B 两点间的距离; (2)求C 点对应的数;(3)甲、乙分别从A ,B 两点同时相向运动,甲的速度是1个单位长度/s ,乙的速度是2个单位长度/s ,求相遇点D 对应的数.【答案】解:(1)A ,B 两点间的距离为24. (2)C 点对应的数为2. (3)相遇点D 对应的数为-2.【真题05】已知|2-xy |+(1-y )2=0. (1)求y2 019+(-y )2 019的值;(2)求1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 019)(y +2 019)的值.【答案】解:因为|2-xy |+(1-y )2=0,而|2-xy |≥0,(1-y )2≥0, 所以2-xy =0 ①,1-y =0 ②. 由②得y =1.把y =1代入①得2-x =0,故x =2. (1) y2 019+(-y )2 019=12 019+(-1)2 019=1+(-1)=0. (2)1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 019)(y +2 019)=11×2+12×3+13×4+…+12 020×2 021=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+(13-14)+…+⎝ ⎛⎭⎪⎫12 020-12 021 =1-12+12-13+13-14+…+12 020-12 021=1+⎝ ⎛⎭⎪⎫-12+12+⎝ ⎛⎭⎪⎫-13+13+⎝ ⎛⎭⎪⎫-14+14+…+(-12 020+12 020)-12 021=1-12 021=2 0202 021.1.2021的相反数是( )A.2021B.-2021C. 20211-D.20211【答案】B2.如果0a b +=,那么,a b 两个数一定是( ).A .都等于0B .一正一负C .互为相反数D .互为倒数 【答案】C【解析】若0a b +=,则,a b 一定互为相反数;反之,若,a b 互为相反数,则0a b += 3.下列判断中,正确的是( ).A .如果两个数的绝对值相等,那么这两个数相等;B .如果两个数相等,那么这两个数的绝对值相等;C .任何数的绝对值都是正数;D .如果一个数的绝对值是它本身,那么这个数是正数. 【答案】B【解析】A 错误,因为两个数的绝对值相等,这两个数可能互为相反数;B 正确;C 错误,因为0的绝对值是0,而0不是正数;D 错误,因为一个数的绝对值是它本身的数除了正数还有0.4.已知点M 、N 、P 、Q 在数轴上的位置如图,则其中对应的数的绝对值最大的点是( )A .MB .NC .PD .Q 【答案】D【解析】解:∵点Q 到原点的距离最远,∴点Q 的绝对值最大. 故选:D .5.下列各式中正确的是( ). A .103<- B .1134->- C .-3.7<-5.2 D .0>-2 【答案】D六、对点通关训练【解析】0大于负数.6.若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是( ).A .a >bB .|a|>|b|C .-a <-bD .-a <|b|【答案】B【解析】离原点越远的数的绝对值越大.7.如果a 与1互为相反数,则|a+2|等于________.【答案】1【解析】∵a 与1互为相反数,∴a=﹣1,把a=﹣1代入|a+2|得,|a+2|=|﹣1+2|=1.8. 化简下列各数: (1)23⎛⎫--= ⎪⎝⎭_ ;(2)45⎛⎫-+= ⎪⎝⎭ ;(3){[(3)]}-+-+=________. 【答案】24;;335- 【解析】多重符号的化简是由“-”的个数来定,若“-”个数为偶数个时,化简结果为正;若“-”个数为奇数个时,化简结果为负.9.已知|x|=2,|y|=5,且x >y ,则x =________,y =________.【答案】 ±2,-5【解析】| x |=2,则x=±2; | y |=5, y=±5.但由于x >y ,所以x=±2,y=-510.数a 在数轴上的位置如图所示.则|a-2|= .【答案】a-2【解析】由图可知:a ≥2,所以|a-2|=a-2.11.在数轴上,与-1表示的点距离为2的点对应的数是 .【答案】-3,112.已知4334x x -=-,则x 的取值范围是________.【答案】 34x ≤ 【解析】将43x -看成整体a ,即a a =-,则0a ≤,故430x -≤,34x ≤.13.绝对值大于2而小于6的所有整数的和是多少?(列式计算)【解析】解:根据题意画出数轴,如图所示:根据图形得:绝对值大于2而小于6的所有整数有:﹣3,﹣4,﹣5,3,4,5,这几个整数的和为:(﹣3)+(﹣4)+(﹣5)+3+4+5=[(﹣3)+3]+[(﹣4)+4]+[(﹣5)+5]=0.答:绝对值大于2而小于6的所有整数的和是0.14.化简下列各数,再用“<”连接.(1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭(4)245⎛⎫--⎪⎝⎭【解析】 (1)-(-54)=54(2)-(+3.6)=-3.6(3)5533⎛⎫-+=- ⎪⎝⎭(4)224455⎛⎫--=⎪⎝⎭,按从小到大排列可得:52(+3.6)<(+)<(4)(54)35----<--15.已知:a是﹣(﹣5)的相反数,b比最小的正整数大4,c是最大的负整数.计算:3a+3b+c 的值是多少?【解析】解:∵a是﹣(﹣5)的相反数,∴a=﹣5,∵b比最小的正整数大4,∴b=1+4=5,∵c是最大的负整数,∴c=﹣1,∴3a+3b+c=3×(﹣5)+3×5﹣1,=﹣15+15﹣1=-11.(漳州)﹣13的相反数是()A . 13 B .-13 C .-3 D .3【答案】A2.在①+(+1)与-(-1);②-(+1)与+(-1);③+(+1)与-(+1);④+(-1)与-(-1)中,互为相反数的是().A.①② B.②③ C.③④ D.②④【答案】C【解析】先化简在判断,①+(+1)=1,-(-1)=1,不是相反数的关系;②-(+1)=-1,+(-1)=-1,不是相反数的关系;③+(+1)=1,-(+1)=-1,是相反数的关系;④+(-1)=-1,-(-1)=1,是相反数的关系,所以③④中的两个数是相反数的关系,所以答案为:C 3.满足|x|=-x的数有( ).A.1个 B.2个 C.3个 D.无数个【答案】D【解析】x为负数或零时都能满足|x|=-x,故有无数个.4.已知1|3|a=-,则a的值是( ).A.3 B.-3 C.13D.13+或13-【答案】D【解析】∵13a=,∴13a=±,∴13a=±5.a、b为有理数,且a>0、b<0,|b|>a,则a、b、-a、-b的大小顺序是( ). A.b<-a<a<-b B.-a<b<a<-b C.-b<a<-a<b D.-a<a<-b<b 【答案】A【解析】画数轴,数形结合.6.下列推理:①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a|≠|b|;④若|a|≠|b|,则a ≠b .其中正确的个数为( ).A .4个B .3个C .2个D .1个【答案】C【解析】①正确;②错误,如|-2|=|2|,但是-2≠2;③错误,如-2≠2,但是|-2|=|2|;④正确.故选C .7.数轴上离原点的距离小于3.5的整数点的个数为m , 距离原点等于3.5的点的个数为n , 则3____m n -=.【答案】1【解析】由题意可知:7,2m n ==,所以27321m n -=-⨯=8.已知x 与y 互为相反数,y 与z 互为相反数,又2z =,则z x y -+= .【答案】-2【解析】因为,x z 均为y 的相反数,而一个数的相反数是唯一的,所以z x =,2z =,而y 为z 的相反数,所以y 为-2,综上可得:原式等于-2.9.1的相反数是 ; 的相反数是它本身.【答案】213-,0.10.绝对值不大于11的整数有 个.【答案】23【解析】要注意考虑负数.绝对值不大于11的数有:-11 、-10……0 、1 ……11共23个.11.如果m ,n 互为相反数,那么|m+n ﹣2021|= .【答案】2021.【解析】解:∵m ,n 互为相反数,∴m+n=0,∴|m+n ﹣2021|=|﹣2021|=2021;故答案为2021.12.若1a a =-,则a 0;若a a ≥,则a . 【答案】<;任意数.13.若有理数x 、y 满足|x|=5,|y|=2,且|x+y|=x+y ,求x ﹣y 的值.【解析】∵|x|=5,∴x=±5,又|y|=2,∴y=±2,又∵|x+y|=x+y ,∴x+y ≥0,∴x=5,y=±2,当x=5,y=2时,x ﹣y=5﹣2=3,当x=5,y=﹣2时,x ﹣y=5﹣(﹣2)=7.14.若|a+1.2|+|b ﹣1|=0,那么a+(﹣1)+(﹣1.8)+b 等于多少?【解析】解:∵|a+1.2|+|b ﹣1|=0,∴a+1.2=0,b ﹣1=0,∴a=﹣1.2,b=1,∴a+(﹣1)+(﹣1.8)+b=﹣3.15.阅读下面的材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为∣AB ∣,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-1-1,∣AB ∣=∣OB ∣=∣b ∣=∣a-b ∣;当A 、B 两点都不在原点时:①如图1-1-2,点A 、B 都在原点的右边:∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=b-a=∣a-b ∣;②如图1-1-3,点A 、B 都在原点的左边:∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;③如图1-1-4,点A、B在原点的两边:∣AB∣=∣OA∣+∣OB∣=∣a∣+∣b∣=a+(-b)=∣a-b∣,综上,数轴上A、B两点之间的距离∣AB∣=∣a-b∣.回答下列问题:①数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________;②数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2,那么x为__________.③当代数式∣x+1∣+∣x-2∣取最小值时,相应的x的取值范围是______________.【解析】①∣2-5∣=3,∣-2-(-5)∣=3,∣1-(-3)∣=4.②∣AB∣=∣x-(-1)∣=∣x+1∣.∵∣AB∣=2,∴∣x+1∣=2,∴x+1=2或-2,∴x=1或-3.③令x+1=0,x-2=0,则x=-1,x=2.将-1、2在数轴上表示出来,如图1-1-5,则-1、2将数轴分为三部分x<-1、-1≤x≤2、x>2.当x<-1时,∣x+1∣+∣x-2∣=-(x+1)+〔-(x-2)〕=-2x+1>3;当-1≤x≤2时,∣x+1∣+∣x-2∣=x+1+2-x=3;当x>2时,∣x+1∣+∣x-2∣=x+1+x-2=2x-1>3.∴∣x+1∣+∣x-2∣的最小值是3,相应的x的取值范围是-1≤x≤2.。
∙《绝对值与相反数》教学设计
∙
∙
∙作者:来源:时间:2009-9-14 21:19:06 阅读34次【大中小】
∙
【教学目标】
1.理解有理数的绝对值和相反数的意义.
2.会求已知数的相反数和绝对值.
3.会用绝对值比较两个负数的大小.
4.经历将实际问题数学化的过程,感受数学与生活的关系.
【教学过程设计建议(第一课时)】
1.情境创设
除课本提供的情境外,还可以根据学生的实际,创设一些类似的情境,如乘车去某地,票价、耗油、行
车时间等均与距离有关,也可以提出一些问题引导学生思考,如小明说他昨天从学校出发沿东西大街
走了3 km,你能在数轴上表示出小明昨天到达的位置吗?
2.探索活动
“议一议”的活动,应引导学生从利用“形(数轴)”比较有理数大小转化为用“数(绝对值)”来比较.
(1)通过两个正数在数轴上的位置比较两个数的大小.可以让学生再多比较几
对数的大小,然后归纳出两个正数的大小与这两个正数的绝对值的大小关系;
(2)用相同的方法归纳出两个负数的大小与这两个负数的绝对值的大小关系;
(3)在经历了(1)、(2)之后,引导学生归纳,得出用绝对值比较有理数大小的方法.
3.例题教学
例2的第(1)小题是两个正数的大小比较;第(2)小题是两个负数的大小比较,在比较一3与一6的大小时,可让学生再次观察温度计上的刻度,借助“一6℃比一3℃冷”的生活经验,认识两个负数的大小与这两个负数的绝对值的大小关系.
【教学过程设计建议(第二课时)】
1.情境创设
数轴上点A在原点的左边,点B在原点的右边,并且点A与点B到原点的距离相同.根据小明、小丽的观察发现,讨论5与一5的关系.如:小明、小丽的观察结论正确吗?
你能说得比小明、小丽更完整一些吗?
此外,还可以设计一些距离相同但方向相反的实际问题,引入互为相反数的概念.
2.探索活动
(1)给出相反数的描述性定义后,要让学生大量举例以巩固概念.
(2)围绕“只有符号不同”展开讨论,让学生充
分发表看法.搞清它的意义是判断两个数是否互为相反数的需要,要及时肯定学生中的较好的解释,如:
“两个数的符号不同,绝对值相等.”
“除0以外,绝对值相等的数有两个,一个是正数,一个是负数,它们仅仅是符号不同.”
“写已知数的相反数,只要在这个数的前面添一个负号.”
“有理数由符号和绝对值两部分组成,如果改变有理数的符号,那么数轴上表示有理数的点就从原点的一侧变到另一侧.”
(3)通过“议一议”,归纳出一个数的绝对值与这个数本身或它的相反数的关系.需要注意的是,在写一个数的绝对值时,要紧扣课本第27页上的结论,要求学生首先关注对该数的判断:是正数还是负数;然后再选择法则:正数该如何,负数该如何,0该如何;最后给出结果.否则今后极易发生这样的错误:|a|=a,|-a|=a.
3.例题教学
例4的解答中标注的理由,例5的卡通人旁白,
都只是为了强调本节课的重要结论和相反数的定义,渗透“推理要有依据”,学生作业和考试时不作要求.。