有机化学常见机理96种!!!
- 格式:doc
- 大小:1.01 MB
- 文档页数:104
常见的有机反应机理Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则 Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:2. 反应实例2、反应实例二. 坎尼扎罗(Cannizzaro) 反应(P.365)凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。
此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。
具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,得到无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应得到季戊四醇:1.反应机理醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。
2.反应实例烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。
重排得到对位产物。
对位、邻位均被占满时不发生此类重排反应。
Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。
丙基酚。
2.反应实例Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。
四.弗瑞德-克莱夫茨(Friedel-Crafts)烷基化反应(P.201)芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF等)存在下,发生芳环的烷基化反应。
卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超过3个碳原子时,反应过程中易发生重排。
1.反应机理首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能发生重排,得到较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体s-络合物,然后失去一个质子得到发生亲电取代产物:2.反应实例五. 弗瑞德-克莱夫茨(Friedel-Crafts )酰基化反应(P.200)芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通常用无水三氯化铝)催化下发生酰基化反应,得到芳香酮:这是制备芳香酮类最重要的方法之一,在酰基化中不发生烃基的重排。
有机化学反应机理总结一、引言有机化学是研究有机物合成和反应规律的科学领域。
在有机化学中,了解反应机理对于准确预测反应产物以及设计新的合成路径至关重要。
本文将总结几种常见的有机化学反应机理,包括亲核取代、酸催化、碱催化和自由基反应等。
二、亲核取代反应机理亲核取代反应是指一个亲核试剂(通常是负电荷较高的电子富余分子)与一个受体分子发生反应,取代掉受体分子中的某个官能团。
这类反应的机理通常分为四个步骤:出发物生成电子富余中间体、亲核试剂攻击中间体、负离子生成和负离子与溶剂或其他分子反应。
亲核取代反应具有广泛的应用,例如取代烯烃、芳香化合物和醇等。
三、酸催化反应机理酸催化反应是指在酸性条件下进行的一系列有机化学反应。
酸催化反应机理通常包括质子化、核迁移、亲核试剂攻击和质子转移等步骤。
酸催化反应广泛应用于合成复杂有机分子,如酯化、缩合和环化反应等。
四、碱催化反应机理碱催化反应是指在碱性条件下进行的一系列有机化学反应。
碱催化反应机理通常包括质子解离、亲电试剂攻击、质子转移和负离子生成等步骤。
碱催化反应常见于酯水解、亲电取代和醇酸碱中和反应等。
五、自由基反应机理自由基反应是指在自由基存在下进行的一系列有机化学反应。
自由基反应机理通常包括自由基生成、自由基与稳定分子反应、自由基重组和自由基转移等步骤。
自由基反应广泛应用于合成烯烃和环化反应等。
六、结论有机化学反应机理的理解对于有机化学的学习和应用具有重要意义。
通过掌握亲核取代、酸催化、碱催化和自由基反应等常见反应的机理,我们能更好地理解有机化学反应中的规律,合理设计合成路线,并预测反应的产物。
在未来的有机化学研究和实践中,深入了解和掌握有机化学反应机理将会取得重要的成果。
有机化学反应机理一、Arbuzov 反应二、Arndt-Eister 反应三、Baeyer-villiger 反应四、Beckmann 重排五、Birch 还原六、Bouveault-Blanc 还原七、Bucherer 反应八、Bamberger,E. 重排九、Berthsen,A.Y 吖啶合成法十、Cannizzaro 反应十一、Chichibabin 反应十二、Claisen 酯缩合反应十三、Claisen-Schmidt 反应十四、Claisen 重排十五、Clemmensen 还原十六、Combes 喹啉合成法十七、Cope 消除反应十八、Cope 重排十九、Curtius 反应二十、Crigee,R 反应二十一、Dakin 反应二十二、Elbs 反应二十三、Edvhweiler-Clarke 反应二十四、Elbs,K 过硫酸钾氧化法二十五、Favorskii 反应二十六、Favorskii 重排二十七、Friedel-Crafts 烷基化反应二十八、Friedel-Crafts 酰基化反应二十九、Fries 重排三十、Fischer,O-Hepp,E 重排三十一、Gabriel 合成法三十二、Gattermann 反应三十三、Gattermann-Koch 反应三十四、Gomberg-Bachmann 反应三十五、Hantzsch 合成法三十六、Haworth 反应三十七、Hell-Volhard-Zelinski反应三十八、Hinsberg 反应三十九、Hofmann 烷基化四十、Hofmann 消除反应四十一、Hofmann 重排(降解)四十二、Houben-Hoesch 反应四十三、Hunsdiecker 反应四十四、Kiliani 氯化增碳法四十五、Knoevenagel 反应四十六、Koble 反应四十七、Koble-Schmitt 反应四十八、Kolbe,H.Syntbexis of Nitroparsffini 合成四十九、Leuckart 反应五十、Lossen 反应五十一、Mannich 反应五十二、Meerwein-Ponndorf 反应五十三、Michael 加成反应五十四、Martius,C.A. 重排五十五、Norrish Ⅰ和Ⅱ型裂五十六、Oppenauer 氧化五十七、Orton,K.J.P 重排五十八、Paal-Knorr 反应五十九、Pschorr 反应六十、Prileschajew,N 反应六十一、Prins,H.J 反应六十二、Pinacol 重排六十三、Perkin,W.H 反应六十四、Pictet-Spengler异喹啉合成法六十五、Reformatsky 反应六十六、Reimer-Tiemann 反应六十七、Reppe 合成法六十八、Robinson 缩环反应六十九、Rosenmund 还原七十、Ruff 递降反应七十一、Riley,H.L 氧化法七十二、Sandmeyer 反应七十三、Schiemann 反应七十四、Schmidt 反应七十五、Skraup 合成法七十六、Sommelet-Hauser 反应七十七、Stepen 还原-氰还原为醛七十八、Stevens 重排七十九、Strecker 氨基酸合成法八十、异喹啉合成法八十一、Schiemann,G. 反应八十二、Schmidin,J. 乙烯酮合成八十三、Tiffeneau-Demjanov 重排八十四、Tischenko,V.反应八十五、Thorpe,J.F. 缩合八十六、Tollens,B. 缩合八十七、Ullmann 反应八十八、Urech,F.羟腈合成法八十九、Vilsmeier 反应九十、Van Ekenstein,W,A 重排九十一、Williamson 合成法九十二、Wacker 反应九十三、Wagner-Meerwein 重排九十四、Wittig 反应九十五、Wittig-Horner 反应九十六、Wohl 递降反应Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例1.Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。
重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。
反应机理首先是钠和液氨作用生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)表示的是部分共振式。
(完美版)高中有机化学反应机理总结
简介
有机化学是化学的一个重要分支,涉及到有机物的结构、性质和反应等方面。
了解有机化学反应机理对深入理解有机化学的本质非常关键。
本文将总结高中有机化学反应的机理,帮助读者更好地理解这一领域。
反应机理的基本概念
- 反应中的化学键的形成和断裂
- 反应中的电子转移过程
- 亲核试剂和电子试剂的作用机制
常见的高中有机化学反应机理
1. 取代反应机理
- 亲电取代反应机理(电子亲和力大的亲电试剂与亲核试剂反应)
- 亲核取代反应机理(互相排斥的亲核试剂之间的竞争)
- 反应中的亲电和亲核中心的变化
2. 加成反应机理
- 亲电加成反应机理(亲电试剂与π电子体系结合)
- 亲核加成反应机理(亲核试剂与亲电试剂结合)
3. 酯化和醇化反应机理
- 酯化反应机理(酸与醇反应)
- 醇化反应机理(醛酮与醇反应)
4. 缩合反应机理
- 醛酮缩合反应机理(醛酮官能团之间的缩合反应)
- 酯缩合反应机理(醇和羧酸之间的缩合反应)
5. 脱水反应机理
- 脱水(即水的去除)
结论
通过理解高中有机化学反应的基本机理,我们可以更好地把握有机化学的核心思想和规律。
掌握这些机理有助于我们在实验中的实际操作和解释反应结果。
希望本文对读者理解有机化学反应机理有所帮助。
常见的有机反应机理Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2和次亚膦酸酯R2POR' 也能发生该类反应,例如:反应机理一般认为是按S N2 进行的分子内重排反应:反应实例Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
化学有机化学重要反应机理归纳化学中,有机化学是一个重要的分支领域,涉及到有机物的构造、合成和变化等方面。
而有机化学的重要反应机理也是学习有机化学的关键所在。
本文将对有机化学中的一些重要反应机理进行归纳和讨论。
一、亲核取代反应机理亲核取代反应是有机化学中常见的反应类型,其机理通常由亲核试剂与底物发生取代反应而引起。
最常见的机理是亲核试剂攻击底物中的部分正离子,形成一个烷基或烯基化合物。
这种反应在有机合成中广泛应用,常用于功能团的引入和官能团的转化。
例如,在醇的酸催化下,亲核试剂氯化氢(HCl)可以取代醇中的羟基,生成相应的氯代烷。
2.亲电取代反应机理亲电取代反应是有机化学中另一种常见的反应类型,涉及到亲电试剂与底物之间的电子转移。
亲电试剂通常是带有亲电性的分子,如卤代烷、酸或碱等。
在亲电取代反应机理中,亲电试剂攻击底物中的亲电中心,生成一个新的化学键。
例如,溴代烷和氢氧根离子之间的反应是一个典型的亲电取代反应。
在这个反应中,溴离子攻击了溴代烷中的溴原子,形成醇和氢溴酸。
3.自由基取代反应机理自由基取代反应是一类基于自由基的反应机理。
在这种反应中,自由基反应物首先通过光或热能输入得到激发,然后断裂键,生成具有活性的自由基。
这些自由基会与其他分子发生反应,以使反应系统达到稳定状态。
一个典型的自由基取代反应是溴代烃的氢(H)取代反应。
在紫外光的照射下,溴代烃被激发成溴自由基,然后溴自由基与氢气反应生成氢溴酸。
4.加成反应机理加成反应是一种常见的有机反应类型,涉及到底物中的多个亲核中心或亲电中心与试剂发生加成反应,形成一个新的化学键。
例如,烯烃和氢气之间的加成反应是合成烷烃的一种重要方法。
在该反应中,烯烃中的双键被氢气加成,生成相应的烷烃。
5.消除反应机理消除反应是一种将底物中的两个官能团除去并形成新的双键或多键的反应类型。
它涉及到一个亲核试剂和一个酸或碱试剂。
例如,醇与酸发生消除反应时,醇中的羟基与酸反应,失去一个分子的水并形成双键。
Arbuzov反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、α-卤代醚、α-或β-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚磷酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X的烷基和亚磷酸三烷基酯(RO)3P的烷基相同(即R' = R),则Arbuzov反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2和次亚膦酸酯R2POR'也能发生该类反应,例如:Arndt-Eister反应反应机理反应实例Baeyer-Villiger氧化反应机理反应实例Beckmann重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例Birch还原反应机理Bischler-Napieralski合成法反应实例Bouveault-Blanc还原反应机理反应实例Bucherer反应反应机理反应实例Cannizzaro反应反应机理反应实例Chichibabin反应反应机理反应实例吡啶类化合物不易进行硝化,用硝基还原法制备氨基吡啶甚为困难。
本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应。
Claisen重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。
当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。
对位、邻位均被占满时不发生此类重排反应。
交叉反应实验证明:Claisen重排是分子内的重排。
采用 γ-碳14C标记的烯丙基醚进行重排,重排后 γ-碳原子与苯环相连,碳碳双键发生位移。
两个邻位都被取代的芳基烯丙基酚,重排后则仍是α-碳原子与苯环相连。
反应机理Claisen 重排是个协同反应,中间经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响。
从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]σ迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占据的烯丙基芳基酚重排时先经过一次[3,3]σ迁移到邻位(Claisen 重排),由于邻位已被取代基占据,无法发生互变异构,接着又发生一次[3,3]σ迁移(Cope 重排)到对位,然后经互变异构得到对位烯丙基酚。
取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。
反应实例Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。
Claisen酯缩合反应二元羧酸酯的分子内酯缩合见Dieckmann 缩合反应。
反应机理反应实例Claisen-Schmidt反应一个无α-氢原子的醛与一个带有α-氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到α,β-不饱和醛或酮:反应机理反应实例Clemmensen还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。
对酸不稳定而对碱稳定的化合物可用Wolff-Kishner-黄鸣龙反应还原。
反应机理本反应的反应机理较复杂,目前尚不很清楚。
反应实例Combes合成法在氨基的间位有强的邻、对位定位基团存在时,关环反应容易发生;但当强邻、对位定位基团存在于氨基的对位时,则不易发生关环反应。
反应实例Cope重排1,5-二烯类化合物受热时发生类似于O-烯丙基重排为C-烯丙基的重排反应(Claisen 重排)反应称为Cope重排。
这个反应30多年来引起人们的广泛注意。
1,5-二烯在150—200℃单独加热短时间就容易发生重排,并且产率非常好。
Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。
例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产物几乎全部是(Z, E)-2,6辛二烯:反应机理Cope重排是[3,3] -迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,表现为经过椅式环状过渡态:反应实例Cope消除反应反应机理反应实例Curtius反应酰基叠氮化物在惰性溶剂中加热分解生成异氰酸酯:异氰酸酯水解则得到胺:反应机理反应实例Dakin反应反应机理反应实例Darzens反应反应机理反应实例Demjanov重排环烷基甲胺或环烷基胺与亚硝酸反应,生成环扩大与环缩小的产物。
如环丁基甲胺或环丁胺与亚硝酸反应,除得到相应的醇外,还有其它包括重排的反应产物:这是一个重排反应,在合成上意义不大,但可以了解环发生的一些重排反应。
反应机理反应实例 1-氨甲基环烷醇也能发生类似的重排反应,详见Tiffeneau-Demjanov 重排。
Dieckmann缩合反应反应机理见 Claisen 酯缩合反应。
反应实例Diels-Alder反应含有一个活泼的双键或叁键的化合物(亲双烯体)与共轭二烯类化合物(双烯体)发生1,4-加成,生成六员环状化合物:这个反应极易进行并且反应速度快,应用范围极广泛,是合成环状化合物的一个非常重要的方法。
带有吸电子取代基的亲双烯体和带有给电子取代基的双烯体对反应有利。
常用的亲双烯体有:下列基团也能作为亲双烯体发生反应:常用的双烯体有:反应机理这是一个协同反应,反应时,双烯体和亲双烯体彼此靠近,互相作用,形成一个环状过渡态,然后逐渐转化为产物分子:反应是按顺式加成方式进行的,反应物原来的构型关系仍保留在环加成产物中。
例如:正常的Diels-Alder反应主要是由双烯体的HOMO(最高已占轨道)与亲双烯体的LUMO(最低未占轨道)发生作用。
反应过程中,电子从双烯体的HOMO“流入”亲双烯体的LUMO。
也有由双烯体的LUMO与亲双烯体的HOMO作用发生反应的。
反应实例本反应具有很强的区域选择性,当双烯体与亲双烯体上均有取代基时,主要生成两个取代基处于邻位或对位的产物:当双烯体上有给电子取代基、亲双烯体上有不饱和基团如:与烯键(或炔键)共轭时,优先生成内型(endo)加成产物:Elbs反应羰基的邻位有甲基或亚甲基的二芳基酮,加热时发生环化脱氢作用,生成蒽的衍生物:由于这个反应通常是在回流温度或高达400-450 °C的温度范围内进行,不用催化剂和溶剂,直到反应物没有水放出为止,在这样的高温条件下,一部分原料和产物发生碳化,部分原料酮被释放出的水所裂解,烃基发生消除或降解以及分子重排等副反应,致使产率不高。
反应机理本反应的机理尚不清楚。
反应实例Eschweiler-Clarke反应在过量甲酸存在下,一级胺或二级胺与甲醛反应,得到甲基化后的三级胺:甲醛在这里作为一个甲基化试剂。
反应机理反应实例Favorskii反应炔烃与羰基化合物在强碱性催化剂如无水氢氧化钾或氨基钠存在下于乙醚中发生加成反应,得到炔醇:液氨、乙二醇醚类、四氢呋喃、二甲亚砜、二甲苯等均能作为反应的溶剂。
反应机理反应实例Favorskii重排α-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状α-卤代酮,则导致环缩小。
如用醇钠的醇溶液,则得羧酸酯:此法可用于合成张力较大的四员环。
反应机理反应实例Friedel-Crafts烷基化反应芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF等)存在下,发生芳环的烷基化反应。
卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超过3个碳原子时,反应过程中易发生重排。
反应机理首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能发生重排,得到较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体 络合物,然后失去一个质子得到发生亲电取代产物:反应实例Friedel-Crafts酰基化反应芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通常用无水三氯化铝)催化下发生酰基化反应,得到芳香酮:这是制备芳香酮类最重要的方法之一,在酰基化中不发生烃基的重排。
反应机理反应实例Fries重排酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物。
重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行。
邻、对位产物的比例取决于酚酯的结构、反应条件和催化剂等。
例如,用多聚磷酸催化时主要生成对位重排产物,而用四氯化钛催化时则主要生成邻位重排产物。
反应温度对邻、对位产物比例的影响比较大,一般来讲,较低温度(如室温)下重排有利于形成对位异构产物(动力学控制),较高温度下重排有利于形成邻位异构产物(热力学控制)。
反应机理反应实例Gabriel合成法邻苯二甲酰亚胺与氢氧化钾的乙醇溶液作用转变为邻苯二甲酰亚胺盐,此盐和卤代烷反应生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性条件下水解得到一级胺和邻苯二甲酸,这是制备纯净的一级胺的一种方法。
有些情况下水解很困难,可以用肼解来代替:反应机理邻苯二甲酰亚胺盐和卤代烷的反应是亲核取代反应,取代反应产物的水解过程与酰胺的水解相似。
反应实例Gattermann反应重氮盐用新制的铜粉代替亚铜盐(见Sandmeyer反应)作催化剂,与浓盐酸或氢溴酸发生置换反应得到氯代或溴代芳烃:本法优点是操作比较简单,反应可在较低温度下进行,缺点是其产率一般较Sandmeyer反应低。
反应机理见Sandmeyer反应反应实例Gattermann-Koch反应芳香烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存在下反应,生成芳香醛:反应机理反应实例Gomberg-Bachmann反应芳香重氮盐在碱性条件下与其它芳香族化合物偶联生成联苯或联苯衍生物:反应机理反应实例Hantzsch合成法两分子 羰基酸酯和一分子醛及一分子氨发生缩合反应,得到二氢吡啶衍生物,再用氧化剂氧化得到吡啶衍生物。
这是一个很普遍的反应,用于合成吡啶同系物。