数控系统插补
- 格式:ppt
- 大小:2.37 MB
- 文档页数:59
数控系统的实时插补及加减速控制数控系统实时插补及加减速控制数控系统是一种高精度数控机床控制系统,它通过调节数控机床各轴的运动状态和位置,实现对各种复杂工件的高精度加工。
数控系统的核心控制部分是实时插补及加减速控制。
实时插补数控机床需要根据加工工艺要求,实时调整各电机的运动状态和位置,这就需要数控系统进行实时插补。
数控系统的实时插补是将工件模型翻译为机床加工程序,并计算各轴的运动状态和位置,最终控制数控机床的加工过程。
实时插补最主要的控制参数是各轴的位置、速度和加速度。
根据加工需要,数控系统能够实时调整这些控制参数,以满足各种加工要求。
在实时插补过程中,数控系统需要控制各轴的位置精度和速度精度。
位置精度是指加工工件时各轴运动的精确度,速度精度是指加工运动时各轴的稳定性和准确性。
数控系统需要实时控制这些参数,以确保机床实现高精度加工。
加减速控制加减速控制是数控系统实时控制机床加工过程的关键。
在机床加工中,加减速控制涉及到电机的运动状态和位置变化,以及与原始理论运动轨迹的同步。
数控系统通过分析工件加工过程中的能量分配,调整电机的加减速控制,以实现高质量的加工结果。
加减速控制主要包括加速度控制和速度控制。
加速度控制是指在机床开始运动时,电机的加速度控制,以及在电机停止时的减速度控制。
速度控制是指在机床中间过程中,电机的速度控制。
这两个过程的控制精度对加工质量影响极大。
在加减速控制过程中,数控系统还要考虑到负载变化、机床表面粗糙度等因素。
负载变化会改变加工过程中的能量分配,从而影响加减速度控制;而机床表面粗糙度则会影响工件上的感应机构,从而增加了系统控制的难度。
因此,在加减速控制过程中,数控系统需要保持高度的控制精度和灵活性。
综上所述,数控系统的实时插补及加减速控制是数控机床加工的核心。
数控系统通过实时调整各轴的位置、速度和加速度,确保具有高精度、高稳定性和高效率的加工过程。
对于各种复杂工件,数控系统可以实现高度可靠的加工控制,从而实现高质量、高效率的加工作业。
教案讲 稿第2章 计算机数控系统(CNC )§2.4数控系统的插补原理 一、插补的基本概念机床数字控制的核心问题之一,就是如何控制刀具与工件的相对运动。
加工平面直线或曲线需要两个坐标协调运动,对于空间曲线或曲面则需要三个或三个以上坐标协调运动,才能走出其轨迹。
协调的实质上是决定联动过程中各坐标轴的运动顺序、位移、方向和速度。
这种协调即是所谓插补。
插补计算机就是对数控系统输入基本数据,动用一定的算法计算,并根据计算结果向相应的坐标发出进给指令。
对应于每一进给指令,机床在相应的坐标方向上移动一定距离,从而加工出所需的轮廓形状。
实现这一插补运算的装置,称为插补器。
对于插补器有一些最基本的要求: (1) 插补所需的原始数据较少。
(2) 有较高的插补精度。
(3) 进给速度要恒定。
(4) 实现简单可靠,计算机速度快。
根据插补所采用的原理和计算方法,可有许多插补方法,目前应用的插补方法分为脉冲增量插补和数字增量插补两类。
二、逐点比较法插补逐点比较法的原理就是每走一步控制系统都要将加工点与给定的图形轨迹相比较,以决定下一步进给的方向,使之逼近加工轨迹。
逐点比较法以折线来逼近直线或圆弧,运算直观,容易理解,输出脉冲均匀,在两坐标插补的开环步进控制系统中得到普遍应用。
1、逐点比较法直线插补如图所示,设直线OA 为第一象限直线,起点为坐标原点O (0,0),终点坐标为A (X e ,Y e ),P(X i ,Y i )为加工点。
若P 点正好在直线OA 上,由相似三角形关系则有XeYeXi Yj = 即Xe -XiYe=0 若P 点正好在直线OA 上方,由相似三角形关系则有XeYe Xi Yj > 即Xe -XiYe>0 若P 点正好在直线OA 上,由相似三角形关系则有XeYe Xi Yj 即Xe -XiYe<0 令Fi,j= XeYj-XiYe 则有(1) 如Fi,j=0,则点P 在直线OA 上; (2) 如Fi,j>0,则点P 在直线OA 上方; (3) 如Fi,j<0,则点P 在直线OA 下方。
数控系统插补的方法和原理数控机床上进行加工的各种工件,大部分由直线和圆弧构成。
因此,大多数数控装置都具有直线和圆弧的插补功能。
对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。
插补的任务就是要根据进给速度的要求,在轮廓起点和终点之间计算出若干中间掌握点的坐标值。
由于每个中间点计算的时间直接影响数控装置的掌握速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置掌握软件的核心是插补。
插补的方法和原理许多,依据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。
一、脉冲增量插补这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。
把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。
一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。
脉冲当量是脉冲安排计算的基本单位,依据加工的精度选择,一般机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm 。
插补误差不得大于一个脉冲当量。
这种方法掌握精度和进给速度低,主要运用于以步进电动机为驱动装置的开环掌握系统中。
二、数据采样插补数据采样插补又称时间标量插补或数字增量插补。
这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。
插补运算分两步完成。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L 都相等,且与给定进给速度有关。
粗插补时每一微小直线段的长度△L 与进给速度F和插补T周期有关,即△L=FT。
图1 数据采样插补其次步为精插补,它是在粗插补算出的每一微小直线上再作“数据点的密化”工作。
这一步相当于对直线的脉冲增量插补。
数据采样插补方法适用于闭环、半闭环的直流或沟通伺服电动机为驱动装置的位置采样掌握系统中。
什么是插补一、插补的概念在数控机床中,刀具不能严格地按照要求加工的曲线运动,只能用折线轨迹逼近所要加工的曲线。
插补(interpolation)定义:机床数控系统依照一定方法确定刀具运动轨迹的过程。
也可以说,已知曲线上的某些数据,按照某种算法计算已知点之间的中间点的方法,也称为“数据点的密化”。
数控装置向各坐标提供相互协调的进给脉冲,伺服系统根据进给脉冲驱动机床各坐标轴运动。
数控装置的关键问题:根据控制指令和数据进行脉冲数目分配的运算(即插补计算),产生机床各坐标的进给脉冲。
插补计算就是数控装置根据输入的基本数据,通过计算,把工件轮廓的形状描述出来,边计算边根据计算结果向各坐标发出进给脉冲,对应每个脉冲,机床在响应的坐标方向上移动一个脉冲当量的距离,从而将工件加工出所需要轮廓的形状。
插补的实质:在一个线段的起点和终点之间进行数据点的密化。
插补工作可由硬件逻辑电路或执行软件程序来完成,在CNC系统中,插补工作一般由软件完成,软件插补结构简单、灵活易变、可靠性好。
二、插补方法的分类目前普遍应用的两类插补方法为基准脉冲插补和数据采样插补。
1.基准脉冲插补(行程标量插补或脉冲增量插补)特点:每次插补结束,数控装置向每个运动坐标输出基准脉冲序列,每插补运算一次,最多给每一轴一个进给脉冲。
每个脉冲代表了最小位移,脉冲序列的频率代表了坐标运动速度,而脉冲的数量表示移动量。
每发出一个脉冲,工作台移动一个基本长度单位,也叫脉冲当量,脉冲当量是脉冲分配的基本单位。
该方法仅适用于一些中等精度或中等速度要求的计算机数控系统主要的脉冲增量插补方法:数字脉冲乘法器插补法逐点比较法数字积分法矢量判别法比较积分法最小偏差法目标点跟踪法单步追踪法直接函数法加密判别和双判别插补法2. 数字采样插补(数据增量插补)数据采样插补又称时间增量插补,这类算法插补结果输出的不是脉冲,而是标准二进制数。
根据程编进给速度,把轮廓曲线按插补周期将其分割为一系列微小直线段,然后将这些微小直线段对应的位置增量数据进行输出,以控制伺服系统实现坐标轴的进给。
实验三数控系统的插补实验一、实验目的了解数控系统直线插补和圆弧插补的原理及其实现方法,通过插补算法的可视化,加深对常用插补算法的了解。
应用标准G代码编程实现直线插补和圆弧插补,掌握标准G代码的直线插补和圆弧插补编程方法。
二、实验要求1.掌握数控机床插补原理。
2.掌握数控机床直线和圆弧插补。
三、实验原理1.基本概念机床数字控制的核心问题之一,就是如何控制刀具与工件的相对运动。
加工平面直线或曲线需要两个坐标轴联动,对于空间曲线或曲面则需要三个或三个以上坐标轴联动,才能走出其轨迹。
插补(interpolation)的实质上是决定联动过程中各坐标轴的运动顺序、位移、方向和速度。
具体来说,插补方法是指在轮廓控制系统中,根据给定的进给速度和轮廓线形的要求,在已知数据点之间插入中间点。
每种方法又可能用不同的计算方法来实现,具体的计算方法称之为插补算法。
插补的实质就是数据点的密化。
数控系统中完成插补工作的装置叫插补器。
根据插补器的不同结构,可分为硬件插补器和软件插补器两大类。
硬件插补器由专用集成电路组成,它的特点是运算速度快,但灵活性差:软件插补器利用微处理器通过系统程序完成各种插补功能,这种插补器的特点是灵活易变,但速度较慢。
随着微处理器运算速度和存储容量的提高,现代数控系统大多采用软件插补或软、硬件插补相结合的方法。
2.插补算法按数学模型来分,有一次(直线)插补,二次(圆、抛物线等)插补及高次曲线插补等,大多数控机床都具有直线插补和圆弧插补。
根据插补所采用的原理和计算方法的不同,有许多插补方法,目前应用较多的插补方法分为脉冲增量插补和数字增量插补两类。
脉冲增量插补又称为基准脉冲插补,适用于以步进电动机驱动的开环数控系统中。
在控制过程中通过不断向各坐标轴驱动电机发出互相协调的进给脉冲,每个脉冲通过步进电动机驱动装置使步进电动机转过一个固定的角度(称为步距角),并使机床工作台产生相应的位移。
该位移称为脉冲当量,是最小指令位移。