数学图形中的数列规律
- 格式:docx
- 大小:37.08 KB
- 文档页数:2
第九讲 数列规律在 今天这节课中,我们将来研究数列问题.教师通过示例引导学生正确认识数列,并且帮助学生掌握研究数列、发现数列规律的方法,以及获得利用规律解决问题的能力. 知识点 1、掌握一些常见的数列的规律.2、掌握一些特殊数列的规律,并能熟练应用规律解决问题.3、理解掌握运用数列规律解决数阵问题.分析:小王接着无法报了,因为观察小王和小李报出的所有数:172,84,40,118,7,可以发现,报数的规律是按前一数的一半减2后往下报的,但是7再往下报的话就不是整数了,所以小王接着无法再往下报了.日常生活中,我们经常接触到许多按一定顺序排列的数,如: (1)自然数:1,2,3,4,5,6,7, (1)(2)年份:1990,1991,1992,1993,1994,1995,1996(3)某年级各班的学生人数(按班级顺序一、二、三、四、五班排列)45,45,44,46,45像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n 个数就称为第n 项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项是45.根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列.教学目标专题精讲想挑 战 吗?小王和小李玩数字游戏,小王说:“我先报数,你得按规律往下报,不许瞎报.”于是小王先报:“172.”小李说:“没看到规律,我报不出,你再报两个.”小王又报:“84,40.”小李说:“行了,我报18,7.” 你知道小王下一个该报几吗?(一)找数列中的规律【例1】观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)100,95,90,85,80,(),70(2)1,3,6,10,(),21,28,36,()(3)1,3,9,27,(),243(4)1,8,27,64,125,(),343(5)2,1,3,4,7,(),18,29,47(6)1,2,6,24,120,(),5040分析:(1)100,95,90,85,80,(),70通过观察不难发现,从第2项开始,每一项都比它前面一项少5,也就是说每相邻两项所得的差都等于5.因此,括号中应填的数是75,即:80-5=75.像(1)这样,相邻两项之间的差是定值,我们把这样的数列叫做等差数列.(2)1,3,6,10,(),21,28,36,()(方法1)先计算相邻两数的差,有:3-1=2, 6-3=3,10-6=4,……,28-21=7,36-28=8,……由此可以推知这些差一次为2、3、4、5、6……,所以这列数从小到大地排列规律是相邻两数的差按2、3、4、5、6……增加,括号里应填15,45,即10+5=15,36+9=45(方法2)继续考察相邻项之间的关系,可以发现:因此,可以猜想,这个数列的规律为:每一项等于它的项数与其前一项的和,那么,第5项为15,即15=10+5,最后一项即第 9项为 45,即 45=36+9.代入验算,正确.(方法3)通过观察,这一列数还有如下的规律:第1项:1=1第2项:3=1+2第3项:6=1+2+3第4项:10=1+2+3+4第5项:()第6项:21=1+2+3+4+5+6……可以得到这个数列的规律是:每一项都等于从1开始,以其项数为最大数的n个连续自然数的和.因此,第5项为15,即:15=1+2+3+4+5;第9项为45,即:45=1+2+3+4+5+6+7+8+9.(3)1,3,9,27,(),243此数列中,从相邻两项的差是看不出规律的,但是,从第2项开始,每一项都是其前面一项的3倍.即:3=1×3,9= 3×3,27=9×3,也就是说相邻两项之间的商相等.因此,括号中应填 81,即81= 27×3,代入后, 243也符合规律,即 243=81×3.像(3)这样,相邻两项之间的商是定值,我们把这样的数列叫做等比数列.通过观察可以发现: 1=1×1×1,8=2×2×2,27=3×3×3, 64=4×4×4,125=5×5×5,343=7×7×7 我们把这样的数列叫做立方数列,即每一项等于其项数乘以项数再乘以项数,所以,括号里应填6×6×6的积216.(5)2,1,3,4,7,(),18,29,47这个数列即不是等差数列,也不是等比数列,但是可以发现,从第三项开始每一项都等于前面两项地和,即:3=1+2,4=1+3,7=3+4,……,47=18+29,所以括号中的数应该是:4+7=11.(6)1,2,6,24,120,(),5040(方法一)这个数列不同于上面的数列,相邻项相加减后,看不出任何规律.考虑到等比数列,我们不妨研究相邻项的商,显然:所以,这个数列的规律是:除第1项以外的每一项都等于其项数与其前一项的乘积.因此,括号中的数为第6项720,即 720=120×6.(方法二)本题也可以考虑连续自然数,显然:第1项 1=1第2项2=1×2第3项6=1×2×3第4项24=1×2×3×4……所以,第6项应为1×2×3×4×5×6=720【例2】观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)3,4,8,8,13,(),18,32,(),64(2)18,3,15,3,12,3,(),()(3)1,1,1,3,5,9,17,(),()(4)1,2,6,16,44,(),328分析:(1)3,4,8,8,13,(),18,32,(),64通过观察发现,前面的方法都不适用于这个数列,但是如果隔着看这个数列中的一些数是非常有规律的,如:3,8,13,18,而他们恰好是第一项、第三项、第五项、第七项,所以不妨把数列分为奇数项(即第1,3,5,7,9项)和偶数项(即第2,4,6,8项)来考虑,把数列按奇数和偶数项重新分组排列如下:奇数项:3,8,13,18,()偶数项:4,8,(),32,64可以看出,奇数项构成一等差数列,偶数项构成一等比数列.因此,第9项应为23(18+5=23),第6项为16(8×2=16).如果隔着看,如果第一个数18减3就得到第二个数15,15减3就得到第五个数12,而第二、第四……个数始终是3,根据这一规律,括号中应填9和3像(1)(2)这样的数列,每个数列中都含有两个系列,这两个系列的规律各不相同,类似这样的数列,称为双系列数列或双重数列.(3)1,1,1,3,5,9,17,(),()可以发现, 3=1+1+1,5=1+1+3,9=1+3+5,从第四个数起,每一个数都等于前三个数的和,可知需填补的数字为: 5+9+17=31 , 9+17+31=57本题考虑的是相邻四个数地直接关系,这一类题都是考虑后面一个数字与前面几个数字地共同关系,由于前面几个数字可以进行的运算方式有很多,所以这种题型的变化方式也很多.(4)1,2,6,16,44,(),328观察发现,6=2×(2+1),16=2×(2+6),44=2×(16+6),328=2×(120+44),所以,应填120=2×(44+16).【例3】观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)4+2,5+8,6+14,7+20,(),……(2)(1,2,100),(2,4,90),(3,8,80),(4,16,70),()(3)1×3,2×2,1×1,2×3,1×2,2×1,1×3,()分析:(1)4+2,5+8,6+14,7+20,(),……这排加法算式,前面一个数构成数列:4,5,6,7,……;后一个数构成数列:2,8,14,20,…….对于数列4,5,6,7,……,由观察得知,第2项等于第1项加上1,第3项等于第1项加上2,第4项等于第1项加上3,……,所以第5项等于第1项加上4,即4+4=8.同理,数列:2,8,14,20,……,第2项等于第1项加上1×6,第3项等于第1项加上2×6,第4项等于第1项加上3×6,……,所以第5项等于第1项加上4×6,即2+4×6=26.所以,括号里应填8+26.(2)(1,2,100),(2,4,90),(3,8,80),(4,16,70),()观察这个数列中每一组中对应位置上的数字,可以得到如下规律:每组第一个是1、2、3、4、......这是一个自然数列,第二个是2、4、8、16......,这是一个等比数列第三个100、90、80、70......,这是一个递减的等差数列;所以,第5组中的数应该是:5,16×2,70-10,即第五组的括号中应填(5,32,60).(3)1×3,2×2,1×1,2×3,1×2,2×1,1×3,()这是一排乘法算式,观察可以发现,前面一个数的规律是:1,2,1,2,1,2,1……;后一个数的规律是:3,2,1,3,2,1,3,……,对于前一个数列,是由1、2两个数字循环组成的,所以第八项应为2;对于第二个数列,是由3、2、1循环组成的,所以第八项的第二个数字应为2.所以,括号里应填2×2.【例4】建筑工人将一堆木头堆成如下图的形状,你知道如果按这样的方法堆木头,一共堆15层的话,第15层有多少根?分析:通过观察这堆木头可以发现,最上面的一层有1根木头,第二层有2根,第三层有3根,第四层有4根,……我们可以将这道题转化一下,有一组数:1,2,3,4,5,6,……问第十五层有多少根,也就是求这组数中第十五个数是什么,通过我们刚刚学过的我们知道,这是一个等差数列,第十五项为15,也就是第十五层有15根木头.[拓展]阿尔法喜欢收集小木棒,并将它们按右图的形状摆放在书桌上,最底下一层阿尔法摆放了27根小木棍,接着摆放了26根,以此类推,到最后阿尔法发现最上面一层只放了3根小木棒后就没有了,你知道阿尔法一共收集了多少根小木棒吗?分析:通过读题我们知道,阿尔法的这堆小木棒摆放有一定的规律:第一层:3,第二层:4,第三层:5,第四层:6,……,最后一层:27,通过观察可以得出,这一列数构成等差数列,问阿尔法一共有多少小木棒,也就是将每层小木棒的数目加起来的和,即:3+4+5+6+7+8+9+10+11+…+25+26+27=(27+3)+(26+4)+……+(16+14)+15=30×12+15=375,所以,阿尔法一共收集了375根小木棒.【例5】有一列数:1,1989,1988,1,1987,….从第三个数起,每一个数都是它前面两个数中大数减小数的差.那么第1989个数是多少?分析:为了找到规律,我们把这列数再往下写出一些:1,1989,1988,1,1987,1986,1,1985,1984,1,1983,1982,1,1982,…,这样我们就可以很容易的看出规律了,即每三个一组,第一个为1,后两个是从1989依次减1排下去;1989/3=663,共有663组,去掉每一组中的1,剩下663×2=1326个,从1989顺序递减,到最后一个应该是1989-1326+1=664.所以,第1989个数是664.(二)特殊数列中的规律:【例6】仔细观察下面的数表,找出规律,然后补填出空缺的数字.(1)62493758412816(2)282113589914分析:(1)观察数表中的数,发现每一列中:37-16=21,49-28=21,62-41=21,即第二行的数字比第一行对应位的数字都大21 ,所以空缺处应填79(58+21=79).(2)观察后两行发现,5+9=14,8+13=21,即第一列的数字是同行中后两列的数之和,所以空缺处应填19(28-9=19).【例7】 下图所示的两组图形中的数字都有各自的规律,先把规律找出来,再把空缺的数字填上:(1)3637830375956?(2)2020101816825( )( )分析:(1)通过观察前两个图形中的数,可以发现:30=(5+7+3)×2,36=(8+3+7)×2,所以空缺的数字应为:(5+6+9)×2=40.(2)观察前两个圆圈,可以发现如下关系:20-10=10,10×2=20;18-10=8,8×2=16. 所以第三个圆圈中最下面的括号中应填15(25-10=15),右边的括号应填30(15×2=30).[拓展]图中各个数之间存在着某种关系.请按照这一关系求出数a 和b .分析:图中5个圆、10个数字,其中5个数字是只属于某一个圆本身的,5个数字是每两个圆相重叠的公共区域的,观察发现:10+20=15×2,20+40=30×2,也就是说两圆重叠部分的公共区域的数字2倍,正好等于两圆独有数字之和,所以,a=2×17-10=24,b=(16+40)÷2=28.最后验算一下:20×2-16=24,符合.[趣味数学]先仔细看看右图的方阵,你会发现方阵中每一个方格有4个数字,可是中间的方格少了一个数字,你能找出规律,并在“?”处填上适当的数吗?分析:方格中上2个数是1个三位数,下2个数是1个两位数,以右上方的方格为例,上面是357,下面是51,两数相除的商为7,各格上下两数相除的商都是7,这就是我们要找的规律,根据这一规律,“?”处应填4.【例8】 先观察下面各算式,再按规律填数.(1) 1×9+2=11 (2) 21×9=18912×9+3=111 321×9=2889 123×9+4=1111 4321×9=38889 12345×9+6=_________ 54321×9=( ) 1234567×9+____=___________ 654321×9=( )44 16 319 62 830 8 4 ?35 75 111 21 6分析:(1)在这一组算式中,得数都是由若干个“1”组成的.1的个数恰好是后面的加数.如1×9+2,后面的加数是2,结果中也就有2个1.根据这一规律,12345×9+6的结果是由6个1组成,即111111.最后一个算式应当是1234567×9+8=11111111.(2)通过观察可以看出这是一组排列有序的数字“梯田”,一层一层有规律的向下延伸.乘号前面是21、321、4321,乘号后面都是9,相乘的答案的最高位分别是1、2、3,而位数分别是三位数、四位数、五位数.由此可得:54321×9的最高位是4,位数是5+1=6,个位上都是9,其余各位都是8;654321×9的最高位是5,个位是9,其余各位都是8,位数是6+1=7.所以,54321×9=488889, 654321×9=5888889.(三) 数阵中数列的规律【例9】 用数字摆成右面的三角形,请你仔细观察后回答下面的问题:(1) 这个三角阵的排列有何规律?(2) 根据找出的规律写出三角阵的第6行、第7行. (3) 推断第10行的各数之和是多少? 分析:(1)首先可以看出,这个三角阵的两边全由1组成;其次,这个三角阵中,第一行由1个数组成,第2行有两个数…第几行就由几个数组成;最后,也是最重要的一点是:三角阵中的每一个数(两边上的数1除外),都等于上一行中与它相邻的两数之和.如:2=1+1,3=2+1,4=3+1,6=3+3.(2)根据由(1)得出的规律,可以发现,这个三角阵中第6行的数为1,5,10,10,5,1;第7行的数为1,6,15,20,15,6,1.(3)要求第10行的各数之和,我们不妨先来看看开始的几行数. 第一行 1=1第二行 1+1=21第三行 1+2+1=22第四行 1+3+3+1=23第五行 1+4+6+4+1=24第六行 1+5+10+10+5+1=25其中,n2表示n个2相乘,即n 2222⨯⨯⨯个 ,n为自然数通过观察可以看出,每一行中n2中的n都等于行数减去1,至此,我们可以推断,第10行各数之和为29=512.[小知识]本题中的数表就是著名的杨辉三角,这个数表在组合论中将得到广泛的应用.杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和. 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位.中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页. 杨辉,字谦光,北宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图.[巩固]右图是按一定的规律排列的数学三角形,请问第10行第三个数是多少?分析:仔细观察左起第一个数的变化规律:第一行第一个数:1,第二行第一个数:1+1,第三行第一个数:1+1+2,第四行第一个数:1+1+2+3,……,所以第十行左起第一个数是:1+1+2+3+4+5+6+7+8+9=46,这个数字三角形的每一行都是等差数列(第一行除外),所以,第10行第三个数是48.【例10】自然数如右表的规律排列(1)求上起第10行,左起第7个数.(2)87在上起第几行,左起第几列?分析:(1)注意观察这个数表第一列数的排列规律,这些数是:1,4,9,16,25,…,这些数有一个共同特点,它们是每一行序数自己与自己相乘的积,所以,第10行左起第一个数是:10×10=100,而且从第三行开始,每一行的前几个数字都依次递减,所以第10行左起第7个数是:100-6=94.(2)注意数阵中几个数的变化规律是按从上到下拐弯向左的方向依次增加1,因为87=9×9+6,,所以,87在第6行左起第1个数后面9个,也就是第6行左起第10个.[拓展一]按图所示的顺序数数,问当数到1500时,应数到第几列?分析:(方法1)把数表中的每两行分为一组,则第一组有9个数,其余各组都只有8个数.有:(1500-9)÷8=186……3,所以,1500位于第188组的第3个数,即1500位于第④列.(方法2)考虑除以8所得的余数.第①列除以8余1,第②列除以8余2或是8的倍数,第③列除以8余3或7,第④列除以8余4或6,第⑤列除以8余5;而1500÷8=187……4,则1500位于第④列.当数到2007时,它在哪一列呢?(方法1)(2007—9)÷8=249……6,2007位于第251组的第6个数,2007位于第③列.(方法2)2007÷8=250……7,则2007位于第③列,[拓展二]毕达哥拉斯是个大数学家,有一次他正要出门拜访朋友,发现一个仆人不干活,躲在门外玩,于是,毕达哥拉斯命令这个仆人:“你看对面神庙共有七根柱子,现在你从左到右开始数,然后返回来接着数,我回来的时候你要告诉我第5000根柱子是哪一根!”这个仆人很聪明,他用不到一分钟的时间就得到了答案,你能做到吗?分析:转化为数学模型如下:A B C D E F G12345671312111098141516171819 (20)考虑到数表中的数呈S形排列,我们不妨把每两行分为一组,除去1,每组12个数,则按照组中数字从小到大的顺序,它们所在的列分别为B、C、D、E、F、G、F、E、D、C、B、A.因此,我们只要考察5000是第几组中的第几个数就可以了,因为5000是除去1后的第4999个数,4999÷13=384…7,即5000是第385组中的第7个数,所以,第5000根柱子位于F位置,是从左到右的第6根.[小结]学找数阵中的规律,应当像寻找数列中的规律一样,应注意几点1.仔细观察数阵中的所有数.2.注意观察相邻两个数之间的变化规律和同上一行地数的共同点.3.有些数阵不容易一下子找到或找对规律,要仔细观察,再做思考.4.找到规律后,多次举例进行验证.专题展望在本讲学习中,我们学习了数列的规律以及数阵中数列的规律问题,在以后的学习中我们将继续学习此类问题.练习三1.(例1)根据下列各串数的规律,在括号中填入适当的数:(1)3,6,9,12,( ),18,21(2)2,3,5,8,13,(),34,……(3)60,63,68,75,( ),95(4)6,1,8,3,10,5,12,7,( ),( )(5)0,1,1,2,3,5,8,( ),21(6)2,6,12,20,(),42,……分析:(1)数列中后一项比前一项大3,为等差数列,括号中填15(2)从第三项开始每一项都等于前面两项的和,8+13=21(3)数列中相邻两项的差依次增加2,所以括号里应填84(75+9=84)(4)观察可以发现这个数列是双重数列,奇数项为:6、8、10、12、…偶数项为:1、3、5、7…都是等差数列,所以括号中应分别填14(12+2=14)和9(7+2=9)(5)从第三项开始,每一项都等于前面两项的和,所以括号里应填13(5+8=13)(6)观察数列可以得到:2=1×2,6=2×3,12=3×4,20=4×5,42=6×7,所以括号中的数为:5×6=302. (例2)下面是两个具有一定的规律的数列,请你按规律补填出空缺的项: (1) 1,5,11,19,29,________,55; (2) 1,2,6,16,44,________,328.分析:(1)观察发现,后项减前项的差为:4、6、8、10、......所以,应填41(=29+12),41+14=55符合.(2)观察发现,6=2×(2+1),16=2×(2+6),44=2×(16+6),所以,应填120=2×(44+16),2×(120+44)=328符合.3. (例5)1,2,3,2,3,4,3,4,5,4,5,6,….上面是一串按某种规律排列的自然数,问其中第101个数至第110个数之和是多少?分析:观察发现,数列的规律为三个一组、三个一组,即1、2、3;2、3、4;3、4、5;4、5、6;……每一组的第一个数为从1开始的自然数列,每一组中的三个数为连续自然数,每组的第一个数都是这个组的组数;因为101÷3=33......2,说明第101个是第33+1=34组中的第二个数,那么应该是34+1=35;从101到110共有110-101+1=10个数,那么这10个数分别是:35、36,35、36、37,36、37、38,37、38;所以,他们的和为35+36+35+36+37+36+37+38+37+38=365.4. (例7)下图所示的图形中的数字都有各自的规律,先把规律找出来,再把空缺的数字填上:?6432874215532分析:通过观察前两个图形中的数,可以发现:15=(3×5×2)÷2,28=(2×4×7)÷2,也就是中间的数等于三个角上的数乘积的一半,所以,“?”中应填的数为:(3×4×6)÷2=36.5. (例10)下图所示的图表中的数字都有自的规律,先把规律找出来,再把空缺的数字填上:分析:观察表格中的数,第一行的数字已经全部给出,而剩下的几行都是求最后一个数字,就要考虑每一行中最后一个数字与前面数字的关系,由第一行数字规律可知,15=1+2+3+4+5 ,由此可得第二、三、四、五行最后一个数;同样方法观察竖行.所以横行依次为60,65,70,75,325,竖行依次为40, 65, 90, 115, 325成长故事狼怕圆圈小狐狸和小狼王分兔子时,由于小狐狸耍小聪明占了便宜,因此小狼王一直跟在后面追小狐狸.小狐狸飞快地往东跑,由于天黑看不清楚,只听得“咚”的一声,和一个从对面跑来的动物撞到了一起.“噔噔噔”,小狐狸一连倒退了3步,一屁股坐在了地上.小狐狸刚要发火,定睛一看,啊,是小狼王!小狐狸发现小狼王双眼通红,还发出逼人的凶光,不禁全身哆嗦了一下.它立刻用手一抹脸,现出了满脸的笑容,往前走了一小步问:“狼大哥,吃了几只兔子呀?这里的兔子肉还香吧?”小狼王大吼了一声说:“东边明明没有兔子,你却骗我说有65只兔子!看我不打死你!”小狐狸向后退了一步,双手乱摆说:“没有的事!我算得一点错也没有!”“叫你嘴硬!”小狼王说完就扑了上去,小狐狸扭头就跑.它突然看到路边有9个圆圈.小狼王看见圆圈也立刻停住了脚,它吃惊地说:“啊,9个绳套!”小狼王低头仔细一看,怎么回事,其中7个绳套里还有数字?这时耳边响起了一种浑厚有力的声音:“谁能把空圆圈中的数字填对,你想要干什么就会有什么!”小狼王说:“我来填左边的圈.1、3、7下一个该是几呢?是9.这些都是单数呀!”小狼王在圈里填上一个9,跳进圈里高兴地叫道:“我想吃兔子!”话音刚落,圆圈立刻变成了绳套,一下子套住了小狼王的脚,绳套往上一提,就把小狼王倒挂在树上了.小狐狸笑嘻嘻地说:“傻狼!这几个数的规律是:3=1×2+1,7=3×2+1,15=7×2+1,31=15 ×2+1,63=31×2+1,127=63×2+1.右边这个圈里填上127才没错!”小狐狸填上了127,又跳进圈里说:“我想吃山鸡!”“唿”的一声,一条绳子把小狐狸也倒挂在树上.原来这9个绳套是猴子、小熊、老山羊用来教训它们两个坏蛋的.https:///?userid=1787958560 1。
六年级找规律的知识点在数学学习中,找规律是一个非常重要的能力,可以帮助我们理解数学中的模式和关系。
六年级学生正处于数学学习的关键阶段,因此,掌握找规律的知识点对他们的数学能力提升至关重要。
下面将介绍六年级找规律的几个知识点。
一、数列的规律数列是由一列数字按照一定规律排列而成的。
在六年级,学生需要掌握数列的常见规律,包括等差数列和等比数列。
1. 等差数列等差数列是指数列中相邻两项之差都相等的数列。
例如,2、4、6、8、10就是一个等差数列,公差为2。
学生需要学会通过观察数列中的数字来确定公差,进而找到数列的下一项。
2. 等比数列等比数列是指数列中相邻两项之比都相等的数列。
例如,1、3、9、27、81就是一个等比数列,公比为3。
学生需要学会通过观察数列中的数字来确定公比,进而找到数列的下一项。
二、图形的规律除了数列,图形中也存在着各种规律。
在六年级,学生需要通过观察图形来找到其中的规律。
1. 图形的对称性对称是图形中最常见的规律之一。
学生需要学会判断图形是否对称,并能够在对称的基础上进行延伸。
例如,正方形具有对称性,如果你把正方形绕中心点旋转180度,图形仍然保持不变。
2. 图形的增量规律图形的增量规律指的是图形的某个特征在每一步中以相同的方式进行增减。
例如,一个图形由一行方块组成,每一步增加一行方块,并且每一行方块的个数都增加了一。
学生需要观察图形的特征,找到图形增量的规律,并应用到下一步中。
三、算术运算的规律六年级的学生在数学学习中会接触到各种算术运算,而这些运算中也存在着一些规律。
1. 加减法的规律加法和减法的规律是数学学习中最基础的规律之一。
学生需要掌握各种加减法运算的特点,并能够通过观察数字的排列来找规律。
例如,从0开始每次加1的数列,可以用n表示第n次操作的结果。
2. 乘除法的规律乘法和除法也具有各自的规律。
学生需要学会通过观察数字之间的关系来找到乘除法的规律,并能够应用到解题中。
例如,乘法中的倍数规律,两个偶数相乘得到偶数,一个奇数和一个偶数相乘得到偶数。
数列规律总结技巧数列是数学中常见的一种数学对象,它由一系列按照特定规律排列的数字组成。
在学习数学的过程中,掌握数列的规律总结技巧对于解决问题和提高数学能力非常重要。
本文将分享一些数列规律总结的技巧和方法。
首先,我们来讨论一些常见的数列类型及其规律。
等差数列是最简单的一种数列,它的规律是每个数与它前面的数之差都相等。
例如,1,3,5,7,9就是一个等差数列,公差为2。
要总结等差数列的规律,我们可以观察数列中相邻两个数的差值是否相等,如果相等,那么这个数列就是等差数列。
接下来是等比数列,它的规律是每个数与它前面的数之比都相等。
例如,1,2,4,8,16就是一个等比数列,公比为2。
总结等比数列的规律时,我们可以观察数列中相邻两个数的比值是否相等,如果相等,那么这个数列就是等比数列。
除了等差数列和等比数列,还有一些其他常见的数列类型,如斐波那契数列、阶乘数列等。
对于这些数列,我们可以通过观察数列中数字之间的关系来总结它们的规律。
例如,斐波那契数列的规律是每个数等于前两个数之和,阶乘数列的规律是每个数等于前一个数乘以当前的数。
在总结数列规律时,我们可以利用数学公式和数学运算的性质。
例如,对于等差数列,我们可以利用等差数列的通项公式来计算任意位置的数值。
对于等比数列,我们可以利用等比数列的通项公式来计算任意位置的数值。
通过运用这些公式,我们可以更快地找到数列的规律。
此外,我们还可以利用数列的性质和特点来总结规律。
例如,对于一些特殊的数列,如回文数列和对称数列,它们具有特殊的对称性质,我们可以通过观察数列中数字的排列顺序和位置来总结它们的规律。
总结数列规律的技巧还包括数列的递推关系和递归关系。
数列的递推关系是指通过前面的数推导出后面的数的关系式。
例如,斐波那契数列的递推关系是F(n) =F(n-1) + F(n-2),其中F(n)表示第n个斐波那契数。
数列的递归关系是指通过后面的数推导出前面的数的关系式。
通过研究数列的递推关系和递归关系,我们可以总结出数列的规律。
初一找规律的数学题及解题方法初一找规律的数学题通常涉及数列、图形、数字变换等问题,需要观察、分析、归纳和推理。
下面是一些初一找规律的数学题及解题方法:一、数列规律题题目:观察数列1,3,7,15,31,...,求第n项的值。
解题方法:首先观察数列中相邻两项的差,发现差值分别为2,4,8,16...,即每次乘以2。
这是一个等比数列的差数列。
根据这个规律,我们可以推导出第n项的公式:第n项=2^(n-1)-1。
二、图形规律题题目:有一组图形,第一个图形有1个点,第二个图形有3个点,第三个图形有7个点,第四个图形有15个点,...,求第n个图形中点的个数。
解题方法:首先观察图形中点数的变化规律,发现相邻两项的差分别为2,4,8,...。
这是一个等比数列的差数列。
根据这个规律,我们可以推导出第n个图形中点的个数公式:第n个图形中点的个数=2^(n-1)-1。
三、数字变换规律题题目:观察数字序列1,11,21,1211,111221,...,求第n项的值。
解题方法:首先观察数字序列的变化规律,发现每个数字都是由前一个数字生成的。
具体地,第一个数字是“1”,第二个数字表示前一个数字有“1”个“1”,所以是“11”,第三个数字表示前一个数字有“2”个“1”,所以是“21”,以此类推。
这是一个描述性规律题,需要通过观察和描述来找出规律。
根据这个规律,我们可以逐步推导出第n项的值。
四、等差数列规律题题目:观察等差数列2,5,8,11,...,求第n项的值。
解题方法:首先观察等差数列的公差,发现相邻两项的差为3。
根据等差数列的通项公式an=a1+(n-1)d,其中a1为首项,d为公差,n为项数,我们可以推导出第n项的公式:第n项=2+3(n-1)。
以上是初一找规律的数学题及解题方法的一些例子。
对于找规律的数学题,重要的是通过观察和分析来发现其中的规律和模式,并根据这些规律和模式来推导出解决问题的方法。
几何中的数列与数列应用数列是数学中非常重要的概念,既是数学中的一种基本思维方式,又是数学在实际应用中的重要工具之一。
在几何中,数列与数列应用也有其独特的地位和作用。
本文将通过几个实例来阐述几何中的数列以及数列在几何应用中的重要性。
一、等差数列在几何中的应用等差数列是最为常见的数列之一,在几何中也有着广泛的应用。
例如,在平面几何中,等差数列常被用来表示一条直线上等间距的点。
假设有一条直线上的点顺序排列,且相邻两点之间的距离相等,则这些点的坐标可以通过等差数列来表示。
这样,我们就可以利用等差数列的性质来研究这些点的性质和关系。
另外,在空间几何中,等差数列也有着重要的应用。
例如,在空间直角坐标系中,我们可以用等差数列来表示一组坐标点。
这些坐标点可以代表空间中的多个点,通过研究这些点之间的关系,我们可以揭示出空间中的一些几何性质。
因此,等差数列在几何应用中具有重要的作用,可以帮助我们更好地理解空间中的图形和几何性质。
二、等比数列在几何中的应用等比数列是另一种常见的数列类型,在几何中也有着广泛的应用。
例如,在立体几何中,等比数列可以用来表示一个比例尺,通过等比数列我们可以将实际物体的尺寸与其在几何图形中的尺寸相对应。
这样,我们可以根据等比数列的规律来进行几何图形的缩放和变换,从而更好地研究图形的性质和关系。
此外,在平面几何中,等比数列也有着重要的应用。
例如,在圆的构造中,等比数列可以用来表示圆的半径或直径的变化规律。
通过研究等比数列的性质,我们可以揭示出圆的一些特性和性质,从而更好地理解圆的几何性质。
三、斐波那契数列在几何中的应用斐波那契数列是一种特殊的数列,它的每个数字是前两个数字之和。
在几何中,斐波那契数列也有着独特的应用。
例如,在黄金分割中,斐波那契数列常常被用来表示和计算黄金分割点的位置。
黄金分割是一种被广泛运用在建筑、艺术等领域中的比例关系,它可以使得图形更加美观和谐。
通过斐波那契数列,我们可以计算出黄金分割点的位置,从而更好地应用黄金分割原理。
七年级数学找规律经典题型一、数字规律1. 数列规律例1:观察数列1,3,5,7,9,…,求第n个数。
解析:首先观察这个数列,发现相邻两个数的差值都是2。
第1个数是1 = 2×1 1;第2个数是3 = 2×2 1;第3个数是5 = 2×3 1;第4个数是7 = 2×4 1;第5个数是9 = 2×5 1。
所以可以得出第n个数为2n 1。
例2:观察数列2,4,8,16,32,…,求第n个数。
解析:这个数列中,后一个数都是前一个数的2倍。
第1个数是2 = 2^1;第2个数是4 = 2^2;第3个数是8 = 2^3;第4个数是16 = 2^4;第5个数是32 = 2^5。
所以第n个数为2^n。
2. 数字循环规律例:有一组数按照1, 1,1, 1,…的规律排列,求第n个数。
解析:观察这组数字,发现数字是1和 1交替出现。
当n为奇数时,第n个数为1;当n为偶数时,第n个数为 1。
可以用(-1)^(n + 1)来表示,当n = 1时,(-1)^(1+1)=1;当n = 2时,(-1)^(2 + 1)= 1。
二、图形规律1. 图形数量规律例1:用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴棒,…,求搭n个三角形需要多少根火柴棒。
解析:搭1个三角形需要3根火柴棒,即2×1+1;搭2个三角形时,第二个三角形和第一个三角形共用一条边,所以需要3 + 2 = 5根火柴棒,即2×2+1;搭3个三角形时,第三个三角形和前面的三角形共用两条边,所以需要3+2×2 = 7根火柴棒,即2×3 + 1。
所以搭n个三角形需要2n+1根火柴棒。
例2:观察下列图形的点数规律:第1个图形有1个点;第2个图形有1 + 3 = 4个点;第3个图形有1+3 + 5 = 9个点;第4个图形有1+3+5 + 7 = 16个点;求第n个图形的点数。
图形数列找规律【例1】(★★)观察图1中蝴蝶的变化规律,从图2中找出相应的选项填在空缺的位置上。
图形找规律秘籍⑴数量⑵图形(形状、颜色、大小等)⑶位置/方向(顺逆时针、前后、左右、上下等等)⑷组合1【拓展】(★★★)【例2】(★★★★)如图,沿箭头方向网格中图形变化的规律,在最后一个网格中填入适当的图形。
【例3】(★★★)根据前三个方格表中阴影部分的变化规律,填上第⑽个方格表中阴影部分的小正方形内的几个数之和?⑴18,15,12,( ),( )。
⑵3,5,8,12,17,( ),( )。
⑶2,1,3,3,4,5,5,7,( ),( ),( ),( )。
⑷1,3, 9,( ),( )。
⑸1, 1, 2, 3, 5,8,13, ( ),( )。
2【例4】(★★★★)下图表示“宝塔”,它们的层数不同,但都是由一样大的小三角形摆成的。
仔细观察后,请回答:⑴十层的“宝塔”的最下层包含多少个小三角形?⑵整个十层“宝塔”一共包含多少个小三角形?⑶如果一个小三角形是用三根火柴棒拼成,那么整个十层“宝塔”一共需要多少根火柴棒?【例5】(★★★★★)有一天,安迪在黑板上写下了这样一列数:1,1,2,3,5,8,13,21,34,55,……,得意洋洋的问乐乐老师,“您知道这个数列吗?”聪明的小朋友们你们知道吗?请你回答下面的问题。
⑴这个数列的第11项是多少?⑵这个数列的第20项被5除余几?⑶这个数列的第4098项是奇数还是偶数?【例6】(★★★★)【趣味数学】有一串数如下:1,2,4,7,11,16,……它的规律是:由1开始,加1,加2,加3,……,依次逐个产生这串数,直到第50个数为止。
那么在这50个数中,被3除余1的数有多少个?聪明的小朋友,你知道吗?⑴请问下面3组数字间有什么关系吗?1 3 8 72 4 65 9⑵在下面的数列中继续向下填一行1 12 11 1 1 23 1 1 22 1 1 2 1 33【本讲总结】一、图形找规律方法:秘籍1:数量秘籍2:颜色秘籍3:形状秘籍4:位置/方向秘籍5:组合(分开看)二、数列找规律基本能力:1.观察能力2.计算能力【本讲总结】熟记常见数列类型:等差数列等比数列兔子数列(斐波那契数列)双重数列数的排列有规律,多种多样真有趣,有增加、有减少,变化可测有道理,图形排列善变化,变化总会有规律。
二年级数学认识数列中的规律数学是一门有趣又具有挑战性的学科。
在数学中,数列是一个非常重要的概念。
数列是按照一定规律排列的一组数,它可以无限延伸下去。
在二年级的数学课程中,我们开始认识数列中的规律,并学习如何找出数列的下一个数。
本文将探讨二年级数学中数列的规律。
在二年级的数学学习中,数列通常以图形或数字的形式呈现。
我们可以用简单的例子来理解数列和其中的规律。
假设我们有一个数列:1,4,7,10,13...,要找出这个数列中的规律,我们可以观察其中的数字差异。
首先,我们注意到每个数字之间的差为3。
从第一个数1到第二个数4,差为3;从第二个数4到第三个数7,差仍为3;以此类推。
这个差值是一个固定的量,这就是这个数列的规律。
根据这个规律,我们可以预测数列中的下一个数字。
当前的数是13,所以下一个数应该是13加上差值3,即16。
这样,我们又得到了下一个数字。
通过观察和找出规律,我们可以预测任何一个数列中的下一个数。
除了上述的数字差异规律外,数列还可以有其他的规律。
例如,有些数列是通过相乘或相除的方式来计算下一个数字。
让我们来看一个新的例子:2,4,8,16,32...。
在这个数列中,我们可以发现每个数字都是前一个数字的2倍。
从第一个数2到第二个数4,4是2的2倍;从第二个数4到第三个数8,8是4的2倍,以此类推。
因此,这个数列的规律是每个数字都是前一个数字的2倍。
根据这个规律,我们可以推断下一个数字。
当前的数字是32,所以下一个数字应该是32乘以2,即64。
通过找到规律并应用它,我们可以轻松地找到数列中的下一个数字。
在二年级的数学中,我们还学习了一些其他类型的数列规律。
有些数列是通过加法或减法规律来计算下一个数字,有些数列则是通过奇数或偶数规律来确定下一个数字。
不同的规律呈现不同的数列,我们需要耐心观察,并运用逻辑思维来找到其中的规律。
数列的规律不仅仅是二年级数学课程的一部分,它也在许多实际生活中发挥作用。
数学找规律公式大全一、数字规律。
1. 等差数列。
- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
- 通项公式:a_n=a_1+(n - 1)d,其中a_n表示第n项的数值,a_1是首项(数列的第一项),n是项数,d是公差(相邻两项的差值)。
- 例如:数列1,3,5,7,·s,a_1=1,d = 2,那么第n项a_n=1+(n - 1)×2=2n - 1。
2. 等比数列。
- 定义:如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列。
- 通项公式:a_n=a_1q^n - 1,其中a_n表示第n项的数值,a_1是首项,n是项数,q是公比(相邻两项的比值)。
- 例如:数列2,4,8,16,·s,a_1=2,q = 2,则第n项a_n=2×2^n - 1=2^n。
3. 数字规律中的其他常见类型。
- 平方数数列:1,4,9,16,·s,通项公式为a_n=n^2。
- 立方数数列:1,8,27,64,·s,通项公式为a_n=n^3。
- 斐波那契数列:1,1,2,3,5,8,·s,从第三项起,每一项都等于前两项之和,即a_n=a_n - 1+a_n - 2(n≥slant3)。
二、图形规律。
1. 点的规律。
- 在平面直角坐标系中,如果点的坐标呈现一定规律。
例如,点(1,1),(2,4),(3,9),(4,16)·s,横坐标为n,纵坐标为n^2。
2. 多边形边数与内角和的规律。
- 多边形内角和公式:(n - 2)×180^∘,其中n为多边形的边数。
例如三角形(n = 3)内角和为(3 - 2)×180^∘=180^∘;四边形(n = 4)内角和为(4 -2)×180^∘=360^∘。
3. 图形数量规律。
- 例如,用小棒摆三角形,摆1个三角形需要3根小棒,摆2个三角形需要5根小棒(共用一条边),摆3个三角形需要7根小棒。
数学数与形的常见规律数学中的规律是指一定的数学关系或现象,被广泛应用于数学推理、证明、计算等各个领域。
而形的规律则指物体在空间中呈现出的形态、大小、位置等规律性特征。
在数学与形的世界中,许多常见的规律对于我们的学习和生活都具有非常重要的意义。
下面介绍一些常见的数学数与形的规律。
一、数列规律数列是按一定顺序排列的一组数,它们有着很多的规律性。
例如,等差数列,它指的是每一项与它之前的项之差相等的数列,即一个常数d等差数列的通项公式为an=a1+(n-1)d。
另外还有等比数列,它指的是每一项与它之前的项之比相等的数列,即一个公比为q的等比数列的通项公式为an=a1*q^(n-1)。
数学中的数列规律能够帮助我们更好地理解相似问题的意义,并且有助于我们进行推理、计算等操作。
二、平面几何规律在平面几何中,许多物体的规律性特征非常显著。
例如,正方形和正三角形的对称性质,以及圆形的轴对称和中心对称性质等。
此外,还有角、边的计算公式,如勾股定理、正弦定理、余弦定理等。
这些规律不仅有助于我们正确地解决几何问题,更是培养我们观察、推理和解决问题的能力的重要手段。
三、三角函数规律三角函数指的是正弦、余弦、正切等基本三角函数以及它们与模拟函数的各种变化。
三角函数可以用来表示周期函数,还可以用来描述波动等现象。
正弦、余弦、正切等三角函数也有着许多重要的规律性质,如周期性、奇偶性、单调性等。
在学习数学和物理等学科时,三角函数规律起着举足轻重的作用。
四、数学中的对称性规律在数学中,对称性是一种非常重要的规律性特征。
例如,几何图形中的轴对称和中心对称,以及数学中的奇偶性、偶函数和奇函数等,都是对称性规律中的典型代表。
应用对称性规律,我们可以更快地解决各种数学、几何、物理等问题。
五、组合数学规律组合数学是指从集合中选择若干个元素,并按照一定的规则对它们进行排列组合,得到不同的组合方式。
在组合数学中,我们可以经常遇到排列组合问题,如在购物时选择不同的商品搭配、抽卡时的概率计算等。
数学图形中的数列规律
数学图形中的数列规律指的是逐步发展的数学模式,被数学家
们应用于解决各种复杂问题。
从古代开始,人们就在数学中探索
和发现新的模式,并将它们运用在实际生活和学术问题中。
今天,数学图形中的数列规律依然是人们常常思考的话题。
数列规律是一种在数学研究中常见的模型,它是指由一定规则
所产生的一系列数值。
这些数值按一定顺序落在一条直线上,形
成了数学图形中独特的形状。
数学家们通过研究这些规则,逐渐
探究出了数列规律的本质,并在此基础上提出了更高层次的数学
模型,成为现代数学学科的重要组成部分。
在数学图形中,一些常见的数列规律包括等差数列、等比数列
和斐波那契数列三种形式。
等差数列是指每一项的差值都相等的
一组数列,例如:1, 3, 5, 7, 每一项之间的差值都是2。
等比数列是指每一项与前一项之间的比值都相等的一组数列,例如:1, 2, 4, 8, 每一项与前一项之间的比值都是2。
斐波那契数列是一种最为著名的数列规律,它由0和1开始,后面的每一项都是前两项的和,
例如:0, 1, 1, 2, 3, 5, 8, 13, 21, …
这些数列规律在实际应用中起到了极为重要的作用。
例如在金
融领域,人们可以利用等差数列和等比数列之间的规律,预测股
票价格和利率的变化趋势。
在电信和物流领域,人们可以利用斐
波那契数列来优化信号和物流传输的速度和效率,提高运作效益。
此外,数学图形中还有一些有趣的数列规律。
例如:齐次有理
函数数列,是指一种特殊的数列,每个数都是两个比值的和。
这
种数列的特点是模式复杂、特异性强,而且每项都涉及到分数和
开方。
尽管齐次有理函数数列非常难以理解,但在数学研究中却
经常被提及。
最后,数学图形中的数列规律虽然看起来单纯,但与其背后所
蕴含的理论和数学知识相较,却显得十分微不足道。
数列规律为
我们提供了一种更加深入的数学思考和发现方法,向我们展示出
了数学在各个领域的广泛运用和无限潜力。