现代金属材料的制备与成型技术
- 格式:docx
- 大小:37.21 KB
- 文档页数:2
材料成型技术的现状及发展趋势摘要:随着社会的不断发展,各个领域对材料的需求也越来越大。
材料成型技术决定了材料的产品质量与生产规模,本文通过对现阶段铸造、锻造、焊接等几种常用材料成型技术现状进行分析,展望材料成型技术的发展趋势。
关键词:材料成型技术;现状;发展趋势现代工业产品质量的好坏已经不仅仅取决于材料自身的属性,更取决于能否利用合适的材料成型技术来充分发挥材料的特点。
材料成型技术影响着材料产品的质量、性能、用途等各个方面,也影响着现代工业发展。
一、我国材料成型技术的现状(一)铸造技术现状铸造技术主要用于金属材料,它是通过将金属熔炼成液体注入到铸型中,经过凝固、清理后得到预先设计的尺寸、形状和性能的铸件的材料成型工艺。
铸造按照不同方式分类有众多的种类,比如按铸型分类有砂型铸造和金属型铸造;按金属液的浇注工艺可以分为重力铸造和压力铸造等。
总之,铸造现代材料制造工业是最基本、最常用的工艺。
现代铸造主要是快速成型技术,是指通过CAD模型直接驱动,计算机控制加热喷头根据截面轮廓信息做平面运动和高度方向运动,丝材由供丝机送至喷头加热融化后涂覆在工作台上,精确地由点到面,由面到体积的堆积成零件。
目前市场上常见的成型方法已经有十余种,比如立体平版印刷法,逐层轮廓成型法,光掩模法融化堆积法和选择性激光烧结法等[1]。
我国材料铸造成型工艺技术水平远远落后于世界发达国家水平,具体体现在:铸件的质量差,工艺水平较低,加工余量过多;大型铸件的厚大断面存在宏观偏析、晶粒粗大等问题;铸件裂纹问题较多;浇注系统设计存在卷气、夹杂等缺陷,使铸件的出品率和合格率较低;能源和原材料利用水平较低;环境污染严重等众多方面。
(二)电焊技术现状电焊也是材料成型中经常用到的技术之一,它主要应用于材料的连接、造型、封闭等方面。
当前,我国主要使用的电焊成型技术主要有弧焊、电阻焊和特种焊等几种。
弧焊技术主要是气体保护焊和内燃机动力焊,常用于铁轨、油管、气管等材料的焊接;激光焊、电子束焊以及搅拌摩擦焊等特种焊接技术也开始应用在我国材料成型方面[2]。
装备制造业之塑性成形技术随着现代工业的不断发展,各类装备制造业在实现高效生产和优质产品方面面临着日益严峻的挑战。
然而,塑性成形技术作为一种重要的制造工艺,正逐渐成为解决这些问题的关键。
本文将介绍塑性成形技术在装备制造业中的应用及其优势,并分析其未来发展趋势。
一、塑性成形技术在装备制造业中的应用1. 金属板材的压力成形金属板材压力成形技术是制造高强度、高精度零部件的重要手段。
通过将金属板材置于模具中,并施加压力,使金属板材发生弯曲、拉伸或冲裁等变形过程,从而得到所需形状的零部件。
该技术广泛应用于航空航天、汽车、电子等领域,并且可以生产出具有优良机械性能和表面质量的产品。
2. 金属管材的拉伸和冲压成形金属管材的拉伸和冲压成形技术主要用于制造管道、管接头和其他金属管材零部件。
通过控制拉伸和冲压力度,使金属管材在变形过程中逐渐改变截面形状,从而得到满足需求的产品。
该技术在石油化工设备、船舶制造等行业中得到广泛应用。
3. 塑性挤压技术塑性挤压技术是将金属坯料通过模具挤压成型,用于制造复杂截面的金属材料。
该技术具有高效率、节能和资源利用率高的特点,并且可以生产出优质的零部件。
在航空航天、铁路交通等领域,塑性挤压技术已成为制造高性能轻质构件的重要工艺。
二、塑性成形技术的优势1. 精度高塑性成形技术可以通过精确的模具设计和控制,实现对材料的精细加工,从而获得高度精密的零部件。
与传统加工工艺相比,塑性成形技术具有更低的工艺损失和变形量,可以提供更高的制造精度和表面质量。
2. 材料利用率高塑性成形技术将材料的变形过程与材料的剪切、挤压和拉伸等工艺相结合,可大幅提高材料的利用率。
与传统切削加工相比,塑性成形技术减少了材料废料的产生,并可在一次成形中得到复杂形状的零部件。
3. 生产效率高塑性成形技术具有高效率、批量生产的优势。
通过合理的设备配置和工艺优化,可以实现自动化、连续化生产,从而大幅提高生产效率。
此外,塑性成形技术还可以快速响应市场需求,缩短产品的开发周期。
《现代材料成型新技术》讲义重庆大学机械工程学院材料加工工程2004.5.26课程主要内容1.粉末冶金技术2.金属多孔材料3.定向凝固和单晶铸造4.金属超塑性5.连续铸造技术6.快速凝固技术和材料7.金属半固态成形技术第一章粉末冶金1.概述1.1粉末冶金的工艺:制粉,成型,烧结(发展到两者合一,HIP,或者三者合一,Osprey,以及烧结后的锻造)1.2优点:1)近终成型(用于高硬度材料,不利于机械加工零件)2)合金成分设计,可在宽范围控制成分(提高固溶度)3)可以得到复杂零件(锻造得不到)4)组织可控(铸造组织粗大)5)可制备人工复合材料1.3 缺点:1)粉末和模具成本高2)不适合大零件成型3)存在孔隙1)简化制粉工艺,提高产出率2)全致密工艺(热等静压)2制粉2.1传统制粉:电解,球磨,气体雾化,水雾化(粒径大:≥200μm;粒径分散度大;产出率低)2.2离心雾化和快速凝固制粉2.2.1旋转电极法(见图1.1、图1.2)图1.1 旋转电极法原理图图旋转电极过程中液膜破碎、球形粉形成原理图250转/秒≥150μm图1.3 不同形式的离心雾化250转/秒2.2.3高速转轮快速凝固法(RST)(图1.3C)改进的离心雾化法:提高冷却速度(水冷旋转轮) (≥106 ℃ /秒);高速转轮(400-600转/秒)优点:1)微晶或非晶粉末;成分偏析小;2)合金元素固溶度提高:表1.1 通过RST提高合金元素在铝中的溶解度力学性能提高:表1.2 用RST加入Li后,2024Al合金性能的改善•在T4和T6热处理状态下。
3)可消除有害相(高温合金的σ相),材料韧性提高4)得到亚稳组织,改变了合金共晶温度,共晶成分,扩大了合金成分范围,可以重新设计合金成分。
60000-80000H z 速度:2马赫≤50μm图1.4 真空雾化原理图1)气相沉积法:激光-蒸发-沉积(1公斤装置)产出率低;粒径小;μm (SiC粉)μm (Si3N4粉)2)液相法:溶液-微粒沉淀-干燥3.成型及致密化新技术致密度≤95%,模内致密度不均匀3.1 注射成型粉末,增塑剂(石蜡),黏结剂—>注射成型—>预烧结(排除有机物)—>成预坯—>烧结注射力提高了致密度和均匀性。
金属材料制备工艺一、引言金属材料是工业生产中应用广泛的材料之一,其制备工艺对材料的性能和质量具有重要影响。
本文将介绍金属材料制备的一般工艺流程及常见的制备方法。
二、金属材料制备工艺流程金属材料的制备工艺一般包括原料准备、熔炼、铸造、加热处理和成形等环节。
1. 原料准备金属材料的原料通常是金属矿石或金属化合物。
在原料准备环节,需要对原料进行选矿、破碎、粉碎等处理,以获得具备一定纯度和颗粒度的原料。
2. 熔炼熔炼是将金属原料加热至熔点并使其熔化的过程。
常用的熔炼方法包括电弧炉熔炼、电感炉熔炼、氩弧熔炼等。
通过熔炼,可以得到液态金属。
3. 铸造铸造是将熔融金属倒入预先准备好的铸型中,并使其冷却凝固,获得所需形状的金属制品。
铸造方法主要包括砂型铸造、金属型铸造、压铸等。
铸造工艺的选择与所需制品的形状、尺寸和性能要求密切相关。
4. 加热处理加热处理是指对铸件或其他金属制品进行加热和冷却处理,以改变其组织结构和性能。
常用的加热处理方法有退火、淬火、正火等。
加热处理可以提高金属制品的硬度、强度、耐磨性等性能。
5. 成形成形是通过机械加工或其他方法将金属材料加工成所需形状和尺寸的工艺。
常见的成形方法有锻造、轧制、拉伸、冲压等。
成形工艺可以进一步改善金属材料的性能,并满足不同应用的需求。
三、常见的金属材料制备方法除了一般的工艺流程外,金属材料的制备还有一些特殊的方法和技术。
1. 粉末冶金粉末冶金是指利用金属粉末作为原料,通过混合、压制和烧结等工艺制备金属制品的方法。
粉末冶金可以制备出具有特殊形状和复杂结构的金属制品,并具有较高的密度和机械性能。
2. 电化学方法电化学方法是利用电解池中的电流和电解质溶液对金属进行电解、沉积或溶解的方法。
通过电化学方法可以制备出具有高纯度、均匀性好的金属材料。
3. 薄膜制备薄膜制备是一种制备薄膜材料的方法,常用于制备金属薄膜、合金薄膜等。
常见的薄膜制备方法有物理气相沉积、化学气相沉积、溅射沉积等。
电子束熔化制备金属材料的成形研究在传统制备金属材料的过程中,常常需要大量配合工序来完成复杂的成形任务。
不过随着科技的不断进步,以及制造业的发展,人们开始尝试新的成形方式,其中电子束熔化制备金属材料这一技术备受关注。
电子束熔化制备金属材料,顾名思义,就是利用高速电子束将金属材料进行熔化,并在其表面上进行加工的一种方式。
这种技术最早在20世纪50年代由苏联人发明,至今已经发展成为一种高精度、高效率的制备金属材料技术。
下面我们将会就此进行更深入的研究。
一、电子束成形的特点电子束熔化制备金属材料有着很多特点,但其中比较重要的几个特点包括:1.高精度:电子束成形具有很高的制造精度,可以制造出很细的结构和精密的零件。
2.高效率:电子束成形可以大幅度缩短生产周期,而且制造出的零部件的成品率也很高。
3.加工可以完成三维的构型:这种成形方式可以在大面积的范围内进行加工制作,在制作过程中可以完成很难实现的三维设计要求。
4.可以制作新的合金材料:这种成形技术还可以利用高能电子束进行精确合金化控制,因此可以制造出各种新型的合金材料。
二、电子束成形的制备过程电子束成形的制作过程主要包括以下几个步骤:1.预制材料:首先需要将原材料预制成末制品的形状,这个末制品的形状必须符合制造员的要求或者是所需要的设计规格。
2.材料装配:将预制材料按照所要求的形状组装在一起,并对其进行加工,从而使其能够承受电子束的熔化成形。
3.电子束熔化加工:这个过程中就是使用高能电子束来对材料进行熔化加工,这个过程中需要用电子束进行加热,将材料熔化成形。
4.热处理:在材料熔化之后,需要对其进行热处理以增加其热强度和机械强度,从而使其最终成品符合客户的要求。
三、电子束成形的应用电子束成形已经广泛应用于航天、国防、生产制造等众多领域,并且在这些领域中已经取得了广泛的应用,一些相关的的应用如下:1.航空航天:航空航天领域需要高强度和轻量化的材料,因此电子束成形是一种非常合适的加工方式。
第1篇一、引言金属工艺学是一门研究金属材料的加工、成型和性能改进的学科。
它是材料科学与工程的一个重要分支,广泛应用于制造业、航空航天、汽车、电子、建筑等领域。
金属工艺学的研究对象包括金属材料的制备、加工、成型、表面处理以及性能评价等。
本文将从金属工艺学的定义、发展历程、主要工艺方法、应用领域等方面进行探讨。
二、金属工艺学的定义与发展历程1. 定义金属工艺学是研究金属材料的加工、成型和性能改进的一门学科。
它主要包括以下几个方面:(1)金属材料的制备:包括金属的熔炼、铸造、烧结等。
(2)金属材料的加工:包括金属的轧制、锻造、挤压、拉伸、剪切等。
(3)金属材料的成型:包括金属的弯曲、卷边、焊接、粘接等。
(4)金属材料的表面处理:包括金属的腐蚀、磨损、氧化、涂层等。
(5)金属材料的性能评价:包括金属的力学性能、物理性能、化学性能等。
2. 发展历程金属工艺学的发展历程可以追溯到古代人类对金属的利用。
以下为金属工艺学的发展历程:(1)古代:人类开始利用天然金属,如铜、金、银等,进行简单的加工和成型。
(2)青铜器时代:人类掌握了铜、锡合金的熔炼和铸造技术,出现了青铜器。
(3)铁器时代:人类学会了铁的冶炼和锻造技术,铁器逐渐取代青铜器。
(4)近代:随着工业革命的到来,金属工艺学得到了迅速发展。
出现了钢铁工业、有色金属工业等。
(5)现代:金属工艺学得到了更广泛的应用,出现了各种新型金属加工技术和表面处理技术。
三、金属工艺学的主要工艺方法1. 熔炼与铸造熔炼是将金属原料加热至熔化状态,使其成为液态金属。
铸造是将熔融金属浇注到预先设计好的模具中,冷却凝固后得到所需的金属制品。
2. 轧制与锻造轧制是将金属坯料通过轧机进行压缩和变形,使其厚度、宽度、长度等尺寸发生变化。
锻造是将金属坯料加热至一定温度,然后进行塑性变形,以获得所需的形状和尺寸。
3. 挤压与拉伸挤压是将金属坯料通过挤压机进行塑性变形,使其厚度、宽度、长度等尺寸发生变化。
金属精密成型技术
1 精密金属成型技术
精密成型技术指的是采用特定的工艺、精密的工装、测试和控制
系统,结合现代机械加工技术,使用精密金属和各种高科技材料进行
加工精密成型的一种技术。
现代精密成型技术涉及各类机械加工技术,以及各种一般性和专业性技术部分,对材料特性及表面形貌、尺寸精
度等有着较高要求。
比如工业领域中通常采用的模铸造技术以及各类拉伸折形技术,
都是精密成型技术的基本环节。
它们被广泛应用于汽车制造、航空航天、船舶及建筑等领域中的精密零部件的加工。
由于各项先进的精密
成型技术,在完成精密零部件加工时,可以由原材料迅速加工成我们
所需要的精密零部件,可以有效的节省时间和费用,提高效率。
2 精密加工的过程
现代精密成型技术在加工过程中,整个成型过程包括机械加工技术、特殊材料使用、材料成型和组装技术等。
它们利用多种不同精密
金属材料,如钢材、有色金属、金属合金、镀层金属等,在加工过程中,能够制作出各种不同形状及功能的产品。
具体讲,精密成型技术也包括车削、磨床、钻铣床、铣铰等多种
机械精密加工技术。
同时还可以应用焊接、锻造、锻筋、拉伸、塑性
成形等技术使其尺寸更加容易控制,形状更加精确,再加上性能检测和物流管理,以实现精密原件的加工成形。
因此,精密成型技术一般比传统的机械加工技术要复杂得多,但也可以使精密零部件的加工更精确、更可靠,避免人为的缺陷,从而起到防护、保全的作用。
可见,精密成型技术在现代工业领域里占据了至关重要的作用,它们的日益发展,万分彰显了科技的发展,以及我们对精密零部件加工的认识和把控能力的提升。
现代金属材料的制备与成型技术
一、金属材料的制备技术:
1.熔炼法:熔炼法是制备金属材料最常用的方法之一、它通过将金属
原料加热至熔化状态,然后通过冷却凝固形成所需形状的材料。
熔炼法可
分为电熔法、真空熔炼法、坩埚熔炼法等。
2.粉末冶金法:粉末冶金是一种将金属粉末通过成形与烧结来制备金
属材料的方法。
该方法不需要熔化金属,可直接使用金属粉末,在高压下
成型成所需形状,然后通过烧结得到金属材料。
3.化学法:化学法是一种利用化学反应来制备金属材料的方法。
常见
的化学法包括电解法、沉积法和溶液法等。
这些方法通过将溶解金属离子
的溶液与适当的反应剂反应,使金属离子还原成金属固体。
4.气相沉积法:气相沉积法是一种利用高温高压条件下,使金属原料
气化后沉积在衬底上的方法。
这种方法可以制备薄膜、纤维等金属材料。
二、金属材料的成型技术:
1.锻造成型:锻造是一种将金属材料加热至一定温度后施以一定的力
使金属发生塑性变形,从而得到所需形状的方法。
锻造可分为自由锻造、
模锻造和挤压锻造等。
2.压力成型:压力成型是一种利用压力来使金属材料发生塑性变形,
从而得到所需形状的方法。
常见的压力成型包括挤压、拉伸、连续模锻等。
3.粉末冶金成型:粉末冶金成型技术是指利用金属粉末进行成型的方法。
通过将金属粉末与适当的粘结剂混合,然后在高压下成形。
最后通过
烧结将金属粉末与粘结剂固化在一起,得到所需形状的金属成品。
4.焊接与连接:焊接是一种将两个或多个金属材料通过加热、溶解或
者高压连接在一起的方法。
常见的焊接方法有电弧焊接、气焊、激光焊接等。
除了焊接外,还有螺纹连接、铆接和胶粘连接等方法。
三、现代金属材料的设备与工具:
1.熔炉:熔炉是用于将金属原料熔化的设备,它可以提供高温条件,
使金属原料达到熔点,进行熔炼制备。
2.成型机床:成型机床是用于金属材料成型的机床设备,如锻压机、
冲床、拉伸机等。
它们通过施加力或者压力,使金属发生塑性变形,得到
所需形状。
3.烧结炉:烧结炉是用于粉末冶金制备的设备,它可以将金属粉末在
高温条件下烧结成一体。
4.焊接设备:焊接设备是用于金属焊接的设备,如电弧焊机、激光焊机、气焊设备等。
它们通过提供相应的焊接能源,将金属材料连接在一起。
以上是现代金属材料的制备与成型技术的一些常见内容,随着科技的
发展,金属材料的制备与成型技术也在不断更新和创新,以适应不同领域
的需求。