12年广州一模数学试题及答案(理)
- 格式:doc
- 大小:1.81 MB
- 文档页数:20
2012年天河区初中毕业班综合练习一数学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必在答题卡第1面、第3面上用黑色字迹的钢笔或签字笔填写自己的班级、姓名、座位号;填写考号,再用2B铅笔把对应号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题号的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.6-的绝对值是().A.6-B.6C.16D.16-2.已知△ABC中,∠A=70°,∠B=60°,则∠C =().A.50°B.60°C.70°D.80°3.如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是( ).4.下列二次根式中,属于最简二次根式的是().A.15B.0.5C.5D.505.己知△ABC和△DEF的相似比是1:2,则△ABC和△DEF的面积比是().A.2:1B.1:2C.4:1D.1:4第5题6.下列计算正确的是( ).A. a 2+a 3=a 5B. a 6÷a 3=a 2C. 4x 2-3x 2=1D. (-2x 2y )3=-8 x 6y 3 7.下列各点中,在函数21y x =-图象上的是( ). A. 5(,4)2-- B. (1,3) C. 5(,4)2D. (1,3)-8.五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为( ).A. 19和20B. 20和19C. 20和20D. 20和219.抛物线223y x =-的对称轴是( ).A. y 轴B. 直线2x =C. 直线34=x D.直线3x =-10.如果△+△=*,○=□+□,△=○+○+○+○,则*÷□=( ).A. 2B. 4C. 8D. 16第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,共18分.)11.命题“如果0a b +>,那么0,0a b >>”是 命题(填“真”或“假”). 12.9的算术平方根是 .13.因式分解:21x -= .14.等腰三角形的两边长分别为4和8,则第三边的长度是 .15.将点A (2,1)向右平移2个单位长度得到点A ′,则点A ′的坐标是 . 16.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解不等式2(1)34x x +>-,并在数轴上表示它的解集. 18.(本小题满分9分)同时投掷两个正方体骰子,请用列举法求出点数的和小于5的概率.第16题先化简式子231111x x x x x -÷--+-,然后从22x -<≤中选择一个合适的整数x 代入求值. 20.(本小题满分10分)如图,ABC ∆的三个顶点都在55⨯的网格(每个小正方形的边长均为1个单位长度)的格点上.(1)在网格中画出将ABC ∆绕点B 顺时针旋转90°后的 △A ′BC ′的图形.(2)求点A 在旋转中经过的路线的长度.(结果保留π)21.(本小题满分12分)如图,AE ∥BF ,AC 平分∠BAE ,且交BF 于点C ,在AE 上取一点D ,使得AD=BC ,连接CD 和BD ,BD 交AC 于点O .(1)求证:△AOD ≌△COB (2)求证:四边形ABCD 是菱形.22.(本小题满分12分)某班将开展“阳光体育”活动,班长在班里募捐了80元给体育委员小明去购买体育用品.小明买了5个毽子和8根跳绳,毽子每个2元,共花了34元.买回后班长觉得用品不够,还需再次购买,下面两图是小明再次买回用品时与班长的对话情境,请根据所给的信息,解决问题:(1)试计算每根跳绳多少元?(2)试计算第二次买了毽子和跳绳各多少件? (3)请你解释:为什么不可能找回33元?第20题第22题第21题如图,直线l 经过点A (1,0),且与曲线m y x =(x >0)交于点B (2,1).过点P (p ,p -1)(p ≥2)作x 轴的平行线分 别交曲线m yx =(x >0)和my x=-(x <0)于M ,N 两点.(1)求m 的值及直线l 的解析式;(2)是否存在实数p ,使得S △AMN =4S △APM ?若存在,请求出所有满足条件的p 的值;若不存在,请说明理由.24.(本小题满分14分)如图(1),AB 、BC 、CD 分别与⊙O 相切于点E 、F 、G ,且AB ∥CD , 若8,6==OC OB , (1)求BC 和OF 的长; (2)求证:E O G 、、三点共线;(3)小叶从第(1)小题的计算中发现:等式 222111OCOB OF +=成立,于是她得到这样的结论: 如图(2),在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥, 垂足为D ,设,BC a AC b ==,CD h =,则有等式222111h b a =+成立.请你判断小叶的结论是否正确, 若正确,请给予证明,若不正确,请说明理由.25.(本小题满分14分)使得函数值为零的自变量的值称为函数的零点.例如,对于函数1-=x y ,令0=y ,可得1=x ,我们就说1是函数1-=x y 的零点.请根据零点的定义解决下列问题:已知函数)3(222+--=m mx x y (m 为常数). (1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且411121-=+x x ,此时函数图象与x 轴的交点分别为A 、B (点A 在点B 左侧),点M 在直线10-=x y 上,当MA +MB 最小时,求直线AM 的函数解析式.x第23题yAOBl第24题图(1)DACB GOFE 第24题图(2)h ba DCBA。
试卷类型:A2012年广州市普通高中毕业班综合测试(一)数学(理科)2012.3本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 方差()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中12nx x x x n+++= . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A .2-B .1-C .0D .2 2.已知全集U =R ,函数11y x =+的定义域为集合A ,函数()2log 2y x =+的定义域为集合B ,则集合()U A B = ðA .()2,1--B .(]2,1--C .(),2-∞-D .()1,-+∞3.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为12π,则ω的值为 A .3 B .6 C .12 D .244.已知点()P a b ,(0ab ≠)是圆O :222x y r +=内一点,直线l 的方程为20ax by r ++=,那么直线l 与圆O 的位置关系是A .相离B .相切C .相交D .不确定5.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件6.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为A .8-B .6-C .8D .67.在△ABC 中,60ABC ∠=,2AB =,6BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为 A .16 B .13 C .12 D .238.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为A .252B .216C .72D .42二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题) 9.如图1是一个空间几何体的三视图,则该几何体的体积为 .10.已知()211d 4kx x +⎰2≤≤,则实数k 的取值范围为 . 11.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为 .12.已知集合{}1A x x =≤≤2,{}1B x x a =-≤,若A B A =I ,则实数a 的取值范围为 .13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则5a = ,若145n a =,则n = .512122图2图1 俯视图 22正(主)视图2 2 2 侧(左)视图222(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t =+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)设3,2απ⎛⎫∈π ⎪⎝⎭,若234f απ⎛⎫+= ⎪⎝⎭,求cos 4απ⎛⎫- ⎪⎝⎭的值.17.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求a 的值; (2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和均值(数学期望).(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.)18.(本小题满分14分)如图5所示,在三棱锥ABC P -中,6AB BC ==,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,3PD =.(1)证明△PBC 为直角三角形;(2)求直线AP 与平面PBC 所成角的正弦值.图4 甲组 乙组 8 9 7 a 3 5 7 9 6 6 图5BPACD P OABCD图319.(本小题满分14分)等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()252123n n n b a n n +=++,求数列{}n b 的前n 项和n S .20.(本小题满分14分)已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,离心率为5的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=; 21.(本小题满分14分)设函数()e xf x =(e 为自然对数的底数),23()12!3!!nn x x x g x x n =+++++L (*n ∈N ). (1)证明:()f x 1()g x ≥;(2)当0x >时,比较()f x 与()n g x 的大小,并说明理由;(3)证明:()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭≤L (*n ∈N ).2012年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.题号 1 2 3 4 5 6 7 8 答案DBCABDCA二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.9.433 10.2,23⎡⎤⎢⎥⎣⎦11.3 12.[]1,2 13.35,10 14.62 15.2 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查两角和的正切、诱导公式、同角三角函数的基本关系和两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:9f π⎛⎫⎪⎝⎭tan 34ππ⎛⎫=+ ⎪⎝⎭………………………………………………1分 tantan 341tan tan34ππ+=ππ-………………………………………………3分 312313+==---.…………………………………………………4分(2)解:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭…………………………………………5分()tan α=+π……………………………………………………6分tan 2α==.…………………………………………………7分所以sin 2cos αα=,即sin 2cos αα=. ①因为22sin cos 1αα+=, ② 由①、②解得21cos 5α=.……………………………………………………9分 因为3,2απ⎛⎫∈π ⎪⎝⎭,所以5cos 5α=-,25sin 5α=-.………………………10分 所以cos 4απ⎛⎫-⎪⎝⎭cos cos sin sin 44ααππ=+ ……………………………………11分 52252310525210⎛⎫=-⨯+-⨯=- ⎪ ⎪⎝⎭.…………………12分17.(本小题满分12分)(本小题主要考查统计、方差、随机变量的分布列、均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:依题意,得11(87899696)(87909395)44a ⨯+++=⨯++++,………………1分 解得3a =.……………………………………………………………………2分(2)解:根据已知条件,可以求得两组同学数学成绩的平均分都为92x =.……………………………3分所以乙组四名同学数学成绩的方差为()()()()222221879293929392959294s ⎡⎤=-+-+-+-=⎣⎦. …………5分(3)解:分别从甲、乙两组同学中各随机选取一名同学,共有4416⨯=种可能的结果.……………6分这两名同学成绩之差的绝对值X 的所有情况如下表:87 89 96 96 87 0 2 9 9 93 6 4 3 3 93 6 4 3 3 958611所以X 的所有可能取值为0,1,2,3,4,6,8,9.…………………………………………………8分由表可得1(0)16P X ==,2(1)16P X ==,1(2)16P X ==,4(3)16P X ==, 2(4)16P X ==,3(6)16P X ==,1(8)16P X ==,2(9)16P X ==.所以随机变量X 的分布列为:X 0 1 2 3 4 6 89P116 216 116 416 216 316 116 216随机变量X 的数学期望为……………………10分甲乙X121423012346161616161616EX =⨯+⨯+⨯+⨯+⨯+⨯12891616+⨯+⨯………11分 6817164==.……………………………………………………………12分 18.(本小题满分14分)(本小题主要考查空间线面关系、直线与平面所成角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明1:因为平面⊥PAC 平面ABC ,平面PAC 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC .…………………………………………………………………………………1分记AC 边上的中点为E ,在△ABC 中,AB BC =,所以AC BE ⊥.因为6AB BC ==,4=AC ,所以()2222622BE BC CE =-=-=.………………3分 因为PD ⊥AC ,所以△PCD 为直角三角形. 因为3PD =,3CD =, 所以()22223323PC PD CD =+=+=.………4分连接BD ,在Rt △BDE 中,因为2BE =,1DE =, 所以()2222213BD BE DE =+=+=.…………5分因为PD ⊥平面ABC ,BD ⊂平面ABC ,所以PD ⊥BD . 在Rt △PBD 中,因为3PD =,3BD =, 所以()()2222336PB PD BD =+=+=.………………………………6分在PBC ∆中,因为6BC =,6PB =,23PC =,所以222BC PB PC +=.所以PBC ∆为直角三角形.……………………………………………………7分证明2:因为平面⊥PAC 平面ABC ,平面PAC I 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥, 所以PD ⊥平面ABC .……………………………………………………1分记AC 边上的中点为E ,在△ABC 中,因为AB BC =,所以AC BE ⊥. 因为6AB BC ==,4=AC ,所以()2222622BE BC CE =-=-=.………………3分连接BD ,在Rt △BDE 中,因为90BED ∠=o,2BE =,1DE =,所以()2222213BD BE DE =+=+=.………………………………4分在△BCD 中,因为3CD =,6BC =,3BD =,所以222BC BD CD +=,所以BC BD ⊥.………………………………………5分因为PD ⊥平面ABC ,BC ⊂平面ABC ,所以BC PD ⊥.…………………………………………………………6分BPACDE因为BD PD D = ,所以BC ⊥平面PBD .因为PB ⊂平面PBD ,所以BC PB ⊥.所以PBC ∆为直角三角形.……………………………………………………7分(2)解法1:过点A 作平面PBC 的垂线,垂足为H ,连PH ,则APH ∠为直线AP 与平面PBC 所成的角.…………………………………8分由(1)知,△ABC 的面积1222ABC S AC BE ∆=⨯⨯=.…………………9分 因为3PD =,所以13P ABC ABC V S PD -∆=⨯⨯12622333=⨯⨯=.…………………………10分 由(1)知PBC ∆为直角三角形,6BC =,6PB =,所以△PBC 的面积1166322PBC S BC PB ∆=⨯⨯=⨯⨯=.…………………11分 因为三棱锥A PBC -与三棱锥P ABC -的体积相等,即A PBC P ABC V V --=, 即126333AH ⨯⨯=,所以263AH =.……………………………………12分 在Rt △PAD 中,因为3PD =,1AD =, 所以()2222312AP PD AD =+=+=.………………………………13分因为2663sin 23AH APH AP ∠===. 所以直线AP 与平面PBC 所成角的正弦值为63.…………………………………………………14分 解法2:过点D 作DM AP ∥,设DM PC M = ,则DM 与平面PBC 所成的角等于AP 与平面PBC 所成的角.……………………………………8分由(1)知BC PD ⊥,BC PB ⊥,且PD PB P = ,所以BC ⊥平面PBD .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PBD .过点D 作DN PB ⊥于点N ,连接MN ,则DN ⊥平面PBC .所以DMN ∠为直线DM 与平面PBC 所成的角.……10分 在Rt △PAD 中,因为3PD =,1AD =, 所以()2222312AP PD AD =+=+=.……………………………………11分因为DM AP ∥,所以DM CD AP CA =,即324DM =,所以32DM =.………………………………12分 BP A CDMN由(1)知3BD =,6PB =,且3PD =,所以33626PD BD DN PB ⨯⨯===.……………………………………13分 因为662sin 332DN DMN DE ∠===, 所以直线AP 与平面PBC 所成角的正弦值为63.…………………………………………………14分 解法3:延长CB 至点G ,使得BG BC =,连接AG 、PG ,……………………………………8分 在△PCG 中,6PB BG BC ===, 所以90CPG ∠=o,即CP PG ⊥.在△PAC 中,因为23PC =,2PA =,4AC =, 所以222PA PC AC +=, 所以CP PA ⊥. 因为PA PG P =I ,所以CP ⊥平面PAG .…………………………………………………………………………………9分 过点A 作AK PG ⊥于点K , 因为AK ⊂平面PAG , 所以CP AK ⊥. 因为PG CP P =I ,所以AK ⊥平面PCG .所以APK ∠为直线AP 与平面PBC 所成的角.……………………………………………………11分 由(1)知,BC PB ⊥, 所以23PG PC ==.在△CAG 中,点E 、B 分别为边CA 、CG 的中点,所以222AG BE ==.………………………………………………………12分 在△PAG 中,2PA =,22AG =,23PG =,所以222PA AG PG +=,即PA AG ⊥.……………………………………………………………13分因为226sin 323AG APK PG ∠===. 所以直线AP 与平面PBC 所成角的正弦值为63.…………………………………………………14分 BPACDEGK解法4:以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,……………………………………………………………………8分则()0,2,0A -,()2,0,0B,()0,2,0C ,()0,1,3P -.于是()0,1,3AP =,()2,1,3PB =- ,()0,3,3PC =-.设平面PBC 的法向量为(),,x y z =n ,则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩ n n 即230,330.x y z y z ⎧+-=⎪⎨-=⎪⎩ 取1y =,则3z =,2x =.所以平面PBC 的一个法向量为()2,1,3=n .………………………………12分设直线AP 与平面PBC 所成的角为θ,则46sin cos 326AP AP AP θ⋅=<>===⋅⋅n ,n n . 所以直线AP 与平面PBC 所成角的正弦值为63.………………………………14分若第(1)、(2)问都用向量法求解,给分如下:(1)以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,……………………………………………………………………………1分则()2,0,0B,()0,2,0C ,()0,1,3P -.于是()2,1,3BP =-- ,()2,2,0BC =-.因为()()2,1,32,2,00BP BC =---=,所以BP BC ⊥ .所以BP BC ⊥.所以PBC ∆为直角三角形.…………………………………………………………7分 (2)由(1)可得,()0,2,0A -.BPACDExyzBPACDExyz于是()0,1,3AP = ,()2,1,3PB =- ,()0,3,3PC =-.设平面PBC 的法向量为(),,x y z =n ,则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩ n n 即230,330.x y z y z ⎧+-=⎪⎨-=⎪⎩ 取1y =,则3z =,2x =.所以平面PBC 的一个法向量为()2,1,3=n .…………………………………12分设直线AP 与平面PBC 所成的角为θ,则46sin cos 326AP AP AP θ⋅=<>===⋅⋅n ,n n . 所以直线AP 与平面PBC 所成角的正弦值为63.……………………………14分19.(本小题满分14分)(本小题主要考查等比数列的通项、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识)(1)解:设等比数列{}n a 的公比为q ,依题意,有45323224,22.a a a a a +⎧=⎪⎨⎪=⎩即3452322,2.a a a a a =+⎧⎪⎨=⎪⎩……………………………………………2分 所以234111222112,2.a q a q a q a q a q ⎧=+⎪⎨=⎪⎩…………………………………………………………3分 由于10a ≠,0q ≠,解之得11,21.2a q ⎧=⎪⎪⎨⎪=⎪⎩或11,21.a q ⎧=⎪⎨⎪=-⎩………………………………5分又10,0a q >>,所以111,22a q ==,…………………………………………6分 所以数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭(*n ∈N ).………………………………7分(2)解:由(1),得()()252123n n n b a n n +=⋅++()()25121232n n n n +=⋅++.………………………………8分所以21121232n n b n n ⎛⎫=-⋅⎪++⎝⎭111(21)2(23)2n nn n -=-++.………………………………………………10分 所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232nn =-+. 故数列{}n b 的前n 项和()113232n nS n =-+.…………………………………14分 20.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力) (1)解:依题意可得(1,0)A -,(1,0)B .……………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,因为双曲线的离心率为5,所以2151b +=,即2b =.所以双曲线C 的方程为2214y x -=.……………………………………………3分 (2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+,………………………………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩…………………………………………………5分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k -=+.……………………………………6分同理可得,21244k x k +=-.……………………………………………………………7分所以121x x ⋅=.……………………………………………………………………8分证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =), 则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分 因为APAT k k =,所以121211y y x x =++,即()()2212221211y y x x =++.………………5分 因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=. 即()221141y x =-,()222241y x =-.…………………………………………6分所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.…………………………………7分 所以121x x ⋅=.………………………………………………………………………8分 证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++,……………………4分 联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩………………………………………………5分整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦, 解得1x =-或221122114(1)4(1)x y x x y +-=++.…………………………………………………………………6分 将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =. 所以121x x ⋅=.……………………………………………………………………8分 (3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则()111,PA x y =--- ,()111,PB x y =--.因为15PA PB ⋅≤,所以()()21111115x x y ---+≤,即221116x y +≤.…………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤. 因为点P 是双曲线在第一象限内的一点,所以112x <≤.………………………10分因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--.…………………11分由(2)知,121x x ⋅=,即211x x =. 设21t x =,则14t <≤,221245S S t t-=--. 设()45t t f t =--,则()()()222241t t f t t t-+'=-+=, 当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.………………………12分当2t =,即12x =时,()()2212max21S S f -==.……………………………13分所以2212S S -的取值范围为[]0,1.…………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max1S S -=,给1分.21.(本小题满分14分)(本小题主要考查函数、导数、不等式、数学归纳法、二项式定理等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力) (1)证明:设11()()()1xx f x g x e x ϕ=-=--,所以1()1xx e ϕ'=-.…………………………………………………………1分当0x <时,1()0x ϕ'<,当0x =时,1()0x ϕ'=,当0x >时,1()0x ϕ'>.即函数1()x ϕ在(,0)-∞上单调递减,在(0,)+∞上单调递增,在0x =处取得唯一极小值,………2分 因为1(0)0ϕ=,所以对任意实数x 均有 11()(0)0x ϕϕ=≥. 即1()()0f x g x -≥,所以()f x 1()g x ≥.……………………………………………………………3分 (2)解:当0x >时,()f x >()n g x .……………………………………………4分用数学归纳法证明如下:①当1n =时,由(1)知()f x 1()g x >.②假设当n k =(*k ∈N )时,对任意0x >均有()f x >()k g x ,……………5分令()()()k k x f x g x ϕ=-,11()()()k k x f x g x ϕ++=-,因为对任意的正实数x ,()()11()()()k kk x f x g x f x g x ϕ++'''=-=-, 由归纳假设知,1()()()0k k x f x g x ϕ+'=->.……………………………6分 即11()()()k k x f x g x ϕ++=-在(0,)+∞上为增函数,亦即11()(0)k k x ϕϕ++>, 因为1(0)0k ϕ+=,所以1()0k x ϕ+>. 从而对任意0x >,有1()()0k f x g x +->. 即对任意0x >,有1()()k f x g x +>.这就是说,当1n k =+时,对任意0x >,也有()f x >1()k g x +. 由①、②知,当0x >时,都有()f x >()n g x .……………………8分 (3)证明1:先证对任意正整数n ,()1e n g <.由(2)知,当0x >时,对任意正整数n ,都有()f x >()n g x . 令1x =,得()()11=e n g f <.所以()1e n g <.……………………………………………………………………9分再证对任意正整数n ,()1232222112341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭111112!3!!n =+++++ .要证明上式,只需证明对任意正整数n ,不等式211!nn n ⎛⎫≤ ⎪+⎝⎭成立. 即要证明对任意正整数n ,不等式1!2nn n +⎛⎫≤ ⎪⎝⎭(*)成立.……………………………………10分以下分别用数学归纳法和基本不等式法证明不等式(*): 方法1(数学归纳法):①当1n =时,1111!2+⎛⎫≤ ⎪⎝⎭成立,所以不等式(*)成立.②假设当n k =(*k ∈N )时,不等式(*)成立,即1!2kk k +⎛⎫≤ ⎪⎝⎭.……………………………………………………………………11分则()()()1111!1!1222k k k k k k k k +++⎛⎫⎛⎫+=+≤+= ⎪ ⎪⎝⎭⎝⎭.因为111101111112211121C C C 2111112k k k k k k k k k k k k k k k k ++++++++++⎛⎫⎪+⎛⎫⎛⎫⎛⎫⎝⎭==+=+++≥ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭+⎛⎫⎪⎝⎭,…12分 所以()11121!222k k k k k ++++⎛⎫⎛⎫+≤≤ ⎪⎪⎝⎭⎝⎭.………………………………………13分这说明当1n k =+时,不等式(*)也成立.由①、②知,对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.………………14分方法2(基本不等式法): 因为112n n +⋅≤,……………………………………………………11分 ()1122n n +-⋅≤, ……,112n n +⋅≤, 将以上n 个不等式相乘,得1!2nn n +⎛⎫≤ ⎪⎝⎭.…………………………………13分所以对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.……………14分。
惠州市2012届高三第一次调研考试数学试题(理科)(本试卷共5页,21小题,满分150分。
考试用时120分钟)注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
第Ⅰ卷 选择题(共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合(){},|0,,A x y x y x y R =+=∈(){},|0,,B x y x y x y R =-=∈,则集合A B =( )A .)0,0(B .{}0C .{})0,0(D .∅ 2.复数ii+-11的值是( ) A .1 B .1- C .i D .i -3.已知向量=(1,2)-,=(,2)x ,若⊥,则||=( )AB .C .5D .204.已知11()122xf x =--,()f x 则是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇且偶函数 5.已知直线l 、m ,平面βα、,则下列命题中:①.若βα//,α⊂l ,则β//l ②.若βα⊥,α⊥l ,则β//l ③.若α//l ,α⊂m ,则m l //④.若βα⊥,l =⋂βα, l m ⊥,则β⊥m ,其中真命题有( )A .0个B .1个C .2个D .3个 6.给出计算201614121++++ 的值的一个程序框图如右图,其中判断框内应填入的条件是( ). A .10>i B .10<i C .20>i D .20<i 7.“lg ,lg ,lg x y z 成等差数列”是“2y xz =”成立的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既不充分也不必要条件8.规定记号“⊗”表示一种运算,即2a b ab a b ⊗=++ (,)a b 为正实数,若31=⊗k ,则k =( ) A .2- B .1 C .2- 或1 D .2第Ⅱ卷 非选择题(共110分)二、填空题(本大题共7小题,分为必做题和选做题两部分.每小题5分,满分30分) (一)必做题:第9至13题为必做题,每道试题考生都必须作答. 9.6)1(xx -的展开式中的常数项是 .(用数字作答)10.右图是底面半径为1,母线长均为2的圆锥和圆柱的组合体,则该组合体的侧视图的面积为 .11.设平面区域D 是由双曲线1422=-x y 的两条渐近线和抛物线28y x =-的准线所围成的 三角形(含边界与内部).若点D y x ∈),(,则目标函数y x z +=的最大值为 .12.一个容量为20的样本,数据的分组及各组的频数如下表:(其中*,x y N ∈)则样本在区间 [10,50 ) 上的频率 .13.已知数列{}n a 满足12a =,*121()n n a a n N +=+∈,则该数列的通项公式n a = .(二)选做题:第14、15题为选做题,考生只能选做其中一题,两题全答的,只计前一题的得分。
2011—2012学年度下学期高三年级联考试题(理科数学)本试卷分选择题和非选择题两部分,共4页.满分150分.考试时间120分钟.一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x∈R |x<5-2},B={1,2,3,4),则(C R A) B=( ) A .{1,2,3,4} B .{2,3,4} C .{3,4}D .{4}2、已知函数①y=sinx+cosx ,②y=22sin xcosx ,则下列结论正确的是( ) A .两个函数的图象均关于点(-4π,0)成中心对称B .两个函数的图象均关于直线x=-4π成轴对称C .两个函数在区间(-4,4ππ)上都是单调递增函数D .两个函数的最小正周期相同3、设f(x)=[][]⎩⎨⎧∈-∈2,121,02x xx x ,则⎰2)(dx x f 的值为( )A .43B .54C .65D .674、一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm),则该三棱柱的表面积为( )A .(24+83)cm 2B .24πcm 2C .314cm 2D .318cm 2 5、下列四个命题中,正确的是( )A .已知ξ服从正态分布N(0,σ2),且P(-2≤ξ≤0)=0.4,则P (ξ>2)=0.2 B .设回归直线方程为y=2-2.5x ,当变量x 增加一个单位时,y 平均增加2个单位C .已知命题p :∃x∈R,tanx=1;命题q :∀x∈R,x 2-x+1>0.则命题“p ∧﹁q ”是假命题 D .已知直线l 1:ax+3y-1=0,l 2:x+by+1=0,则l 1⊥l 2的充要条件是 ba =-36、给出30个数:1,2,4,7,11,……其规律是 第一个数是1,第二个数比第一个数大1, 第三个数比第二个数大2,第四个数比第三个数大3,……以此类推,要计算这30个数的和,现已给出了该问题 的程序框图如右图所示,那么框图中判断框①处和执行 框②处应分别填入( )A .i≤30?;p=p+i-1B .i≤29?;p=p+i+1C .i≤31?:p=p+iD .i≤30?;p=p+i7、已知k ∈AB Z ,=(k,1),AC =(2,4),若AB ≤10,则△ABC 是直角三角形的概率是( ) A .74 B .73 C .72 D .718、设函数f(x)的定义域为R ,若存在常数M>0使x M x f ≤)(对一切实数x 均成立,则称函数f(x)为F 函数.现给出下列函数①f(x )=x 2,②f(x)=122+-x x x③f(x)=x(1-2x),④f(x)是定义在实数集R 上的奇函数,且对一切x 1x 2均有212)()(21x x x f x f -≤-.其中是F 函数的序号为( )A.① ② ③B.② ④C. ② ③D.③ ④二、填空题:(本大题共7小题,第14、15小题任选一题作答,多选的按1题给分,共30分)(一)必做题 (9~13题) 9、i 是虚数单位,ii -12的共轭..复数的数是________ 10、若实数x ,y 满足⎪⎩⎪⎨⎧≤≤≥-+5402y x y x ,则s=y-x 的最小值为________11、已知(xx 321⋅-)n 展开式的第4项为常数项,则展开式中各项系数的和为________12、已知数列{a n }的前n 项和S n =n 2-7n ,且满足16<a k +a k+1<22,则正整数k=_______13、已知函数f(x)=221x -alnx (a∈R),若函数f(x)在[1,2]为增函数,且f /(x)在[1,2]上存在零点(f /(x)为f(x)的导函数),则a 的值为___________(二)选做题(14、15题,考生只能从中选做一题)14、(极坐标与参数方程选做题)已知曲线C 的极坐标方程是θρsin 2=,直线l 的参数方程 是⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 54253(t 为参数).设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,则MN 的最大值为____________15、(几何证明选讲选做题)如图,⊙O 中,直径AB 和弦DE 互相 垂直,C 是DE 延长线上一点,连结BC 与圆0交于F , 若∠CFE=α()2,0(πα∈),则∠DEB___________三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤。
2012年广州市番禺区中考数学一模本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟.注意事项:1.1.本试卷共全卷满分本试卷共全卷满分150分,考试时间为120分钟分钟..考生应将答案全部填(涂)在答题卡相应位置上,写在本试卷上无效本试卷上无效..考试时允许使用计算器;考试时允许使用计算器;2. 2.答题前考生务必将自己的姓名、考试证号等填(涂)写到答题卡的相应位置上;答题前考生务必将自己的姓名、考试证号等填(涂)写到答题卡的相应位置上;答题前考生务必将自己的姓名、考试证号等填(涂)写到答题卡的相应位置上;3. 3.作图必须用作图必须用2B 铅笔,并请加黑加粗,描写清楚铅笔,并请加黑加粗,描写清楚. .第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)1.不等式组11032x x ì+>ïíï-î,≥0的解集是(※)的解集是(※). .A .123x -<≤ B B..2x ≥ C C..32x -<≤ D D..3x <- 2. 2. 据测算,据测算,世博会召开时,世博会召开时,上海使用清洁能源可减少二氧化碳排放约上海使用清洁能源可减少二氧化碳排放约16万吨,万吨,将将16万吨用科学记数法表示为(※)(※). .A .1.61.6××610吨B B..1.61.6××510吨C C..1.61.6××410吨D D..1616××410吨 3. 3. 下列运算正确的是(※)下列运算正确的是(※)下列运算正确的是(※). .A .222()m n m n -=- B B..236()m m = C C..224()m n mn = D D..22m m -=-4. 4. 一只碗如图一只碗如图1所示摆放,则它的俯视图是(※)所示摆放,则它的俯视图是(※). .5.下列命题中,正确的是(※).下列命题中,正确的是(※). .A .若0a b ×>,则00a b >>,B B.若.若0a b ×>,则00a b <<,A .B .C . D.图1 C .若0a b ×=,则0a =, 且0b =D D.若.若0a b ×=,则0a =,或0b = 6.当实数x 的取值使得2x -有意义时,函数41y x =+中y 的取值范围是(※)的取值范围是(※). .A .y ≥9B B..y ≤9C C..=9yD D..y -7³ 7.一元二次方程(2)0x x -=根的情况是(※)根的情况是(※). .A .没有实数根.没有实数根B B B.只有一个实数根.只有一个实数根.只有一个实数根C .有两个相等的实数根.有两个相等的实数根D D D.有两个不相等的实数根.有两个不相等的实数根.有两个不相等的实数根8.如图2,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于点C ,若120AOB Ð=°,则大圆半径R 与小圆半径r 之间满足(※)之间满足(※). .A .3R r =B .3R r =C C..2R r =D D..22R r =9. 9. 在一幅长在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅挂图,如图3所示,如果要使整幅挂图的面积是54002cm ,设金色纸边的宽为x cm ,那么x 所满足的方程是(※)所满足的方程是(※). .A A..2213014000x x +-= B B..2653500x x +-=C .014001302=--x x D D..0350652=--x x1010.已知圆锥的底面半径为.已知圆锥的底面半径为5cm 5cm,侧面积为,侧面积为6565ππcm 2,设圆锥的母线与高的夹角为q (如图4所示),则cos q 的值为(※)值为(※). .A .512B B..513C C..1013D D..1213第二部分 非选择题(共120分)二、填空题(本大题共(本大题共66小题,每小题小题,每小题33分,满分分,满分181818分.)分.)11.计算:0201216-= . 12.方程21x x =+的解是x = = .. 13.在直角梯形ABCD 中,AD BC ∥,90C Ð=°,2A B Ð=Ð,则B Ð= .图2 qAC BO80cm x xxx50c图4 图3 图5 C BPAO14.如图5,AB 是O ⊙的直径,点C 在O ⊙上,=AC BC .动点P 在弦BC 上,则PAB Ð可能为可能为__________________度(写出一个..符合条件的度数即可)符合条件的度数即可). . 15.若2a £,化简2(2)+1a -= .16. 在图6中, , 互相全等的平行四边形按一定的规律排列互相全等的平行四边形按一定的规律排列互相全等的平行四边形按一定的规律排列..其中,第①个图形中有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数为个数为 个个.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)先化简,再求值:2(1)(1)x x x ++-,其中2x =-.18.(本小题满分9分)已知:如图7,在ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点,且AE=CG ,BF=DH .求证:AEH △≌CGF △.图6 图①图①图②图②图③图③图④图④……ABCD EF图7 GHxyAO–1–2–312345–1–2–312321.(本小题满分12分)为了解某校九年级学生的体能情况,体育老师随机抽取部分学生进行引体向上测试,并对成绩进行了统计,绘制成图9和图10两幅尚不完整的统计图. (1)本次抽测的学生有多少人)本次抽测的学生有多少人??抽测成绩的众数是多少抽测成绩的众数是多少? ? (2)请你将图10中的统计图补充完整;中的统计图补充完整;(3)若规定引体向上5次以上(含5次)为达标,则该校350名九年级学生中估计有多少人此项目达标?名九年级学生中估计有多少人此项目达标?22.(本题满分12分) 小明家所在居民楼的对面有一座大厦AB ,=50AB 米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,37°,大厦底部大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)4次 20% 3次7次 12% 5次6次图9 人数/人20 16 12 8 4 4 10 14 6 0 3 4 6 7 5 抽测成绩/次图10 图11 48°B37°3DCA23.(本小题满分12分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且12CBF CAB Ð=Ð.(1)求证:直线BF 是⊙O 的切线;的切线; (2)若AB=5,5sin 5CBF Ð=,求BC 和BF 的长.的长.24.(本小题满分14分) 如图1313,,在矩形ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠后得到GBE △,且点G 在矩形ABCD 内部,再延长BG 交DC 于点F . (1)判断GF 与DF 之长是否相等之长是否相等, , , 并说明理由.并说明理由.并说明理由. (2)若2AD AB =,求DCDF 的值.的值. (3)若DC nDF =·,求ADAB的值.的值.OF EDCB A图13 FAEDBCG25.(本小题满分14分)已知0m >,点E 的坐标为()30-,,关于x 的二次函数()()333y x m x mm=-+-图象的顶点为M ,图象交x 轴于A B 、两点,交y 轴正半轴于D 点.以AB 为直径作圆,其圆心为C . (1)写出A B D 、、三点的坐标(可用含m 的代数式表示);(2)当m 为何值时M 点在直线ED 上?判定此时直线ED 与圆的位置关系?与圆的位置关系?(3)连接ED ,当m 变化时,试用m 表示AED △的面积S ,并在给出的直角坐标系中画出S 关于m 的函数图象的示意图.图象的示意图.B图14 COEA D My x 图15O Sm2012年广州市番禺区中考数学一模答案一、选择题(本大题共10小题,每小题3分,满分30分)题号 1 2 3 4 5 6 7 8 9 10 答案 CBBCDADCBD第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.3-;12.2-;13.60°;14.25°,(0~45°°均可);15.3a -;16. 41三、解答题(本大题共9小题,满分102分)17.解:原式解:原式==2221x x x x +++- ………………………………………………………………66分 =31x + …………………………………………77分当2x =-时,原式时,原式==3(2)1´-+ …………………………………………88分=321-+…………………………………………99分18.证明:如图,在□ABCD 中,BC=DA ,C A Ð=Ð.…………………….……………………44分∵BF=DH ,∴BC -BF=DA -DH, 即FC=HA . …………………………………………66分 又∵AE=CG ,……………………,……………………77分∴AEH △≌CGF △.…………………….……………………99分 19.解:(1)∵)∵ 点A (1,)n -在一次函数2y x =-的图象上,∴的图象上,∴ 2(1)2n =-´-=.….… 2 2分∴ 点A 的坐标为12-(,).…………………….……………………44分 ∵ 点A 在反比例函数ky x=的图象上,∴的图象上,∴ 2k =-.……………….………………55分 ∴ 反比例函数的解析式为2y x=-.……….……… 6 6分 (2)点P 的坐标为(2,0)(0,4)-或.……………….………………1010分 20.解:解: (1)P (抽到牌面数字4)(抽到牌面数字4)==13.………………………………33分(2)游戏规则对双方不公平.………………)游戏规则对双方不公平.………………44分 理由如下:理由如下:【方法一】作数形图如图所示【方法一】作数形图如图所示, , , ………………………………………………77分由上述树状图知:所有可能出现的结果共有9种.种.P (抽到牌面数字相同)(抽到牌面数字相同)==3193=,………………,………………88分 P (抽到牌面数字不相同)(抽到牌面数字不相同)==6293=.……………….………………99分 ∵1233<,∴此游戏不公平,小李赢的可能性大.………………,∴此游戏不公平,小李赢的可能性大.………………1010分 【方法二】列表如下【方法二】列表如下, , , ………………………………………………77分小李小李小王小王3453 (3,3) (3,4) (3,5)4 (4,3) (4,4) (4,5) 5(5,3) (5,4) (5,5)开始开始3 4 5 3 4 5 3 4 5 3 4 5 (3,3)(3,4)(3,5)(4,3)(4,4)(4,5)(5,3)(5,4)(5,5)【以下同上】【以下同上】21.解:(1) 抽测的学生有50人, , ……2分抽测成绩的众数是5(5(次次).….…44分 (2)如图所示;)如图所示; ……………………77分 (3)1614635025250++´=(人). ……………………1010分答:估计该校350名九年级男生中名九年级男生中, ,约有250人左右体能达标.…………人左右体能达标.…………1212分22.解:如图解:如图,,设,,CD x AD y ==则由题意有50BD y =-.………….…………11分 在Rt Rt△△ACD 中,中, tan37AD yCD x°==,............, (4)4分 则tan 37y x =×°, 在Rt Rt△△BCD 中,中,50tan48BD yCD x-°==,…………,…………77分 则50tan 48y x =-×°, ∴tan 3750tan 48x x ×°=-×°.……………………88分 ∴505026.82tan37tan480.7536 1.1106x =»=°+°+.………….…………1010分答:小明家所在居民楼与大厦的距离CD 大约是27米.…………………米.…………………1212分23.(1)证明:连结AE .………….…………11分∵ AB 是⊙O 的直径,∴的直径,∴ 90AEB Ð=° , , ∴∴ 1290Ð+Ð=°.………….…………22分 ∵ AB=AC ,∴,∴ 112CAB Ð=Ð.又∵又∵ 12CBF CAB Ð=Ð,∴,∴ 1CBF Ð=Ð.∴ 290CBF Ð+Ð=°.即∠ABF = 90°.…………= 90°.…………33分人数/人20 16 12 8 4 4 10 14 6 0 3 4 6 7 5 抽测成绩/次16 图11 48°B37°3DCA21A BCDEFO G∵ AB 是⊙O 的直径,…………的直径,…………44分∴ 直线BF 是⊙O 的切线.…………的切线.…………55分(2)解:过点C 作CG ⊥AB 于点G .………….…………66分∵ 5sin 5CBF Ð=,【过点C 作CG ⊥BF 亦可类似求解】亦可类似求解】1CBF Ð=Ð,∴,∴ 5sin 15Ð=.………….…………77分∵ 90AEB Ð=°,AB=5,∴ BE=sin 1AB ×Ð=5.又∵又∵ AB=AC ,90AEB Ð=°,∴ 225BC BE ==.在Rt Rt△△ABE 中,由勾股定理得中,由勾股定理得 AE =2225AB BE -=.………….…………88分 ∴ 25sin 25Ð=,5cos 25Ð=.在Rt Rt△△CBG 中,可求得中,可求得 4GC =,2GB =.∴ AG=3.∵.∵ GC ∥BF ,∴,∴ △AGC ∽△ABF .………….…………1010分∴ GC AGBF AB =.∴.∴ 203GC AB BF AG ×==.………….…………1212分24.解:(1)GF DF \=.………….…………11分连接EF ,则90EGF D Ð=Ð=°,EG AE ED EF EF ===,. Rt Rt EGF EDF \△≌△.………….…………22分GF DF \=.………….…………33分(2)由()由(11)知,GF DF =.设AB a =,DF b =,则有2BC a =,CF DC DF a b =-=-,…………,…………44分 由对称性有BG AB a ==, BF BG GF a b \=+=+.………….…………55分 在Rt BCF △中,222BC CF BF +=,即222(2)()()a a b a b +-=+,…………,…………66分F A E D B CG2.23,03,3=33==333=+(33-(34333-+. 433,333=+2 -2 3 01m m >\= ,.所以,当1m =时,M 点在直线DE 上.…………上.…………88分连接CD C ,为AB 中点,C 点坐标为()0C m ,.312OD OC CD D ==\= ,,,点在圆上,点在圆上,又222312OE DE OD OE ==+=,,22222164EC CD CD DE EC ==\+=,,.90FDC \Ð=°,\直线ED 与C ⊙相切.…………相切.…………1010分(3)当03m <<时,()13322AED S AE OD m m ==-△·即:233322S m m =-+.……………………1111分当3m >时,()13322AED S AE OD m m ==-△·,即:233322S m m =-.……………………1212分其图象示意图如图中实线部分.…………【每个区间1分】分】1414分。
试卷类型:A2012年广州市普通高中毕业班综合测试(一)数学(理科)2012.3本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 方差()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中12nx x x x n+++= . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A .2-B .1-C .0D .22.已知全集U =R ,函数y =A ,函数()2log 2y x =+的定义域为集合B ,则集合()U A B = ðA .()2,1--B .(]2,1--C .(),2-∞-D .()1,-+∞ 3.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为12π,则ω的值为 A .3 B .6 C .12D .244.已知点()P a b ,(0ab ≠)是圆O :222x y r +=内一点,直线l 的方程为20ax by r ++=,那么直线l 与圆O 的位置关系是A .相离B .相切C .相交D .不确定5.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件6.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为A .8-B .6-C .8D .67.在△ABC 中,60ABC ∠=,2AB =,6BC =,在BC 上任取一点D ,使△ABD 为钝角三角形的概率为 A .16 B .13 C .12 D .238.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为 A .252 B .216 C .72D .42二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分(一)必做题(9~13题) 9.如图1是一个空间几何体的三视图,则该几何体的体积为 .10.已知()211d 4kx x +⎰2≤≤,则实数k 的取值范围为 .11.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为 .12.已知集合{}1A x x =≤≤2,{}1B x x a =-≤,若A B A =I ,则实数a 的取值范围为 .13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则5a = ,若145n a =,则n = .512122图2图1 俯视图 正(主)视图 侧(左)视图(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3OP =cm ,弦CD 过点P ,且13CP CD =,则CD 的长为 cm . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t =+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)设3,2απ⎛⎫∈π ⎪⎝⎭,若234f απ⎛⎫+= ⎪⎝⎭,求cos 4απ⎛⎫- ⎪⎝⎭的值.17.(本小题满分12分)如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示.已知甲、乙两个小组的数学成绩的平均分相同.(1)求a 的值; (2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和均值(数学期望).(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.) 18.(本小题满分14分)如图5所示,在三棱锥ABC P -中,AB BC ==平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,PD =.(1)证明△PBC 为直角三角形;(2)求直线AP 与平面PBC 所成角的正弦值.图4 甲组 乙组 8 9 7 a 3 5 7 9 6 6 图5PACD图319.(本小题满分14分)等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()252123n n n b a n n +=++,求数列{}n b 的前n 项和n S .20.(本小题满分14分)已知椭圆2214y x +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T . (1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TAB ∆与POB ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uu rg ≤15,求2212S S -的取值范围.21.(本小题满分14分)设函数()e xf x =(e 为自然对数的底数),23()12!3!!nn x x x g x x n =+++++L (*n ∈N ). (1)证明:()f x 1()g x ≥;(2)当0x >时,比较()f x 与()n g x 的大小,并说明理由;(3)证明:()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭≤L (*n ∈N ).2012年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.9 10.2,23⎡⎤⎢⎥⎣⎦11.3 12.[]1,2 13.35,10 14. 15三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查两角和的正切、诱导公式、同角三角函数的基本关系和两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:9f π⎛⎫⎪⎝⎭tan 34ππ⎛⎫=+ ⎪⎝⎭……………………………………………………………………………1分 tantan 341tan tan34ππ+=ππ-…………………………………………………………………………3分 2==-………………………………………………………………………4分(2)解:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭………………………………………………………………5分()tan α=+π……………………………………………………………………6分tan 2α==.……………………………………………………………………7分所以sin 2cos αα=,即sin 2cos αα=. ① 因为22sin cos 1αα+=, ② 由①、②解得21cos 5α=.………………………………………………………………………………9分 因为3,2απ⎛⎫∈π ⎪⎝⎭,所以cos α=,sin α=10分 所以cos 4απ⎛⎫-⎪⎝⎭cos cos sin sin 44ααππ=+ ………………………………………………………11分⎛=+= ⎝⎭.……………………………………12分17.(本小题满分12分)(本小题主要考查统计、方差、随机变量的分布列、均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:依题意,得11(87899696)(87909395)44a ⨯+++=⨯++++,……………………………1分 解得3a =.…………………………………………………………………………………………………2分 (2)解:根据已知条件,可以求得两组同学数学成绩的平均分都为92x =.……………………………3分所以乙组四名同学数学成绩的方差为()()()()222221879293929392959294s ⎡⎤=-+-+-+-=⎣⎦. ……………………………5分(3)解:分别从甲、乙两组同学中各随机选取一名同学,共有4416⨯=种可能的结果.……………6分所以X 的所有可能取值为0,1,2,3,4,6,8,9.…………………………………………………8分由表可得1(0)16P X ==,2(1)16P X ==,1(2)16P X ==,4(3)16P X ==, 2(4)16P X ==,3(6)16P X ==,1(8)16P X ==,2(9)16P X ==.所以随机变量X 随机变量X 的数学期望为121423012346161616161616EX =⨯+⨯+⨯+⨯+⨯+⨯12891616+⨯+⨯…………………………11分 6817164==.…………………………………………………………………………………………12分 18.(本小题满分14分)(本小题主要考查空间线面关系、直线与平面所成角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明1:因为平面⊥PAC 平面ABC ,平面PAC 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥,所以PD ⊥平面ABC .…………………………………………………………………………………1分记AC 边上的中点为E ,在△ABC 中,AB BC =,所以AC BE ⊥.……………………10分因为AB BC ==4=AC,所以BE ==3分 因为PD ⊥AC ,所以△PCD为直角三角形. 因为PD =,3CD =,所以PC ===4分连接BD ,在Rt△BDE 中,因为BE =,1DE =, 所以BD ===5分因为PD ⊥平面ABC ,BD ⊂平面ABC ,所以PD ⊥BD . 在Rt △PBD 中,因为PD =,BD, 所以PB ===.…………………………………………………6分在PBC ∆中,因为BC =PB =PC =所以222BC PB PC +=.所以PBC ∆为直角三角形.………………………………………………………………………………7分证明2:因为平面⊥PAC 平面ABC ,平面PAC I 平面ABC AC =, PD ⊂平面PAC ,AC PD ⊥, 所以PD ⊥平面ABC .…………………………………………………………………………………1分记AC 边上的中点为E ,在△ABC 中,因为AB BC=,所以AC BE ⊥. 因为AB BC ==4=AC,所以BE ==3分连接BD ,在Rt△BDE 中,因为90BED ∠=o,BE =,1DE =,所以BD ===4分在△BCD 中,因为3CD =,BC =,BD ,所以222BC BD CD +=,所以BC BD ⊥.……………………………………………………………5分因为PD ⊥平面ABC ,BC ⊂平面ABC ,所以BC PD ⊥.…………………………………………………………………………………………6分 因为BD PD D = ,所以BC ⊥平面PBD .因为PB ⊂平面PBD ,所以BC PB ⊥.所以PBC ∆为直角三角形.………………………………………………………………………………7分(2)解法1:过点A 作平面PBC 的垂线,垂足为H ,连PH ,则APH ∠为直线AP 与平面PBC 所成的角.…………………………………………………………8分由(1)知,△ABC 的面积12ABC S AC BE ∆=⨯⨯=.…………………………………………9分 BPACDE因为PD =,所以13P ABC ABC V S PD -∆=⨯⨯133=⨯=10分 由(1)知PBC ∆为直角三角形,BC,PB =所以△PBC的面积11322PBC S BC PB ∆=⨯⨯==.……………………………………11分 因为三棱锥A PBC -与三棱锥P ABC -的体积相等,即A PBC P ABC V V --=,即133AH ⨯⨯=所以AH =.……………………………………………………………12分 在Rt △PAD中,因为PD =,1AD =,所以2AP ===.………………………………………………………13分因为3sin 2AH APH AP ∠=== 所以直线AP 与平面PBC 所成角的正弦值为3.…………………………………………………14分 解法2:过点D 作DM AP ∥,设DM PC M = ,则DM 与平面PBC 所成的角等于AP 与平面PBC 所成的角.……………………………………8分由(1)知BC PD ⊥,BC PB ⊥,且PD PB P = ,所以BC ⊥平面PBD .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PBD .过点D 作DN PB ⊥于点N ,连接MN ,则DN ⊥平面PBC .所以DMN ∠为直线DM 与平面PBC 所成的角.……10分 在Rt△PAD 中,因为PD =,1AD =, 所以2AP ===.………………………………………………………11分因为DM AP ∥,所以DM CD AP CA =,即324DM =,所以32DM =.………………………………12分 由(1)知BD =,PB=PD ,所以PD BD DN PB ⨯===13分 BP A CDMN因为2sin 32DN DMN DE ∠===所以直线AP 与平面PBC14分 解法3:延长CB 至点G ,使得BG BC =,连接AG 、PG ,……………………………………8分 在△PCG中,PB BG BC === 所以90CPG ∠=o,即CP PG ⊥.在△PAC中,因为PC =2PA =,4AC =, 所以222PA PC AC +=, 所以CP PA ⊥. 因为PA PG P =I ,所以CP ⊥平面PAG .…………………………………………………………………………………9分 过点A 作AK PG ⊥于点K , 因为AK ⊂平面PAG , 所以CP AK ⊥. 因为PG CP P =I ,所以AK ⊥平面PCG .所以APK ∠为直线AP 与平面PBC 所成的角.……………………………………………………11分 由(1)知,BC PB ⊥, 所以PG PC ==.在△CAG 中,点E 、B 分别为边CA 、CG 的中点,所以2AG BE ==12分 在△PAG 中,2PA =,AG =PG =所以222PA AG PG +=,即PA AG ⊥.……………………………………………………………13分因为sin AG APK PG ∠===. 所以直线AP 与平面PBC 所成角的正弦值为3.…………………………………………………14分 解法4:以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………8分BPACDEGK则()0,2,0A -,)B,()0,2,0C,(0,P -.于是(AP =,PB =,(0,3,PC =设平面PBC 的法向量为(),,x y z =n ,则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩ n n 即0,30.y y +==⎪⎩ 取1y =,则z =x =所以平面PBC 的一个法向量为=n .……………………………………………………12分设直线AP 与平面PBC 所成的角为θ,则sin cos 3AP AP AP θ⋅=<>===⋅n ,n n . 所以直线AP 与平面PBC 所成角的正弦值为3.…………………………………………………14分若第(1)、(2)问都用向量法求解,给分如下:(1)以点E 为坐标原点,以EB ,EC 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………1分则)B,()0,2,0C ,(0,P -.于是(BP =- ,()2,0BC =.因为(()0BP BC =-=,所以BP BC ⊥ .所以BP BC ⊥.所以PBC ∆为直角三角形.………………………………………………………………………………7分 (2)由(1)可得,()0,2,0A -.于是(AP = ,PB =,(0,3,PC =.设平面PBC 的法向量为(),,x y z =n ,AA则0,0.PB PC ⎧⋅=⎪⎨⋅=⎪⎩ n n即0,30.y y +==⎪⎩ 取1y =,则z =x =所以平面PBC的一个法向量为=n .……………………………………………………12分设直线AP 与平面PBC 所成的角为θ,则sin cos AP AP AP θ⋅=<>===⋅n ,n n . 所以直线AP 与平面PBC14分 19.(本小题满分14分)(本小题主要考查等比数列的通项、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识)(1)解:设等比数列{}n a 的公比为q ,依题意,有45323224,22.a a a a a +⎧=⎪⎨⎪=⎩即3452322,2.a a a a a =+⎧⎪⎨=⎪⎩……………………………………………………………………2分 所以234111222112,2.a q a q a q a q a q ⎧=+⎪⎨=⎪⎩………………………………………………………………………………3分 由于10a ≠,0q ≠,解之得11,21.2a q ⎧=⎪⎪⎨⎪=⎪⎩或11,21.a q ⎧=⎪⎨⎪=-⎩……………………………………………………5分又10,0a q >>,所以111,22a q ==,…………………………………………………………………6分 所以数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭(*n ∈N ).…………………………………………………7分(2)解:由(1),得()()252123n n n b a n n +=⋅++()()25121232n n n n +=⋅++.………………………………8分所以21121232n n b n n ⎛⎫=-⋅⎪++⎝⎭ 111(21)2(23)2n nn n -=-++.…………………………………………………………………10分所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232nn =-+. 故数列{}n b 的前n 项和()113232n nS n =-+.………………………………………………………14分 20.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得(1,0)A -,(1,0)B .…………………………………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,=2b =.所以双曲线C 的方程为2214y x -=.……………………………………………………………………3分 (2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+,………………………………………………………………………4分联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩………………………………………………………………………………5分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k -=+.所以22244k x k -=+.…………………………………………………………6分同理可得,21244k x k+=-.…………………………………………………………………………………7分 所以121x x ⋅=.……………………………………………………………………………………………8分证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =), 则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分 因为APAT k k =,所以121211y y x x =++,即()()2212221211y y x x =++.……………………………………5分 因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=. 即()221141y x =-,()222241y x =-.…………………………………………………………………6分所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.……………………………………………………7分 所以121x x ⋅=.……………………………………………………………………………………………8分 证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++,………………………………………4分 联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩…………………………………………………………………………5分整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦,解得1x =-或221122114(1)4(1)x y x x y +-=++.…………………………………………………………………6分 将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =. 所以121x x ⋅=.…………………………………………………………………………………………8分 (3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则()111,PA x y =--- ,()111,PB x y =--.因为15PA PB ⋅≤ ,所以()()21111115x x y ---+≤,即221116x y +≤.…………………………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤.因为点P 是双曲线在第一象限内的一点,所以112x <≤.…………………………………………10分因为1221||||||2S AB y y ==,21111||||||22S OB y y ==, 所以()()22222222122121121441544S S y y x x x x -=-=---=--.……………………………11分由(2)知,121x x ⋅=,即211x x =. 设21t x =,则14t <≤,221245S S t t-=--. 设()45t t f t =--,则()()()222241t t f t t t-+'=-+=, 当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.……………………………………………12分当2t =,即1x ()()2212max21S S f -==.………………………………………………13分所以2212S S -的取值范围为[]0,1.……………………………………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max1S S -=,给1分.21.(本小题满分14分)(本小题主要考查函数、导数、不等式、数学归纳法、二项式定理等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力) (1)证明:设11()()()1xx f x g x e x ϕ=-=--,所以1()1xx e ϕ'=-.………………………………………………………………………………………1分当0x <时,1()0x ϕ'<,当0x =时,1()0x ϕ'=,当0x >时,1()0x ϕ'>.即函数1()x ϕ在(,0)-∞上单调递减,在(0,)+∞上单调递增,在0x =处取得唯一极小值,………2分 因为1(0)0ϕ=,所以对任意实数x 均有 11()(0)0x ϕϕ=≥.即1()()0f x g x -≥,所以()f x 1()g x ≥.………………………………………………………………………………………3分 (2)解:当0x >时,()f x >()n g x .………………………………………………………………………4分用数学归纳法证明如下:①当1n =时,由(1)知()f x 1()g x >.②假设当n k =(*k ∈N )时,对任意0x >均有()f x >()k g x ,…………………………………5分令()()()k k x f x g x ϕ=-,11()()()k k x f x g x ϕ++=-,因为对任意的正实数x ,()()11()()()k kk x f x g x f x g x ϕ++'''=-=-, 由归纳假设知,1()()()0k k x f x g x ϕ+'=->.…………………………………………………………6分 即11()()()k k x f x g x ϕ++=-在(0,)+∞上为增函数,亦即11()(0)k k x ϕϕ++>, 因为1(0)0k ϕ+=,所以1()0k x ϕ+>. 从而对任意0x >,有1()()0k f x g x +->. 即对任意0x >,有1()()k f x g x +>.这就是说,当1n k =+时,对任意0x >,也有()f x >1()k g x +.由①、②知,当0x >时,都有()f x >()n g x .………………………………………………………8分 (3)证明1:先证对任意正整数n ,()1e n g <.由(2)知,当0x >时,对任意正整数n ,都有()f x >()n g x . 令1x =,得()()11=e n g f <.所以()1e n g <.……………………………………………………………………………………………9分再证对任意正整数n ,()1232222112341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭111112!3!!n =+++++ . 要证明上式,只需证明对任意正整数n ,不等式211!nn n ⎛⎫≤ ⎪+⎝⎭成立. 即要证明对任意正整数n ,不等式1!2nn n +⎛⎫≤ ⎪⎝⎭(*)成立.……………………………………10分以下分别用数学归纳法和基本不等式法证明不等式(*): 方法1(数学归纳法):①当1n =时,1111!2+⎛⎫≤ ⎪⎝⎭成立,所以不等式(*)成立.②假设当n k =(*k ∈N )时,不等式(*)成立,即1!2kk k +⎛⎫≤ ⎪⎝⎭.………………………………………………………………………………………11分则()()()1111!1!1222k k k k k k k k +++⎛⎫⎛⎫+=+≤+= ⎪ ⎪⎝⎭⎝⎭.因为111101111112211121C C C 2111112k k k k k k k k k k k k k k k k ++++++++++⎛⎫⎪+⎛⎫⎛⎫⎛⎫⎝⎭==+=+++≥ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭+⎛⎫⎪⎝⎭,…12分 所以()11121!222k k k k k ++++⎛⎫⎛⎫+≤≤ ⎪⎪⎝⎭⎝⎭.……………………………………………………………13分这说明当1n k =+时,不等式(*)也成立.由①、②知,对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.……………………………………14分方法2(基本不等式法):12n +≤,……………………………………………………………………………………11分12n +≤,……,12n +≤, 将以上n 个不等式相乘,得1!2nn n +⎛⎫≤ ⎪⎝⎭.……………………………………………………………13分所以对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.……………………………………14分。
试卷类型:A2012年广州市普通高中毕业班综合测试(一)数学(理科)2012.3本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.方差()()()2222121n s x x x xx xn ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中12n x x x x n+++= . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数()i i 1i a b +=-(其中,a b ∈R ,i 是虚数单位),则a b +的值为A .2-B .1-C .0D .22.已知全集U =R ,函数11y x =+的定义域为集合A ,函数()2log 2y x =+的定义域为集合B ,则集合()U A B = ðA .()2,1--B .(]2,1--C .(),2-∞-D .()1,-+∞ 3.如果函数()sin 6f x x ωπ⎛⎫=+⎪⎝⎭()0ω>的相邻两个零点之间的距离为12π,则ω的值为 A .3 B .6 C .12 D .244.已知点()P a b ,(0ab ≠)是圆O :222x y r +=内一点,直线l 的方程为20ax by r ++=,那么直线l 与圆O 的位置关系是5.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件6.已知两个非零向量a 与b ,定义sin θ⨯=a b a b ,其中θ为a 与b 的夹角.若()3,4-a =, ()0,2b =,则⨯a b 的值为A .8-B .6-C .8D .67.在△ABC 中,60ABC ∠= ,2A B =,6B C =,在B C 上任取一点D ,使△ABD 为钝角三角形的概率为 A .16B .13C .12D .238.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标(),,x y z ,若x y z ++是3的倍数,则满足条件的点的个数为 A .252 B .216 C .72D .42二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.如图1是一个空间几何体的三视图,则该几何体的体积为 .10.已知()211d 4kx x +⎰2≤≤,则实数k 的取值范围为 .11.已知幂函数()22657m y m m x-=-+在区间()0,+∞上单调递增,则实数m 的值为 .12.已知集合{}1A x x =≤≤2,{}1B x x a =-≤,若A B A =I ,则实数a 的取值范围为 .13.两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则5a = ,若145n a =,则n = .5 121 22图2图1 俯视图 22正(主)视图222侧(左)视图2 22(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,圆O 的半径为5cm ,点P 是弦AB 的中点,3O P =cm ,弦C D 过点P ,且13C P C D=,则C D 的长为 cm .15.(坐标系与参数方程选做题)在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s =+⎧⎨=-⎩(s 为参数)和C :22,x t y t=+⎧⎨=⎩(t 为参数), 若l 与C 相交于A 、B 两点,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()tan 34f x x π⎛⎫=+⎪⎝⎭. (1)求9f π⎛⎫⎪⎝⎭的值; (2)设3,2απ⎛⎫∈π ⎪⎝⎭,若234f απ⎛⎫+= ⎪⎝⎭,求cos 4απ⎛⎫- ⎪⎝⎭的值. P OABCD图3如图4所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以a 表示. 已知甲、乙两个小组的数学成绩的平均分相同.(1)求a 的值; (2)求乙组四名同学数学成绩的方差;(3)分别从甲、乙两组同学中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和均值(数学期望).(温馨提示:答题前请仔细阅读卷首所给的计算公式及其说明.)18.(本小题满分14分)如图5所示,在三棱锥ABC P -中,6AB BC ==,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3C D =,3PD =.(1)证明△PBC 为直角三角形;(2)求直线AP 与平面PBC 所成角的正弦值. 图4 甲组 乙组 89 7a 3579 6 6 图5BPACD等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()252123n n n b a n n +=++,求数列{}n b 的前n 项和n S .已知椭圆2214yx +=的左,右两个顶点分别为A 、B .曲线C 是以A 、B 两点为顶点,离心率为5的双曲线.设点P 在第一象限且在曲线C 上,直线AP 与椭圆相交于另一点T .(1)求曲线C 的方程;(2)设P 、T 两点的横坐标分别为1x 、2x ,证明:121x x ⋅=;(3)设TAB ∆与P O B ∆(其中O 为坐标原点)的面积分别为1S 与2S ,且PA PB uu r uurg ≤15,求2212S S -的取值范围.设函数()e xf x =(e 为自然对数的底数),23()12!3!!nn xxxg x x n =+++++L (*n ∈N ).(1)证明:()f x 1()g x ≥;(2)当0x >时,比较()f x 与()n g x 的大小,并说明理由;(3)证明:()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭≤L (*n ∈N ).2012年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数. 2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.题号 1 2 3 4 5 6 7 8答案D B C A B D C A二、填空题:本大题查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.第13题仅填对1个,则给3分.9.43310.2,23⎡⎤⎢⎥⎣⎦11.3 12.[]1,2 13.35,10 14.62 15.2三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)(本小题主要考查两角和的正切、诱导公式、同角三角函数的基本关系和两角差的余弦等知识,考查化归与转化的数学思想方法,以及运算求解能力) (1)解:9f π⎛⎫⎪⎝⎭tan 34ππ⎛⎫=+ ⎪⎝⎭……………………………………………………………………………1分 t a n t a n341tan tan34ππ+=ππ-…………………………………………………………………………3分 312313+==---.………………………………………………………………………4分(2)解:因为3tan 3444f ααπππ⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭………………………………………………………………5分 ()tan α=+π……………………………………………………………………6分tan 2α==.……………………………………………………………………7分所以sin 2cos αα=,即sin 2cos αα=. ①由①、②解得21cos 5α=.………………………………………………………………………………9分因为3,2απ⎛⎫∈π ⎪⎝⎭,所以5cos 5α=-,25sin 5α=-.…………………………………………10分 所以cos 4απ⎛⎫-⎪⎝⎭cos cos sin sin 44ααππ=+ ………………………………………………………11分 52252310525210⎛⎫=-⨯+-⨯=- ⎪ ⎪⎝⎭.……………………………………12分17.(本小题满分12分)(本小题主要考查统计、方差、随机变量的分布列、均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1)解:依题意,得11(87899696)(87909395)44a ⨯+++=⨯++++,……………………………1分解得3a =.…………………………………………………………………………………………………2分 (2)解:根据已知条件,可以求得两组同学数学成绩的平均分都为92x =.……………………………3分所以乙组四名同学数学成绩的方差为()()()()222221879293929392959294s ⎡⎤=-+-+-+-=⎣⎦.……………………………5分(3)解:分别从甲、乙两组同学中各随机选取一名同学,共有4416⨯=种可能的结果.……………6分这两名同学成绩之差的绝对值X 的所有情况如下表:87 89 96 96 87 0 2 9 9 93 6 4 3 3 93 6 4 3 3 958611所以X 的所有可能取值为0,1,2,3,4,6,8,9.…………………………………………………8分 由表可得1(0)16P X ==,2(1)16P X ==,1(2)16P X ==,4(3)16P X ==, 2(4)16P X ==,3(6)16P X ==,1(8)16P X ==,2(9)16P X ==.所以随机变量X 的分布列为:X 01 2 3 4 6 8 9 P116216116416216316116216随机变量X 的数学期望为121423012346161616161616E X =⨯+⨯+⨯+⨯+⨯+⨯12891616+⨯+⨯…………………………11分6817……………………10分甲乙X18.(本小题满分14分)(本小题主要考查空间线面关系、直线与平面所成角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明1:因为平面⊥PAC 平面ABC ,平面PAC 平面A B C A C =, PD ⊂平面PAC ,AC PD ⊥,所以P D ⊥平面ABC .…………………………………………………………………………………1分记AC 边上的中点为E ,在△ABC 中,A B B C =,所以AC BE ⊥. 因为6AB BC ==,4=AC ,所以()2222622BE BC C E=-=-=.………………3分因为P D ⊥AC ,所以△PC D 为直角三角形. 因为3PD =,3C D =, 所以()22223323PC PD C D=+=+=.………4分连接BD ,在R t △BD E 中,因为2BE =,1D E =, 所以()2222213BD BE D E=+=+=.…………5分因为P D ⊥平面ABC ,BD ⊂平面ABC ,所以P D ⊥BD . 在R t △PBD 中,因为3PD =,3BD =,所以()()2222336PB PD BD=+=+=.…………………………………………………6分在PBC ∆中,因为6BC =,6PB =,23PC =,所以222BC PB PC +=.所以PBC ∆为直角三角形.………………………………………………………………………………7分证明2:因为平面⊥PAC 平面ABC ,平面PAC I 平面A B C A C =, PD ⊂平面PAC ,AC PD ⊥, 所以P D ⊥平面ABC .…………………………………………………………………………………1分记AC 边上的中点为E ,在△ABC 中,因为A B B C =,所以AC BE ⊥. 因为6AB BC ==,4=AC ,所以()2222622BE BC C E=-=-=.………………3分连接BD ,在R t △BD E 中,因为90BED ∠=o,2BE =,1D E =,所以()2222213BD BE D E=+=+=.………………………………………………………4分在△BC D 中,因为3C D =,6BC =,3BD =,所以222BC BD CD +=,所以BC BD ⊥.……………………………………………………………5分因为P D ⊥平面ABC ,B C ⊂平面ABC ,所以BC PD ⊥.…………………………………………………………………………………………6分 因为BD PD D = ,所以B C ⊥平面PBD . 因为PB ⊂平面PBD ,所以B C P B ⊥.所以PBC ∆为直角三角形.………………………………………………………………………………7分BPACDE(2)解法1:过点A 作平面PBC 的垂线,垂足为H ,连P H ,则A P H ∠为直线AP 与平面PBC 所成的角.…………………………………………………………8分由(1)知,△ABC 的面积1222A B C S A C B E ∆=⨯⨯=.…………………………………………9分因为3PD =,所以13P A B C A B C V S P D -∆=⨯⨯12622333=⨯⨯=.…………………………10分由(1)知PBC ∆为直角三角形,6BC =,6PB =,所以△PBC 的面积1166322P B C S BC PB ∆=⨯⨯=⨯⨯=.……………………………………11分因为三棱锥A P B C -与三棱锥P A B C -的体积相等,即A PBC P ABC V V --=,即126333AH ⨯⨯=,所以263AH =.……………………………………………………………12分在R t △PAD 中,因为3PD =,1AD =,所以()2222312AP PD AD=+=+=.………………………………………………………13分因为2663sin 23A H A P H A P∠===.所以直线AP 与平面PBC 所成角的正弦值为63.…………………………………………………14分解法2:过点D 作D M A P ∥,设DM PC M = ,则D M 与平面PBC 所成的角等于AP 与平面PBC 所成的角.……………………………………8分由(1)知BC PD ⊥,B C P B ⊥,且PD PB P = ,所以B C ⊥平面PBD . 因为B C ⊂平面PBC ,所以平面P B C ⊥平面PBD .过点D 作D N P B ⊥于点N ,连接M N , 则D N ⊥平面PBC .所以D M N ∠为直线D M 与平面PBC 所成的角.……10分 在R t △PAD 中,因为3PD =,1AD =,所以()2222312AP PD AD=+=+=.………………………………………………………11分因为D M A P ∥,所以D M C D A PC A=,即324D M =,所以32D M =.………………………………12分由(1)知3BD =,6PB =,且3PD =,所以33626P D B D D N PB⨯⨯===.……………………………………………………………13分BP ACDMN因为662sin 332D N D M N D E∠===, 所以直线AP 与平面PBC 所成角的正弦值为63.…………………………………………………14分解法3:延长C B 至点G ,使得B G B C =,连接A G 、P G ,……………………………………8分 在△P C G 中,6PB BG BC ===,所以90CPG ∠=o ,即C P P G ⊥.在△PAC 中,因为23PC =,2PA =,4A C =,所以222PA PC AC +=, 所以C P P A ⊥. 因为PA PG P =I , 所以C P ⊥平面PAG .…………………………………………………………………………………9分过点A 作A K P G ⊥于点K , 因为A K ⊂平面PAG , 所以C P AK ⊥. 因为PG CP P =I ,所以AK ⊥平面P C G .所以APK ∠为直线AP 与平面PBC 所成的角.……………………………………………………11分 由(1)知,B C P B ⊥, 所以23PG PC ==.在△C AG 中,点E 、B 分别为边C A 、C G 的中点,所以222AG BE ==.………………………………………………………………………………12分 在△PAG 中,2PA =,22AG =,23PG =,所以222PA AG PG +=,即P A A G ⊥.……………………………………………………………13分因为226sin 323A G A P K P G∠===.所以直线AP 与平面PBC 所成角的正弦值为63.…………………………………………………14分解法4:以点E 为坐标原点,以E B ,E C 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………8分BPACDEGK则()0,2,0A -,()2,0,0B,()0,2,0C ,()0,1,3P -. 于是()0,1,3AP =,()2,1,3PB =-,()0,3,3PC =-.设平面PBC 的法向量为(),,x y z =n ,则0,0.P B P C ⎧⋅=⎪⎨⋅=⎪⎩ n n 即230,330.x y z y z ⎧+-=⎪⎨-=⎪⎩ 取1y =,则3z =,2x =.所以平面PBC 的一个法向量为()2,1,3=n .……………………………………………………12分设直线AP 与平面PBC 所成的角为θ,则46sin cos 326AP AP AP θ⋅=<>===⋅⋅n ,n n. 所以直线AP 与平面PBC 所成角的正弦值为63.…………………………………………………14分若第(1)、(2)问都用向量法求解,给分如下:(1)以点E 为坐标原点,以E B ,E C 所在的直线分别为x 轴,y 轴建立如图的空间直角坐标系E xyz -,…………………………………………………………………………………………………1分则()2,0,0B,()0,2,0C ,()0,1,3P -.于是()2,1,3BP =-- ,()2,2,0BC =-.因为()()2,1,32,2,00BP BC =---=,所以BP BC ⊥ .所以B P B C ⊥.所以PBC ∆为直角三角形.………………………………………………………………………………7分(2)由(1)可得,()0,2,0A -.于是()0,1,3AP = ,()2,1,3PB =- ,()0,3,3PC =-.设平面PBC 的法向量为(),,x y z =n ,BPACD ExyzBPACD Ex yz则0,0.P B P C ⎧⋅=⎪⎨⋅=⎪⎩ n n 即230,330.x y z y z ⎧+-=⎪⎨-=⎪⎩ 取1y =,则3z =,2x =.所以平面PBC 的一个法向量为()2,1,3=n .……………………………………………………12分设直线AP 与平面PBC 所成的角为θ,则46sin cos 326AP AP AP θ⋅=<>===⋅⋅n ,n n. 所以直线AP 与平面PBC 所成角的正弦值为63.…………………………………………………14分19.(本小题满分14分)(本小题主要考查等比数列的通项、裂项求和等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识)(1)解:设等比数列{}n a 的公比为q ,依题意,有45323224,22.a a a a a +⎧=⎪⎨⎪=⎩即3452322,2.a a a a a =+⎧⎪⎨=⎪⎩……………………………………………………………………2分 所以234111222112,2.a q a q a q a q a q ⎧=+⎪⎨=⎪⎩………………………………………………………………………………3分由于10a ≠,0q ≠,解之得11,21.2a q ⎧=⎪⎪⎨⎪=⎪⎩或11,21.a q ⎧=⎪⎨⎪=-⎩……………………………………………………5分 又10,0a q >>,所以111,22a q ==,…………………………………………………………………6分所以数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭(*n ∈N ).…………………………………………………7分(2)解:由(1),得()()252123n n n b a n n +=⋅++()()25121232nn n n +=⋅++.………………………………8分所以21121232n n b n n ⎛⎫=-⋅⎪++⎝⎭ 111(21)2(23)2n nn n -=-++.…………………………………………………………………10分所以12n n S b b b =+++L()()211111113525272212232n n n n -⎡⎤⎛⎫⎛⎫=-+-++-⎢⎥⎪ ⎪⋅⋅⋅++⎝⎭⎝⎭⎣⎦L ()113232nn =-+.故数列{}n b 的前n 项和()113232n nS n =-+.………………………………………………………14分20.(本小题满分14分)(本小题主要考查椭圆与双曲线的方程、直线与圆锥曲线的位置关系、函数最值等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解:依题意可得(1,0)A -,(1,0)B .…………………………………………………………………1分设双曲线C 的方程为2221y x b-=()0b >,因为双曲线的离心率为5,所以2151b +=,即2b =.所以双曲线C 的方程为2214yx -=.……………………………………………………………………3分 (2)证法1:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),直线AP 的斜率为k (0k >),则直线AP 的方程为(1)y k x =+,………………………………………………………………………4分 联立方程组()221,1.4y k x y x ⎧=+⎪⎨+=⎪⎩………………………………………………………………………………5分 整理,得()22224240k x k x k +++-=,解得1x =-或2244k x k-=+.所以22244k x k-=+.…………………………………………………………6分同理可得,21244k x k+=-.…………………………………………………………………………………7分所以121x x ⋅=.……………………………………………………………………………………………8分证法2:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则111AP y k x =+,221AT y k x =+.…………………………………………………………………………4分因为AP AT k k =,所以121211y y x x =++,即()()2212221211y y x x =++.……………………………………5分因为点P 和点T 分别在双曲线和椭圆上,所以221114y x -=,222214y x +=.即()221141y x =-,()222241y x =-.…………………………………………………………………6分 所以()()()()22122212414111x x x x --=++,即12121111x x x x --=++.……………………………………………………7分所以121x x ⋅=.……………………………………………………………………………………………8分 证法3:设点11(,)P x y ,直线AP 的方程为11(1)1y y x x =++,………………………………………4分联立方程组()11221,11.4y y x x y x ⎧=+⎪+⎪⎨⎪+=⎪⎩…………………………………………………………………………5分整理,得222222111114(1)24(1)0x y x y x y x ⎡⎤++++-+=⎣⎦, 解得1x =-或221122114(1)4(1)x y x x y +-=++.…………………………………………………………………6分将221144y x =-代入221122114(1)4(1)x y x x y +-=++,得11x x =,即211x x =.所以121x x ⋅=.…………………………………………………………………………………………8分 (3)解:设点11(,)P x y 、22(,)T x y (0i x >,0i y >,1,2i =),则()111,PA x y =--- ,()111,PB x y =--.因为15PA PB ⋅≤,所以()()21111115x x y ---+≤,即221116x y +≤.…………………………9分因为点P 在双曲线上,则221114y x -=,所以22114416x x +-≤,即214x ≤.因为点P 是双曲线在第一象限内的一点,所以112x <≤.…………………………………………10分因为1221||||||2S A B y y ==,21111||||||22S O B y y ==,所以()()22222222122121121441544S S y y x xx x -=-=---=--.……………………………11分由(2)知,121x x ⋅=,即211x x =.设21t x =,则14t <≤,221245S S t t-=--.设()45t tf t =--,则()()()222241t t f t tt-+'=-+=,当12t <<时,()0f t '>,当24t <≤时,()0f t '<, 所以函数()f t 在()1,2上单调递增,在(]2,4上单调递减. 因为()21f =,()()140f f ==,所以当4t =,即12x =时,()()2212min40S S f -==.……………………………………………12分当2t =,即12x =时,()()2212max21S S f -==.………………………………………………13分所以2212S S -的取值范围为[]0,1.……………………………………………………………………14分说明:由()222212121254541S S x x x x -=-+≤-=,得()2212max1S S -=,给1分.21.(本小题满分14分)(本小题主要考查函数、导数、不等式、数学归纳法、二项式定理等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力)(1)证明:设11()()()1xx f x g x e x ϕ=-=--,所以1()1xx e ϕ'=-.………………………………………………………………………………………1分当0x <时,1()0x ϕ'<,当0x =时,1()0x ϕ'=,当0x >时,1()0x ϕ'>.即函数1()x ϕ在(,0)-∞上单调递减,在(0,)+∞上单调递增,在0x =处取得唯一极小值,………2分 因为1(0)0ϕ=,所以对任意实数x 均有 11()(0)0x ϕϕ=≥. 即1()()0f x g x -≥,所以()f x 1()g x ≥.………………………………………………………………………………………3分(2)解:当0x >时,()f x >()n g x .………………………………………………………………………4分用数学归纳法证明如下:(资料来源:中国高考吧 ) ①当1n =时,由(1)知()f x 1()g x >.②假设当n k =(*k ∈N )时,对任意0x >均有()f x >()k g x ,…………………………………5分 令()()()k k x f x g x ϕ=-,11()()()k k x f x g x ϕ++=-,因为对任意的正实数x ,()()11()()()k kk x f x g x f x g x ϕ++'''=-=-, 由归纳假设知,1()()()0k k x f x g x ϕ+'=->.…………………………………………………………6分 即11()()()k k x f x g x ϕ++=-在(0,)+∞上为增函数,亦即11()(0)k k x ϕϕ++>, 因为1(0)0k ϕ+=,所以1()0k x ϕ+>. 从而对任意0x >,有1()()0k f x g x +->. 即对任意0x >,有1()()k f x g x +>.这就是说,当1n k =+时,对任意0x >,也有()f x >1()k g x +.由①、②知,当0x >时,都有()f x >()n g x .………………………………………………………8分 (3)证明1:先证对任意正整数n ,()1e n g <.由(2)知,当0x >时,对任意正整数n ,都有()f x >()n g x . 令1x =,得()()11=e n g f <.所以()1e n g <.……………………………………………………………………………………………9分再证对任意正整数n ,()1232222112341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭111112!3!!n =+++++ . 要证明上式,只需证明对任意正整数n ,不等式211!nn n ⎛⎫≤ ⎪+⎝⎭成立. 即要证明对任意正整数n ,不等式1!2nn n +⎛⎫≤ ⎪⎝⎭(*)成立.……………………………………10分以下分别用数学归纳法和基本不等式法证明不等式(*):方法1(数学归纳法): ①当1n =时,1111!2+⎛⎫≤ ⎪⎝⎭成立,所以不等式(*)成立.②假设当n k =(*k ∈N )时,不等式(*)成立,即1!2kk k +⎛⎫≤ ⎪⎝⎭.………………………………………………………………………………………11分则()()()1111!1!1222k k k k k k k k +++⎛⎫⎛⎫+=+≤+= ⎪ ⎪⎝⎭⎝⎭.因为11111111112211121CCC2111112k k k k k k k k k k k k k k k k ++++++++++⎛⎫⎪+⎛⎫⎛⎫⎛⎫⎝⎭==+=+++≥ ⎪ ⎪⎪++++⎝⎭⎝⎭⎝⎭+⎛⎫ ⎪⎝⎭,…12分所以()11121!222k k k k k ++++⎛⎫⎛⎫+≤≤ ⎪⎪⎝⎭⎝⎭.……………………………………………………………13分这说明当1n k =+时,不等式(*)也成立.由①、②知,对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.……………………………………14分方法2(基本不等式法): 因为112n n +⋅≤,……………………………………………………………………………………11分 ()1122n n +-⋅≤,……,112n n +⋅≤,将以上n 个不等式相乘,得1!2nn n +⎛⎫≤ ⎪⎝⎭.……………………………………………………………13分所以对任意正整数n ,不等式(*)都成立.综上可知,对任意正整数n ,不等式()123222211e 2341nn g n ⎛⎫⎛⎫⎛⎫⎛⎫+++++≤< ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭成立.……………………………………14分。