全国通用版2019中考数学总复习 第一章 数与式综合测试题
- 格式:doc
- 大小:142.00 KB
- 文档页数:5
2019-2020年中考数学《第一章数与式》总复习练习题含分类汇编解析 一、选择题(本大题共10小题 ,每小题4分,共40分) 1.(2017·青岛)-18的相反数是(C )A .8B .-8 C.18 D .-182.若|a +3|=0,则a 的相反数是(A ) A .3 B .-3 C.13 D .-133.(2018·原创)实数-π,-3.14,0,2四个数中,最小的是(A ) A .-π B .-3.14 C. 2 D .0 4.(2017·上海)下列实数中,无理数是(B ) A .0 B. 2 C .-2 D.275.(2017·成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10 ℃记作+10 ℃,则-3 ℃表示气温为(B )A .零上3 ℃B .零下3 ℃C .零上7 ℃D .零下7 ℃6.(2017·徐州)肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为(导学号 35694081)(C )A .7.1×107B .0.71×10-6C .7.1×10-7D .71×10-87.(2017·黄冈)计算:|-13|=(A )A.13 B .-13C .3D .-3 8.(2017·山西)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为(C )A .186×108吨B .18.6×109吨C .1.86×1010 吨D .0.186×1011 吨9.(8)2的立方根是(A )A .2B .-2C .4D .-410.如图,数轴上点P 对应的数为p ,则数轴上与数-p2对应的点是(C )A .点AB .点BC .点CD .点D 二、填空题(本大题共5小题 ,每小题3分,共15分)11.A 是数轴上一点,一只蚂蚁从A 出发爬了4个单位长度到了原点,则点A 所表示的数是__±4__.(导学号 35694082)12.3-64=__-4__.13.(2017·广东)已知实数a ,b 在数轴上的对应点的位置如图所示,则a +b __>__0.(填“>”,“<”或“=”)14.计算:(π-1)0+4=__3__.(导学号 35694083)15.(2018·原创)将实数3,π,0,-4由小到大用“<”号连起来,可表示为__-4<0<3<π__.三、解答题(本大题共3个小题 ,共15分)16.(5分)计算:(π-10)0+|2-1|+(12)-1-2sin 45°.解:原式=1+2-1+2- 2 =2.17.(5分)(2017·长沙)计算:|-3|+(π-2017)0-2sin 30°+(13)-1. (导学号 35694084)解:原式=3+1-1+3 =6.18.(5分)(2017·怀化改编)计算:|3-1|+(2017-π)0-(14)-1-tan 60°+38.解:原式=-2.第2讲整式及因式分解(时间40分钟满分70分)一、选择题(本大题共10小题,每小题4分,共40分)1.(2017·无锡)若a-b=2,b-c=-3,则a-c等于(导学号35694085)(B)A.1B.-1C.5D.-52.(2017·济宁)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是(D)A.2 B.3 C.4 D.53.(2017·宁波)下列计算正确的是(C)A.a2+a3=a5B.(2a)2=4aC.a2·a3=a5D.(a2)3=a54.把多项式m2-9m分解因式,结果正确的是(导学号35694086)(A)A.m(m-9) B.(m+3)(m-3)C.m(m+3)(m-3) D.(m-3)25.(2017·南京)计算106×(102)3÷104的结果是(C)A.103B.107C.108D.1096.下列计算正确的是(C)A.x3+x2=x5B.2x3·x2=2x6C.(3x3)2=9x6D.x6÷x3=x27.(2017·重庆B)若x=-3,y=1,则代数式2x-3y+1的值为(导学号35694087)(B)A.-10 B.-8 C.4 D.108.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是(C)A.2015x2015B.4029x2014C.4029x2015D.4031x20159.(2016·杭州)设a,b是实数,定义关于@的一种运算如下:a@b=(a+b)2-(a-b)2,则下列结论:①若a@b=0,则a=0或b=0;②a@(b+c)=a@b+a@c;③不存在实数a、b,满足a@b=a2+5b2;④设a、b是矩形的长和宽,若该矩形的周长固定,则当a=b时,a@b的值最大,其中正确的是(C)A.②③④B.①③④C.①②④D.①②③10.已知m-n=100,x+y=-1,则代数式(n+x)-(m-y)的值是(B)A.-99 B.-101 C.99 D.101二、填空题(本大题共8小题,每小题3分,共24分)11.(2017·天津)计算x7÷x4的结果等于__x3__.12.(2017·潍坊)因式分解:x 2-2x +(x -2)=__(x +1)(x -2)__.(导学号 35694088) 13.(2017·泰州)已知2m -3n =-4,则代数式m (n -4)-n (m -6)的值为__8__. 14.(2017·衢州)如图,从边长为(a +3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是__a +6__.15.观察下面的数(式)的排列规律,写出它后面的数(式): (1)-1,3,-9,27,__-81__,__243__,….(2)2+23=22×23,3+38=32×38,4+415=42×415,__5+524=52×524__,….16.(2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有__4n +1__个涂有阴影的小正方形(用含有n 的代数式表示).(导学号 35694089)17.(2017·潍坊)因式分解:x 2-2x +(x -2)=__(x +1)(x -2)__. 18.(2017·常州)分解因式:ax 2-ay 2=__a (x +y )(x -y )__. 三、解答题(本大题共1小题 ,共6分)19.(6分)(2017·眉山)先化简,再求值:(a +3)2-2(3a +4),其中a =-2.(导学号 35694090)解:原式=a 2+6a +9-6a -8=a 2+1, 当a =-2时,原式=4+1=5.第3讲 分 式 (时间60分钟 满分80分)一、选择题(本大题共7小题 ,每小题4分,共28分)1.(2017·北京)若代数式xx -4有意义,则实数x 的取值范围是(导学号 35694091)(D )A .x =0B .x =4C .x ≠0D .x ≠4 2.(2017·海南)若分式x 2-1x -1的值为0,则x 的值为(A )A .-1B .0C .1D .±1 3.(2017·天津)计算a a +1+1a +1的结果为(A ) A .1 B .a C .a +1 D.1a +14.(2017·滨州)下列分式中,最简分式是(A ) A.x 2-1x 2+1 B.x +1x 2-1 C.x 2-2xy +y 2x 2-xy D.x 2-362x +125.化简分式1a -1÷1a (a -1),正确的结果是(导学号 35694092)(D )A.1a -1B.1a C .a -1 D .a6.(2018·原创)一辆货车A 和一辆客车B 从两地同时出发,若相向而行,则客车与货车a 小时后相遇;若同向而行,则客车b 小时后追上货车,那么客车与货车的速度之比为(D )A.a +b aB.ba +b C.b -a a +b D.a +b b -a7.(2017·北京)如果a 2+2a -1=0,那么代数式(a -4a )·a 2a -2的值是(C ) A .-3 B .-1 C .1 D .3二、填空题(本大题共4小题 ,每小题3分,共12分)8.(2018·原创)若分式3x -12x +2的值为0,则x 的值为__4__.(导学号 35694094)9.(2017·黄冈改编)计算:(x x -3+23-x )·x -3x -2=__1__.(导学号 35694095)10.若a =2,b =3,则a 2+b 2-2ab b 2-ab的值为__13__.11.(2016·咸宁)a ,b 互为倒数,代数式a 2+2ab +b 2a +b ÷(1a +1b )的值为__1__.三、解答题(本大题共6小题,共40分)12.(5分)(2017·青岛)化简:(a 2b -a )÷a 2-b 2b .解:原式=aa +b .13.(5分)(2017·宜宾)化简:(1-1a -1)÷(a 2-4a +4a 2-a ).解:原式 =aa -2.14.(6分)(2017·恩施州改编)先化简,再求值:x -2x 2+2x ÷x 2-4x +4x 2-4-12x ,其中x =1.解:原式 =12x.当x =1时,原式=12.15.(8分)(2017·襄阳)先化简,再求值:(1x +y +1x -y )÷1xy +y 2,其中x =5+2,y =5-2.(导学号 35694096)解:原式=[x -y (x +y )(x -y )+x +y (x +y )(x -y )]÷1y (x +y )=2x(x +y )(x -y )·y (x +y )=2xyx -y. 当x =5+2,y =5-2时,原式=2(5+2)(5-2)5+2-5+2=24=12.16.(8分)先化简,再求值:(x 2x -1-x 2x 2-1)÷x 2-x x 2-2x +1,其中x 是方程x 2-2x -2=0的根.(导学号 35694097)解:原式=x 2x +1.∵x 2-2x -2=0,∴x 2=2(x +1), ∴原式=2(x +1)x +1=2.17.(8分)(2017·齐齐哈尔)先化简,再求值:x -3x 2-1·x 2+2x +1x -3-(1x -1+1),其中x =2cos60°-3.(导学号 35694098)解:原式=x -3(x +1)(x -1)·(x +1)2x -3-1+x -1x -1=x +1x -1-x x -1 =1x -1. 当x =2cos60°-3=2×12-3=1-3=-2时,原式=1-2-1=-13.第4讲 二次根式 (时间50分钟 满分70分)一、选择题(本大题共10小题 ,每小题4分,共40分)1.(2017·成都)二次根式x -1中,x 的取值范围是(导学号 35694099)(A ) A .x ≥1 B .x >1 C .x ≤1 D .x <12.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a |+(a -b )2的结果是(A )A .-2a +bB .2a -bC .-bD .b3.(2017·贵港)下列二次根式中,最简二次根式是(A ) A .- 2 B.12 C.15D.a 2 4.(2017·十堰)下列运算正确的是(C ) A.2+3= 5 B .22×32=6 2 C.8÷2=2 D .32-2=35.(2017·济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是(C ) A .x ≥12 B .x ≤12 C .x =12 D .x ≠126.(2017·天津)估计38的值在(C ) A .4和5之间 B .5和6之间C .6和7之间D .7和8之间7.已知y =2x -5+5-2x -3,则2xy 的值为(A ) A .-15 B .15 C .-152 D.1528.若|x -2y |+y -2=0,则(-xy )2的值为(A ) A .64 B .-64 C .16 D .-169.已知a =5+2,b =5-2,则a 2+b 2+7的值为(导学号 35694100)(C ) A .3 B .4 C .5 D .610.(2017·滨州)下列计算:(1)(2)2=2,(2)(-2)2=2,(3)(-23)2=12,(4)(2+3)(2-3)=-1,其中结果正确的个数为(导学号 35694101)(D )A .1B .2C .3D .4二、填空题(本大题共6小题 ,每小题3分,共18分)11.(2017·哈尔滨)计算27-613的结果是导学号 35694102) 12.(2017·呼和浩特)若式子11-2x 有意义,则x 的取值范围是__x <12__. 13.(2017·益阳)代数式3-2x x -2有意义,则x 的取值范围是__x ≤32__. 14.(2017·鄂州)若y =x -12+12-x -6,则xy =__-3__.(导学号 35694103) 15.如果最简二次根式a +2与26-3a 是同类二次根式,则a =__1__.16.(2018·原创)已知无理数3+3,若a <3+3<b ,其中a 、b 为两个连续的整数,则ab 的值为__20__.三、解答题(本大题共2小题 ,共12分)17.(6分)(2017·上海)计算:18+(2-1)2-912+(12)-1.(导学号 35694104) 解:原式=2+2.18.(6分)(2018·原创)计算:8-(18)-1+(-13)0.(导学号 35694105) 解:原式=1.第一章 数与式自我测试(时间60分钟 满分110分)一、选择题(本大题共10小题 ,每小题4分,共40分)1.(2017·邵阳)3-π的绝对值是(B )A .3-πB .π-3C .3D .π2.(2017·齐齐哈尔)下列算式运算结果正确的是(B )A .(2x 5)2=2x 10B .(-3)-2=19C .(a +1)2=a 2+1D .a -(a -b )=-b3.(2017·宁波)在3,12,0,-2这四个数中,为无理数的是(导学号 35694106)(A ) A. 3 B.12C .0D .-2 4.(2017·菏泽)生物学家发现了一种病毒,其长度约为0.00000032 mm ,数据0.00000032用科学记数法表示正确的是(C )A .3.2×107B .3.2×108C .3.2×10-7D .3.2×10-85.(2017·益阳)下列各式化简后的结果为32的是(导学号 35694107)(C )A. 6B.12C.18D.366.(2017·陕西)化简:x x -y -y x +y,结果正确的是(B ) A .1 B.x 2+y 2x 2-y 2 C.x -y x +yD .x 2+y 2 7.(2017·荆州)下列根式是最简二次根式的是(C )A.13B.0.3C. 3D.20 8.(2018·原创)已知a -1+(b +2)2=0,则(a +b )2017的值为(导学号 35694108)(C )A .0B .2016C .-1D .19.(2017·北京)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是(C )A .a >-4B .bd >0C .|a |>|d |D .b +c >010.(2017·宁夏)如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是(D )A .(a -b )2=a 2-2ab +b 2B .a (a -b )=a 2-abC .(a -b )2=a 2-b 2D .a 2-b 2=(a +b )(a -b )二、填空题(本大题共11小题 ,每小题3分,共33分)11.(2017·安徽)27的立方根为__3__. 12.(2017·北京)写出一个比3大且比4小的无理数:__π(答案不唯一)__.(导学号 35694109)13.(2017·贺州)要使代数式2x -1x -1有意义,则x 的取值范围是__x ≥12且x ≠1__. 14.(2017·南充)计算:|1-5|+(π-3)0=__5__.(导学号 35694110)15.(2017·岳阳)因式分解:x 2-6x +9=__(x -3)2__.16.(2017·黄冈)自中国提出“一带一路,合作共赢”的倡议以来,一大批中外合作项目稳步推进.其中,由中国承建的蒙内铁路(连接肯尼亚首都内罗毕和东非第一大港蒙巴萨港),是首条海外中国标准铁路,已于2017年5月31日正式投入运营,该铁路设计运力为25000000吨,将25000000吨用科学记数法表示,记作__2.5×107__吨.17.(2017·杭州)某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉__30-t 2__千克.(用含t 的代数式表示)(导学号 35694111) 18.若a +b =2,且a ≠b ,则代数式(a -b 2a )·a a -b的值是__2__. 19.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是__a __.20.(2017·泰安改编)下列四个数:-3,-3,-π,-1,其中最小的数是__-π__.21.如图所示是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n (n 是正整数)个图案中的基础图形个数为__3n +1__(用含n 的式子表示).三、解答题(本大题共7小题 ,共37分)22.(5分)(2017·北京)计算:4cos30°+(1-2)0-12+|-2|.(导学号 35694112) 解:原式=3.23.(5分)(2017·怀化)计算:|3-1|+(2017-π)0-(14)-1-3tan30°+38. 解:原式=-2.24.(5分)分解因式:2x 3y -2xy 3.解:原式=2xy (x 2-y 2)=2xy (x +y )(x -y ).25.(5分)因式分解:x 2(y 2-1)+2x (y 2-1)+(y 2-1). 解:原式=(y 2-1)(x 2+2x +1)=(y 2-1)(x +1)2=(y +1)(y -1)(x +1)2.26.(5分)(2017·泸州)化简:x -2x +1·(1+2x +5x 2-4). 解:原式=x +1x +2.27.(6分)(2017·贺州)先化简,再求值:x 2+2x +1x 3-x÷(1+1x ),其中x =3+1. 解:原式=(x +1)2x (x +1)(x -1)·x x +11x -1, 当x =3+1时, 原式=13+1-1=33.28.(6分)先化简x 2-4x +4x 2-2x÷(x -4x ),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.(导学号 35694113) 解:原式=1x +2. ∵-5<x<5,且x 为整数,∴若使分式有意义,x 只能取-1或1. 当x =1时,原式=13.(或当x =-1时,原式=1.)。
单元综合检测一数与式(80分钟120分)一、选择题(每小题4分,满分40分)1.如果向北走6步记作+6步,那么向南走8步记作(C)A.+8步B.+14步C.-8步D.-2步【解析】∵向北走6步记作+6步,∴向南走8步记作-8步.2.某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为 (B)A.96.8×105B.9.68×106C.9.68×107D.0.968×108【解析】将9680000用科学记数法表示为9.68×106.3.下列运算正确的是(C)A.-a(a-b)=-a2-abB.(2ab)2+a2b=4abC.2ab·3a=6a2bD.(a-1)(1-a)=a2-1【解析】-a(a-b)=-a2+ab,A错误;(2ab)2+a2b=4a2b2+a2b,B错误;2ab·3a=6a2b,C正确;(a-1)(1-a)=-a2+2a-1,D错误.4.在算式(-2)(-3)的中填上运算符号,使结果最小,运算符号是(A)A.加号B.减号C.乘号D.除号【解析】(-2)+(-3)=-5;(-2)-(-3)=-2+3=1;(-2)×(-3)=6;(-2)÷(-3)=,则在算式(-2)(-3)的中填上运算符号,使结果最小,运算符号是加号.5.实数a,b在数轴上的位置如图所示,下列各式正确的是(D)A.a-b>0B.ab>0C.|a|+b<0D.a+b>0【解析】根据数轴可知-2<a<-1,b>2,则a-b<0,ab<0,|a|+b>0,a+b>0,故D项正确.6.如果分式的值为0,则x的值是(A)A.1B.0C.-1D.±1【解析】由分式的值为0,可得解得x=1.7.设n是正整数,且<n<,则n的值为(B)A.3B.4C.5D.6【解析】∵3<<4,4<<5,∴由<n<得正整数n=4.8.已知等式+(x-2)2=0,则x的值为(A)A.1B.2C.3D.1或3【解析】由题意知,当x≥2时,方程无解,故x<2,此时原方程可化为(x-2)2=1,解得x1=3,x2=1,综上,x=1.9.已知x+y=4,x-y=,则式子的值是(D)A.48B.12C.16D.12【解析】=(x+y)(x-y),当x+y=4,x-y=时,原式=4=12.10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示,设左上角与右下角的阴影部分面积之差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足(B)A.a=bB.a=3bC.a=bD.a=4b【解析】如图,左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,AE+ED=AE+a,BP+PC=4b+PC,∴AE+a=4b+PC,即AE=PC+4b-a,∴阴影部分面积之差S=AE·AF-PC·CG=3bAE-aPC=3b(PC+4b-a)-aPC=(3b-a)PC+12b2-3ab,∵面积之差S始终保持不变,∴3b-a=0,即a=3b.二、填空题(每小题5分,满分20分)11.分解因式:x3-x=x(x+1)(x-1).【解析】x3-x=x(x2-1)=x(x+1)(x-1).12.若y=-6,则xy=-3.【解析】由题意可知解得x=,∴y=0+0-6=-6,∴xy=-3.13.一组按规律排列的式子:a2,,…,则第n个式子是.(n为正整数)【解析】分子部分为a的偶数次幂;分母为连续奇数,所以第n个式子是.14.阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=-1,那么(1+i)·(1-i)= 2.【解析】由题意可知(1+i)·(1-i)=1-i2=1-(-1)=2.三、解答题(满分60分)15.(8分)计算:-|4-|-(π-3.14)0+(1-cos 30°)×.解:原式=-(4-2)-1+×4=-4+2-1+4-2=-1.16.(8分)先化简,再求值:,其中a=-3.解:原式===-.17.(10分)已知x2-4x-1=0,求代数式(2x-3)2-(x+y)(x-y)-y2的值.解:原式=4x2-12x+9-x2+y2-y2=3x2-12x+9=3(x2-4x+3),∵x2-4x-1=0,∴把x2-4x=1代入化简后的代数式,得原式=12.18.(10分)已知α,β为整数,有如下两个代数式22α,.(1)当α=-1,β=0时,求各个代数式的值.(2)问它们能否相等?若能,则给出一组相应的α,β的值;若不能,则说明理由.解:(1)把α=-1代入代数式,得22α=,把β=0代入代数式,得=2.(2)不能.理由:=21-2β.∵α,β为整数,∴1-2β为奇数,2α为偶数,∴22α≠.19.(12分)观察以下一系列等式:①21-20=2-1=20;②22-21=4-2=21;③23-22=8-4=22;…(1)请按这个顺序仿照前面的等式写出第④个等式;(2)若字母n代表第n个等式,请用字母n表示上面所发现的规律;(3)请利用上述规律计算:20+21+22+23+ (21000)解:(1)24-23=16-8=23.(2)2n-2n-1=2n-1.(3)∵20=21-20,21=22-21,22=23-22,…,21000=21001-21000,∴20+21+22+23+…+21000=(21-20)+(22-21)+(23-22)+…+(21001-21000)=21001-20=21001-1.20.(12分)合肥白马批发市场某服装店积压了100件某种服装,为使这批服装尽快脱手,该服装店采取了如下销售方案,将价格提高到原来的2.5倍,再作3次降价处理:第一次降价30%,标出“亏本价”;第二次又降价30%,标出“破产价”;第三次再降价30%,标出“跳楼价”.3次降价处理销售结果如下表:降价次数一二三销售件数145(1)跳楼价占原价的百分比是多少?(2)该服装按新销售方案销售,相比原价全部售完,哪种方案更盈利?解:(1)设原价为1,则跳楼价为2.5×1×(1-30%)×(1-30%)×(1-30%)=2.5×0.73,所以跳楼价占原价的百分比为2.5×0.73÷1×100%=85.75%.(2)设原价为1,则原价出售时,销售金额=100×1=100,新价出售时,销售金额=2.5×1×0.7×10+2.5×1×0.7×0.7×40+2.5×0.73×50=109.375,因为109.375>100,所以新方案销售更盈利.。
单元测试(一) 数与式(时间:45分钟 满分:100分)一、选择题(每小题3分,共24分)1.如果电梯上升5层记为+5.那么电梯下降2层应记为(B )A .+2B .-2C .+5D .-52.下列四个实数中,绝对值最小的数是(C )A .-5B .- 2C .1D .43.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81 000名观众,其中数据81 000用科学记数法表示为(B )A .81×103B .8.1×104C .8.1×105D .0.81×1054.化简x 2x -1+11-x 的结果是(A ) A .x +1 B .x -1 C .x 2-1 D.x 2+1x -1 5.如图,数轴上的点A ,B 分别对应实数a ,b ,下列结论正确的是(C )A .a >bB .|a |>|b |C .-a <bD .a +b <06.下列运算正确的是(C )A .2a 3÷a =6B .(ab 2)2=ab 4C .(a +b )(a -b )=a 2-b 2D .(a +b )2=a 2+b 27.已知实数x ,y 满足x -2+(y +1)2=0,则x -y 等于(A )A .3B .-3C .1D .-18.甲、乙、丙三家超市为了促销一种定价为m 元的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客购买这种商品最合算的超市是(C )A .甲B .乙C .丙D .一样二、填空题(每小题4分,共16分)9.分解因式:2a 2-4a +2=2(a -1)2.10.若a +b =3,ab =2,则(a -b)2=1.11.代数式x -1x -1中x 的取值范围是x>1. 12.阅读理解:引入新数i ,新数i 满足分配律、结合律、交换律,已知i 2=-1,那么(1+i)(1-i)=2.三、解答题(共60分) 13.(6分)计算:(2 019)0×8-(12)-1-|-32|+2cos 45°. 解:原式=1×22-2-32+2×22=22-2-32+ 2=-2.14.(6分)计算:(3+2-1)(3-2+1).解:原式=[3+(2-1)][3-(2-1)]=3-(2-1)2=3-3+2 2=2 2.15.(8分)先化简,再求值:a(a -2b)+2(a +b)(a -b)+(a +b)2,其中a =-12,b =1. 解:原式=a 2-2ab +2a 2-2b 2+a 2+2ab +b 2=4a 2-b 2.当a =-12,b =1时,原式=4×(-12)2-12=0.16.(8分)已知:x =3+1,y =3-1,求x 2-2xy +y 2x 2-y2的值. 解:原式=(x -y )2(x -y )(x +y )=x -y x +y. 当x =3+1,y =3-1时,x -y =2,x +y =2 3.∴原式=223=33.17.(10分)已知P =a 2+b 2a 2-b 2,Q =2ab a 2-b2,用“+”或“-”连接P ,Q 共有三种不同的形式:P +Q ,P -Q ,Q -P ,请选择其中一种进行化简求值,其中a =3,b =2.解:如选P +Q 进行计算:P +Q =a 2+b 2a 2-b 2+2ab a 2-b2 =a 2+b 2+2ab a 2-b 2 =(a +b )2(a +b )(a -b )=a +b a -b. 当a =3,b =2时,P +Q =3+23-2=5.... 18.(10分)x 2+x x 2-2x +1÷(2x -1-1x ).(1)化简已知分式;(2)从-2<x≤2的范围内选取一个合适的x 的整数值代入求值. 解:(1)原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x2x -1.(2)答案不唯一,如:要使上式有意义,则x≠±1且x≠0.∵-2<x≤2且x 为整数,∴x =2.将x =2代入x2x -1中,得原式=222-1=4.19.(12分)先观察下列等式,然后用你发现的规律解答下列问题.11×2=1-12;12×3=12-13;13×4=13-14;…(1)计算:11×2+12×3+13×4+14×5+15×6=56;(2)探究11×2+12×3+13×4+…+1n (n +1)=nn +1;(用含有n 的式子表示)(3)若11×3+13×5+15×7+…+1(2n -1)(2n +1)的值为1735,求n 的值. 解:11×3+13×5+15×7+…+1(2n -1)(2n +1)=12(1-13+13-15+…+12n -1-12n +1)=12(1-12n +1)=12·2n2n +1=n2n +1.由题意知n 2n +1=1735.解得n =17.。
数与式
一、选择题(每小题3分,共30分) 1.-5的倒数是(D )
A. -5
B. 5
C. 1
5
D. -15
2.下列说法中,正确的是(B )
A. 3的平方根是 3
B. 6的算术平方根是 6
C. -15的平方根是±-15
D. -2的算术平方根是-2
3.数字32000000用科学记数法表示应是(A )
A. 3.2×107
B. 3.2×106
C. 32×106
D. 0.32×108
4.下列各式计算正确的是(D )
A. 2a 2+a 3=3a 5
B. (3xy )2
÷(xy )=3xy C. ()2b 2
3
=8b 5 D. 2x ·3x 5=6x 6
5.在176
,sin 60°,0.1010010001…(每两个1之间依次多一个0),tan 45°,3
27,π,0.151·72·
中,
无理数的个数是(C )
A. 1
B. 2
C. 3
D. 4
6.数轴上的点A 到2的距离是5,则点A 表示的数为(D ) A. 3或-3 B. 7
C. -3
D. 7或-3
7.若a ,b 是正数,a -b =1,ab =2则a +b =(B ) A. -3 B. 3 C. ±3 D. 9
8.如果13
x a +2y 3与-3x 3y 2b -1
是同类项,那么a ,b 的值分别是(A )
A. ⎩⎪⎨⎪⎧a =1,b =2
B. ⎩
⎪⎨⎪⎧a =0,
b =2 C. ⎩
⎪⎨⎪⎧a =2,b =1
D. ⎩
⎪⎨⎪⎧a =1,b =1 9.如图,数轴上的A ,B ,C 三点所表示的数分别是a ,b ,c ,其中AB =BC ,如果|a |>|b |>|c |,那么该
数轴的原点O 的位置应该在(D )
(第9题图)
A. 点A 的左边
B. 点A 与点B 之间
C. 点B 与点C 之间
D. BC 中点的右边
10.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m ,n 的关系是(D )
(第10题图)
A. M =mn
B. M =n (m +1)
C. M =mn +1
D. M =m (n +1) 二、填空题(每小题4分,共24分)
11.分解因式:4x 2
-1=(2x +1)((2x -1). 12.若代数式
2
x -1
-1的值为零,则x =3. 13.已知a -3b =-3,那么5-2a +6b =11.
14.若a m =3,a n =5,则a 2m +n
=45.
15.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公
式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是 (a -b )2=a 2-2ab +b 2
.
(第15题图)
16.已知直线上有n (n ≥2的正整数)个点,每相邻两点间距离为1,从左边第1个点起跳,且同时满足以下三个条件:
①每次跳跃均尽可能最大; ②跳n 次后必须回到第1个点; ③这n 次跳跃将每个点全部到达,
设跳过的所有路程之和为S n ,则S 25=312. 三、解答题(本题有8小题,共66分)
17.(本题6分)计算:|-3|+(-1)2015
×(π-3)0
-3
8+⎝ ⎛⎭
⎪⎫12-2.
解:原式=3+(-1)×1-2+4=4.
18.(本题6分)因式分解:mx 2-my 2
.
解:mx 2-my 2=m (x 2-y 2
)=m (x +y )(x -y ).
19.(本题6分)化简:2()a +3()a -3-()a -12
+7.
解:原式=2(a 2
-3)-(a 2
-2a +1)+7=2a 2
-6-a 2
+2a -1+7=a 2
+2a .
20.(本题8分)先化简:⎝ ⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a ,然后再从0,1,2,3中选一个你认为合适的a 值,代入求值.
解:原式=(a -1)-1a -1·a (a -1)()
a -22=a
a -2
.
当a =3时,原式=3.
21.(本题8分)如图①所示,从边长为a 的正方形纸片中减去一个边长为b 的小正方形,再沿着线段AB
剪开,把剪成的两张纸拼成如图②所示的等腰梯形.
(第21题图))
(1)设图①中阴影部分面积为S 1,图②中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1和S 2. (2)请写出上述过程所揭示的乘法公式.
解:(1)∵大正方形的边长为a ,小正方形的边长为b ,
∴S 1=a 2-b 2
,
S 2=12
(2a +2b )(a -b )=(a +b )(a -b ).
(2)根据题意,得(a +b )(a -b )=a 2
-b 2
. 22.(本题10分)阅读材料:
求值:1+2+22+23+24+…+22016
.
解:设S =1+2+22+23+24+…+22016
,将等式两边同时乘2,得
2S =2+22+23+24+…+22016+22017
,
将下式减去上式,得2S -S =22017
-1,
即S =1+2+22+23+24+…+22016=22017
-1. 请你仿照此法计算:
(1)1+2+22+23+24+…+210
.
(2) 1+3+32+33+34+ (3)
(其中n 为正整数).
解:(1)设S =1+2+22+23+…+210
,
则2S =2+22+23+24+…+211
,
∴2S -S =211
-1.
即1+2+22+23+…+210=211
-1.
(2)设S =1+3+32+33+ (3)
,
则3S =3+32+33+34+…+3n +1
,
∴3S -S =3n +1-1,即2S =3n +1
-1, ∴1+3+32+33+ (3)
=12
(3n +1-1).
23.(本题10分)先阅读下列材料,然后解答问题:
材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同的
元素中选取2个元素的排列,排列数记为A 32
=3×2=6.
一般地,从n 个不同的元素中选取m 个元素的排列数记作A n m ,A n m
=n (n -1)(n -2)(n -3)…(n -m +1)(m ≤n ).
例:从5个不同的元素中选取3个元素排成一列的排列数为A 53
=5×4×3=60.
材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数为C 32
=
3×2
2×1
=3. 一般地,从n 个不同的元素中选取m 个元素的组合数记作C n m
, C n m
=
n (n -1)(n -2)(n -3)…(n -m +1)
m (m -1)(m -2) (1)
(m ≤n ).
例:从6个不同的元素选3个元素的组合数为C 63
=6×5×43×2×1
=20.
问:
(1)从某个学习小组8人中选取3人参加活动,有多少种不同的选法? (2)从7个人中选取4人,排成一列,有多少种不同的排法? 解:(1)C 83
=8×7×63×2×1
=56(种).
(2)A 74
=7×6×5×4=840(种).
24.(本题12分)用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S ,该多边形各边上的格点个数和为
a ,内部的格点个数为
b ,则S =12
a +
b -1(史称“皮克公式”).
小明认真研究了“皮克公式”,并受此启发对正三角形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:
(第24题图)
则S 与,之间的关系为=a +2(b -1)(用含,的代数式表示).
解:填表如下:
则S与,之间的关系为=+2(-1)(用含,的代数式表示).。